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Abstract

Background: Low regeneration ability limits biotechnological breeding approaches. The influence of genotype in
the regeneration response is high in both tomato and other important crops. Despite the various studies that have
been carried out on regeneration genetics, little is known about the key genes involved in this process. The aim of
this study was to localize the genetic factors affecting regeneration in tomato.

Results: We developed two mapping populations (F2 and BC1) derived from a previously selected tomato cultivar
(cv. Anl27) with low regeneration ability and a high regeneration accession of the wild species Solanum pennellii
(PE-47). The phenotypic assay indicated dominance for bud induction and additive effects for both the percentage
of explants with shoots and the number of regenerated shoots per explant. Two linkage maps were developed
and six QTLs were identified on five chromosomes (1, 3, 4, 7 and 8) in the BC1 population by means of the Interval
Mapping and restricted Multiple QTL Mapping methods. These QTLs came from S. pennellii, with the exception of
the minor QTL located on chromosome 8, which was provided by cv. Anl27. The main QTLs correspond to those
detected on chromosomes 1 and 7. In the F2 population, a QTL on chromosome 7 was identified on a similar
region as that detected in the BC1 population. Marker segregation distortion was observed in this population in
those areas where the QTLs of BC1 were detected. Furthermore, we located two tomato candidate genes using a
marker linked to the high regeneration gene: Rg-2 (a putative allele of Rg-1) and LESK1, which encodes a serine/
threonine kinase and was proposed as a marker for regeneration competence. As a result, we located a putative
allele of Rg-2 in the QTL detected on chromosome 3 that we named Rg-3. LESK1, which is also situated on
chromosome 3, is outside Rg-3. In a preliminary exploration of the detected QTL peaks, we found several genes
that may be related to regeneration.

Conclusions: In this study we have identified new QTLs related to the complex process of regeneration from
tissue culture. We have also located two candidate genes, discovering a putative allele of the high regeneration
gene Rg-1 in the QTL on chromosome 3. The identified QTLs could represent a significant step toward the
understanding of this process and the identification of other related candidate genes. It will also most likely
facilitate the development of molecular markers for use in gene isolation.

Background
In vitro regeneration of cultivated tomato (Solanum
lycopersicum L.) has been a constant subject of research
because of the commercial value of the crop. Conse-
quently, numerous studies on plant regeneration from a
wide range of tissues and organs of wild and cultivated
tomato germplasm have been published [1]. These

studies demonstrate that organogenesis, the common
tomato regeneration pathway, is strongly influenced by
genotype as well as by several physical and chemical fac-
tors. These reports also document the existence of recal-
citrance (partial or total inability to respond to in vitro
culture), which greatly limits biotechnological breeding.
High regeneration is crucial to the success of techniques
such as haploid regeneration, genetic transformation,
propagation, somatic hybridization, mutation selection
and germplasm storage [2,3]. For example, the low effi-
ciency of tomato transformation has been associated
with the low regeneration potential of the cultivars used
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[4,5]. In addition, in some cultivars, buds may be
induced but do not develop into shoots [6]. In order to
increase regeneration ability in low regenerating tomato
cultivars, several introgression programs have been
documented [7-10].
The process of in vitro shoot organogenesis usually

involves a hormonal response of somatic cells, the dedif-
ferentiation of differentiated cells in order to acquire
organogenic competence, cell division of the responding
cell(s) and initiation and development of new shoots
from the newly dividing cell(s), either directly or indir-
ectly through a callus stage [11,12]. Thus, many genes
may be involved at different steps of this complex pro-
cess. For instance, the cdc2 gene expression, which
encodes p34, a key cell cycle regulator, has been pro-
posed as an indicator of the state of competence to
divide [13]. Genes that encode or regulate cytokinins
and auxin may clearly influence regeneration. Both types
of growth regulators act synergistically to promote cell
division and antagonistically to promote shoot and root
initiation from callus cultures [14]. In Arabidopsis, a
Histidine Kinase (AHK) gene that encodes a cytokinin
receptor (CRE1/AHK4) has been identified [15,16] and
linked, like other AHKs, to cell division and regulation
[17]. With regard to the initiation of shoot formation,
the most characterized gene reported is ESR1, which
confers, when overexpressed, cytokinin-independent
shoot formation in Arabidopsis root explants [18]. ESR1
encodes a transcription factor belonging to the ethylene-
responsive factor (ERF) family and is classified in sub-
group VIII-b. The ESR2 gene that encodes a protein
that is very similar to ESR1 appears to have redundant
functions that regulate shoot regeneration [19]. The
expression patterns of other Arabidopsis ERF VIII-b
subgroup genes may also be involved in early events of
shoot regeneration [20].
Genetic analysis of regeneration in tomato suggests

that dominant alleles determine high regeneration capa-
city [7,21-24]. However, there is no consensus about the
number of genes involved. For instance, Koorneef et al.
[25] obtained regeneration segregation ratios in accor-
dance with either a monogenic, digenic or trigenic
model depending on the tester tomato line, despite the
fact that none of the lines themselves were able to
regenerate shoots from root explants. In this study, a
dominant allele of S. peruvianum L. (Rg-1), which deter-
mines efficient shoot regeneration in tomato root
explants, was mapped near the middle of chromosome
3. In addition, a putative allele of Rg-1 from S. chilense
(Dunal) Reiche (Rg-2) was reported by Takashina et al.
[9] and Satoh et al. [22]. Both alleles may act in combi-
nation with other alleles of either tomato or the wild
relatives S. peruvianum or S. chilense [22,25]. On the
other hand, Torelli et al. [26] identified a cDNA by

mRNA-differential display that corresponded to the
LESK1 gene and whose expression is specifically and
transiently enhanced by the exposure to the hormonal
treatment leading to caulogenesis (shoot induction).
This gene encodes a putative serine-threonine kinase
and has been reported as an in vitro caulogenesis mar-
ker in tomato [27,28].
Despite ongoing research into the genetic control of in

vitro culture traits in tomato and other crops, there is
still not enough information regarding which key genes
are responsible for low or high regeneration ability, nor
even the number of genes involved. The study and char-
acterization of the reported genes and others that might
be identified could greatly improve our understanding of
the molecular mechanism underlying the different
phases of tomato in vitro organogenesis. In the present
study, we developed two mapping populations (F2 and
BC1) from S. lycopersicum (as the recurrent parent) and
S. pennellii Correll (as the regenerating parent) and con-
ducted a QTL-based analysis. We hereby report the
identification of six QTLs on five chromosomes. These
QTLs present high significant LOD scores and together
represent a high percentage of phenotypic variance. We
also report markers associated with QTL peaks. In addi-
tion, we located two candidate genes, Rg-2 and LESK1,
and performed a preliminary search for genes situated
at QTL peaks. Our findings will complement the cur-
rent knowledge of the genetics of regeneration and facil-
itate the development of molecular markers for use in
tomato breeding and gene isolation.

Results
Development of populations and evaluation of the
regeneration ability
Two mapping populations, F2 and BC1, were obtained
from a low regenerating cultivar of tomato (cv. Anl27)
and the organogenic accession of S. pennellii (PE-47).
The BC1 population was obtained using the tomato cul-
tivar as the recurrent parent. In the first assay, the
regeneration ability of the parents and the F1 plant used
for obtaining the mapping populations was checked by
culturing leaf explants on shoot induction medium.
Regeneration occurred with little callus development
and can be considered as direct. As expected, S. pennel-
lii and F1 explants manifested a higher regeneration
potential versus S. lycopersicum explants (P <0.001). The
percentage of explants with buds (B) in S. pennellii was
100%, whereas only 10% was obtained in tomato cv.
Anl27 (Table 1). Data obtained in F1 for B do not signif-
icantly differ from those obtained for S. pennellii. The
percentage of explants with shoots (R) and the number
of regenerated plants per explant with shoots, consid-
ered to be the productivity rate (PR), was also higher in
S. pennellii and F1 than in cv. Anl27. However, for these
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traits (R and PR), the F1 values differ significantly from
those of S. pennellii (Table 1).
The F2 and BC1 populations were evaluated for regen-

eration using explants from the parents and F1 plants as
controls (Table 1). The phenotypes are shown in Addi-
tional File 1. The distribution obtained for each indivi-
dual trait as well as the means for controls in this assay
are presented in Figure 1. Mean values for B, R and PR
in the F2 population are between F1 and tomato (P1),
but skewed towards F1. For the PR trait, some F2 plants
were in a range higher than the S. pennellii parent (P2).
This can be considered transgressive segregation. BC1

yielded mean values for B, R and PR that were inter-
mediate between F1 and cv. Anl27 (Figure 1).
B and R show a high correlation (r = 0.88/0.79 p < 0,
001 for F2 and BC1 data, respectively), which suggests
common or linked genes controlling these traits. The
correlation between PR and both B and R was lower (r
= 0.56/0.52 p < 0, 001; 0.66/0.66 p < 0, 001 for PR and
B and R for F2 and BC1, respectively) indicating that dif-
ferent genes may influence the PR trait and/or variations
between different biological samples are higher in PR.

Linkage maps
Genetic linkage maps were constructed from 106 F2 and
113 BC1 plants genotyped with SSR, COSI, COSII,
CAPS and AFLP markers (Figure 2). Of the 149 SSR
and 97 other markers (86 COSII, 6 COSI, 5 CAPS)
assayed, 78 SSR and 59 (51 COSII, 4 COSI, 4 CAPS)
markers exhibited codominant polymorphisms. These
markers were obtained from the Sol Genomics Network
(SGN) webpage at http://www.sgn.cornell.edu/with the
exception of 60 SSRs that were designed following the
procedure described in Materials and Methods (see
Additional File 2).
For the F2 linkage map (Figure 2a), a total of 246

polymorphic loci were used, including 151 AFLP, 53
SSR, 35 COSII, 3 COSI and 4 CAPS markers. The mar-
kers were aligned in 12 linkage groups, with LOD scores
≥ 3.0. The average number of markers per linkage group

was 20 and markers were well distributed over all the 12
linkage groups. The F2 map spans 963.85 cM with an
average interval of 3.72 cM between adjacent markers.

Table 1 Phenotyping parental genotypes and mapping population

First Assay
Phenotyping parental genotypes and F1

Second Assay
Phenotyping mapping populations

Ba, c Ra, c PRb, c Ba, c Ra, c PRb, c

S. pennellii 100 b 96 c 6.36 c 100.00 c 95.00 d 6.74 c

S. lycopersicum 10 a 6 a 0.30 a 7.50 a 2.50 a 0.12 a

F1 90 b 78 b 3.17 b 87.50 c 70.0 c 3.08 b

F2 - - - 76.91 bc 63.92 c 2.65 b

BC1 - - - 59.48 b 36.65 b 1.67 b

Means of the traits: percentage of explants with buds (B), percentage of explants with shoots (R) and number of shoots per explant with shoots (PR) for the
parent genotypes (S. pennellii and S. lycopersicum), F1, F2 and BC1.
a B and R are the percentages of explants able to develop buds and shoots, respectively. b PR is the number of shoots per explant with shoots. c Mean values
within a column separated by different letters are significantly different (P < 0.05) according to Duncan’s multiple range test.
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Figure 1 Population distributions for regeneration traits. a) The
percentage of explants with buds (B), b) The percentage of explants
with plants (R) and c) The percentage of plants per explant with
shoots (PR). The F2 population (dark) is derived from selfing an F1,
the result of a cross between the tomato cv. Anl27 (P1) and S.
pennellii PE-47 (P2). The BC1 population (grey) is the result of
crossing the tomato cv. Anl27 and the F1 plants. Maternal (P1),
Paternal (P2), F1, F2 and BC1 mean values are indicated by arrows.
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Figure 2 a) Tomato genetic linkage map of F2 population derived from S. lycopersicum (cv. Anl27) × S. pennellii (PE-47) and QTLs
detected for regeneration traits by IM. b) Tomato genetic linkage map of BC1 population derived from S. lycopersicum (cv. Anl27) × F1 (cv.
Anl27 × PE-47) and QTLs detected for regeneration traits by rMQM. The segregated data were classified into 12 linkage groups, which
corresponded to the Tomato-EXPEN 2000 map; italics indicate markers with segregation significantly skewed (P < 0.05) in favour of parent alleles.
The colors specify the direction of the segregation distortion (red: markers skewed toward the alleles of cultivated tomato; green: markers
skewed toward the alleles of the wild parent). Green bars reflect QTLs from S. pennellii: SpRg-1, Rg-3, SpRg-4a, SpRg-4b and SpRg-7; the red bar
reflects the SlRg-8 QTL from S. lycopersicum. Regeneration traits: B (Bud percentage), R (Regeneration percentage) and PR (Productivity rate). The
black star labels the acid invertase gene (invpenn) mapped on chromosome 3 included in the Rg-3 QTL range.
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There were five intervals > 25 cM in chromosomes 2, 4,
5 and 11. A total of 268 polymorphic loci were used to
assemble the genetic linkage map of BC1 (Figure 2b),
including 174 AFLP, 46 SSR, 43 COSII, 3 COSI and 2
CAPS markers. The markers were distributed over 12
linkage groups with LOD scores ≥ 3.0. The average
number of markers per linkage group was 22. The total
genetic distance covered by the markers was 1014.94
cM, with an average interval of 4.12 cM between adja-
cent markers. The markers were well distributed over all
the 12 linkage groups with only two intervals ≥ 25 cM
in chromosomes 5 and 10. Marker distribution in both
maps indicates that they will be useful for tagging the
traits studied.
The order and placement of SSR markers were in

agreement with the S. lycopersicum x S. pennellii refer-
ence tomato-EXPEN 2000 map (SGN) with the excep-
tion of TAHINA-6-64 (in silico designed), which was
expected to be positioned on chromosome 6 (position
64) but is positioned on chromosome 8 (position 8.85)
in our F2 map.

Distorted segregation
42.45% of the mapped markers deviated significantly
from the expected 1:2:1 segregation ratio for the F2 gen-
eration at P < 0.05 (Figure 2a). Segregation distorted
markers (SDMs) were mainly observed on chromosomes
1 (0.00-63.17 cM), 3 (33.24-38.85 cM), 4 (19.74-92.09
cM), 5 (12.60-72.26 cM), 6 (0.00-55.38 cM) and 10
(0.00-51.24 cM). SDMs were generally caused by a sur-
plus of S. pennellii homozygotes, with the exception of
that observed on chromosome 5.
In the BC1 population (Figure 2b), SDMs were fewer

(30.3%) than in F2, and were observed mainly on chro-
mosomes 6 (0.00-6.75 cM), 8 (0.00-15.40 cM), 11
(25.80-27.48 cM) and 12 (28.23-60.63 cM). The distor-
tion on chromosome 8 was caused by a surplus of
tomato homozygotes, whereas distortions on the other
chromosomes were caused by an excess of hybrid
genotypes.

QTL Identification
In order to identify QTLs, we first used Interval Map-
ping (IM) analysis that resulted in the identification of
one QTL in the F2 population and six in the BC1 popu-
lation (See Additional Files 3, 4, 5 and 6). The QTL
identified in F2, located on chromosome 7, overlapped
for the three traits. In the BC1 analysis, this QTL also
appeared for the R and PR traits. However, in this
population, another five QTLs were identified on chro-
mosomes 1, 3, 4 (at two different areas: 4a and 4b) and
8. All these QTLs were confirmed by restricted Multiple
QTL Mapping (rMQM) analysis (Figure 2b, Table 2).
With the exception of the QTL on chromosome 8, all

QTLs come from S. pennellii. These QTLs were named
by their origin, Sp for S. pennellii or Sl for S. lycopersi-
cum, followed by Rg (referring to regeneration) and the
number of the chromosome on which they were
located.

QTLs for regeneration traits in the BC1 population
Bud percentage (B)
IM analysis identified two QTLs on chromosomes 1 and
8 (SpRg-1 and SlRg-8; Additional File 4). SpRg-1 has a
maximum LOD score of 5.87 and is spanned by markers
SSR316 and ME17-70. This QTL explained 22.9% of the
phenotypic variation of the B trait. SpRg-8, with a maxi-
mum LOD score of 2.8, including just the
C2_At1g64150 marker, explained 11.7% of the phenoty-
pic variation in B. rMQM analysis, using C2_At2g45910
(chromosome 1) and C2_At1g64150 (chromosome 8)
markers as cofactors, confirmed those QTLs detected by
IM and detected a new one on chromosome 3 (Figure
2b, Additional File 4). QTL characteristics are shown in
Table 2. Collectively, these QTLs explained 34.6% and
48.3% of phenotypic variance in IM and rMQM,
respectively.
Regeneration percentage (R)
IM analysis identified three QTLs located on chromo-
somes 1, 4 and 7 denominated SpRg-1, SpRg-4a and
SpRg-7, respectively. The three QTLs had maximum
LOD scores of 4.20, 3.92 and 3.86, and each explained
around 16-17% of the phenotypic variation (see Addi-
tional File 5). rMQM analysis, using C2_At2g45910
(chromosome 1), TAHINA-4-71.3 (chromosome 4) and
TAHINA-7-43 (chromosome 7) markers as cofactors,
confirmed all QTLs detected by IM and detected the
SlRg-8 QTL (Figure 2b, Additional File 5, Table 2). In
this case, the percentage of the phenotypic variation
explained by each QTL was 15% for SpRg-1, 13.3% for
SpRg-4a, 14.9% for SpRg-7 and 9.3% for SlRg-8. Collec-
tively, these QTLs explained 48.7% and 52.5% of the
phenotypic variance in IM and rMQM, respectively.
Productivity rate (PR)
IM detected the QTLs located previously for B and R on
chromosomes 1, 3 and 7 (Figure 2b, Additional File 6),
as well as another QTL on chromosome 4, denominated
SpRg-4b. The maximum phenotypic variation for PR
(17.4%) is explained by SpRg-7, and the lowest (11.9%)
by a QTL on chromosome 3. rMQM analysis, using
SSR92 (chromosome 1), ME20-199 (chromosome 3),
SSR146 (chromosome 4) and TAHINA-7-43 (chromo-
some 7) markers as cofactors, confirmed the QTLs
detected by IM (Table 2).

Mapping tomato candidate genes
We selected the acid invertase gene linked to the Rg-2
regeneration gene of S. chilense [22] and the LESK1
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gene, described as a marker in tomato for in vitro
regeneration competence [27], as the tomato candidate
genes.
The amplification products of the acid invertase gene

marker (invpenn) produce fragments of different sizes:
162 bp for S. lycopersicum cv. Anl27 and 173 bp for S.
pennellii (see Additional File 7). Thus, invpenn was used
for mapping the BC1 population (Figure 2b, Additional
Files 4 and 6). It was located in the QTL detected on
chromosome 3, between the C2_At5g23880 and
SSRB50753 markers, at positions 49.9 cM and 49.93 cM,
respectively. For this reason, we named this QTL Rg-3
(a putative allele of Rg-2).
The LESK1 gene is located in the SGN Tomato-

EXPEN 2000 map on chromosome 3 between markers
C2_At4g18230 and cLPT-5-e7 (7 - 15 cM). As a
result, in our BC1 map, LESK1 must be placed
between C2_At4g18230 and TAHINA-3-44 (7 - 44
cM). Thus, this candidate gene is outside the located
Rg-3 QTL.

Exploring QTLs
The official annotation for the tomato genome provided
by the International Tomato Annotation Group at the
SGN was used to carry out a preliminary search for
related regeneration genes near the identified QTL
peaks. We found a histidine kinase in SpRg-7, several
serine/threonine kinases in all identified QTLs, ethylene
response factors (ERFs) in all identified QTLs with the
exception of SpRg-4b, cyclines in SpRg-1, Rg-3, SpRg-4a
and SpRg-7 and MADS-box in SpRg-1, SpRg-4a and
SpRg-7.

Discussion
The wild tomato species S. peruvianum, S. pimpinellifo-
lium L. and S. chilense were used as sources of regen-
eration genes in order to study the genetics of the in
vitro regeneration in tomato [7,9,21]. In this study, we
used one accession of S. pennellii (PE-47) as the high
regeneration parent [29]. This accession, along with a
previously selected low regenerating tomato cultivar (cv.

Table 2 QTLs for shoot regeneration traits (Bud percentage (B), Regeneration percentage (R) and Productivity Rate
(PR)) found to be significant at the empirical genome wide mapping threshold by restricted Multiple QTL Mapping
(rMQM) in BC1 and Interval Mapping (IM) in F2
Test QTL

analysis
Trait QTL Genome

wide
significant
threshold
level (P <

0.05)

Chr Start
(cM)

Finish
(cM)

Coverage
(cM)

LOD
Peak

Position
of LOD
peak
(cM)

Peak marker a %
variance
explained

Estimated
additive
effect

Estimated
dominance

effect

BC1 rMQM B SpRg-
1

2.7 1 3.87 44.42 40.55 7.12 22.47 C2_At1g65520/
C2_At2g45910

23.9 -31.56

BC1 rMQM R SpRg-
1

2.7 1 3.87 43.42 39.55 5.52 24.47 C2_At1g65520/
C2_At2g45910

15.0 -24.10

BC1 rMQM PR SpRg-
1

2.8 1 3.87 34.42 30.55 4.19 22.47 C2_At1g65520/
C2_At2g45910

10.2 -0.70

BC1 rMQM B Rg-3 2.7 3 42.41 55.80 13.39 4.64 50.47 ME20-199 12.2 -21.60

BC1 rMQM PR Rg-3 2.8 3 32.77 63.10 30.33 4.26 50.47 ME20-199 10.6 -0.68

BC1 rMQM R SpRg-
4a

2.7 4 44.39 61.24 16.85 4.94 50.24 TAHINA-4-71, 3 13.3 -22.29

BC1 rMQM PR SpRg-
4b

2.8 4 81.33 93.18 11.85 3.08 86.33 SSR214/SSR146 7.4 -0.63

F2 IM B SpRg-
7

3.7 7 2.20 40.28 38.08 6.84 19.51 ME10-141/
C2_At4g26680

27.0 -22.20 12.32

F2 IM R SpRg-
7

3.6 7 4.50 40.28 35.78 6.18 19.51 ME10-141/
C2_At4g26680

24.8 -23.29 13.63

F2 IM PR SpRg-
7

4.4 7 19.51 36.28 16.77 5.72 28.28 C2_At1g17200 23.1 -1.53 -0.55

BC1 rMQM R SpRg-
7

2.7 7 0.00 25.08 25.08 5.47 13.44 TAHINA-7-43 14.9 -23.13

BC1 rMQM PR SpRg-
7

2.8 7 3.54 28.23 24.69 5.28 13.44 TAHINA-7-43 13.5 -0.77

BC1 rMQM B SpRg-
8

2.7 8 41.18 53.37 12.19 3.84 46.37 C2_At1g64150 12.2 21.25

BC1 rMQM R SpRg-
8

2.7 8 42.18 58.90 16.72 4.25 53.37 C2_At1g64150/
C2_At4g23840

9.3 19.35

aIn case of the absence of a peak marker, loci flanking the likely peak of a QTL are shown.
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Anl27), was used to develop two mapping populations
(F2 and BC1). The use of the introgression lines of S.
pennellii in the M82 tomato background [30] had been
previously ruled out for this analysis because of the high
regeneration ability of both parent lines (data not
shown). Data in Figure 1 and Table 1 seem to indicate
complete dominance for B, partial dominance for R and
additive effects for PR. This is in agreement with other
reported studies on tomato where dominance, to differ-
ent degrees, depending on the regeneration trait studied,
was also reported [21,22,24,25]. B and R traits show a
high correlation in both populations, suggesting that
common or linked genes control these traits. The corre-
lation between PR and both B and R was lower. This
could imply that other genes may be influencing the PR
trait and/or variations between different biological sam-
ples are higher in PR (for instance, competition for
development due to the presence of different shoots in a
similar explant area). Thus, the low sample size may be
also a possible explanation for the lower correlation.
Some descendants in the F2 population showed phe-

notypes for the PR trait that are more extreme that
those shown by the regenerating parent line (Figure 1).
Transgressive segregation has already been described in
other reports in relation to the genetic control of plant
regeneration [31-33], and suggests poligenic inheritance
[34]. It also suggests the existence of alleles that pro-
mote, and others that inhibit, in vitro regeneration, with
only some of the alleles with positive effects occurring
in the same parent [34]. In fact, in this study, the SlRg-8
QTL that contributes to regeneration came from the
low regenerating parent.
Plant regeneration from cultured tissues is assumed to

fall under quantitative genetics [34], although evidence
in tomato [22,25] and other vegetables [35-37] indicates
that just a few genes could be responsible for regenera-
tion. We identified 6 QTLs in the BC1 analysis, which is
indicative of the participation of a large number of
genes in this character. These QTLs are situated on
chromosomes 1, 3, 4, 7 and 8 (Figure 2b). The percen-
tage of variance explained by each QTL ranges from 7.4
to 27%, which is in accordance with the most common
range (6-26%) reported in the genetic mapping of QTLs
for tissue culture response in plants [34]. We used three
traits (B, R and PR) as a measurement of regeneration
capability that could be useful for detecting chromo-
some regions that act at different times.
In the F2 population, only the QTL of chromosome 7

was identified for all analyzed traits (Additional File 3);
the SDMs observed in most chromosome areas where
QTLs were detected in the BC1 population are most
likely the cause (Figure 2). The SDMs on chromosomes
1, 3, 6, 10 and 11 were also observed in similar areas in
the Tomato-EXPEN 2000 map [38]. SDMs affect the

detection power of QTLs when QTLs and SDMs are
closely linked [39], as occurred in our case. Deviation
from the expected segregation ratio is a common feature
of inter-specific tomato crosses [40]. To wit: in a F2
population from S. lycopersicum x S. pennellii, De Vice-
nte and Tanskley [41] reported a skewness rate of up to
80%.
In the BC1 population, three QTLs were detected for

B: SpRg-1, SpRg-3 and SlRg-8. These QTLs may be asso-
ciated with the first stages of regeneration, that is, hor-
monal induction response and bud formation. SpRg-1,
which explained the highest percentage of variation for
B (23.9%), was also identified for the R and PR traits.
Given that bud formation is a necessary prerequisite for
the production of shoots, it was expected that this
major QTL for B would be found for R and PR, which
in fact turned out to be the case (Table 2). For R and
PR, a common QTL on chromosome 7 (SpRg-7) was
also identified. In addition, two QTLs were detected for
R (SpRg-4a and SlRg-8) and PR (SpRg-4b and Rg-3). All
these QTLs seem to be involved in the development of
buds into shoots. As can also be observed in this study,
common QTLs for the different regeneration traits, as
well as a higher number of QTLs for traits related to
plant development compared to those associated with
bud induction, have been reported in different studies
[42,43]. For instance, in Arabidopsis, Schianterelli et al.
[43] found a common area of chromosome 1 in all ana-
lyzed parameters, a peak in chromosome 4 and another
in chromosome 5 when they analyzed the total number
of regenerated shoots. In wheat, Ben Amer et al. [42]
identified three QTLs, two that affect green spot initia-
tion and shoot regeneration and a third that only influ-
ences plant formation.
A partial common genetic system controlling the

regeneration frequency of diverse types of explants has
been reported by Molina and Nuez [36] in melon. This
indicates that using different explants for loci detection
may lead to the identification of some common QTLs,
but also to the possible identification of other new
QTLs. Root explants were used by Koornneef et al. [25]
and Satoh et al. [22] for phenotyping, at which point
two alleles for regeneration ability were located on chro-
mosome 3 of tomato. In the present study, leaves were
used for phenotyping and a QTL (Rg-3) in a similar area
of chromosome 3 was detected in addition to other
QTLs that influence regeneration and were identified on
chromosomes 1, 4, 7 and 8. Differences in root and leaf
explants for QTL identification were also found in Ara-
bidopsis thaliana [43].
Koornneef et al. [25] located a dominant allele from S.

peruvianum (Rg-1) near the middle of chromosome 3
that determines efficient shoot regeneration in tomato
root explants. Satoh et al. [22] mapped a putative allele
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(Rg-2) from S. chilense on this chromosome. The acid
invertase gene, reported as a marker linked to Rg-2, was
chosen for mapping Rg-2 in our population derived
from S. pennellii. The polymorphisms detected in our
parents allow us to map this gene in the QTL detected
on chromosome 3 that we named Rg-3. We consider
Rg-3 to be a putative allele of the Rg-2 gene. Allelism
must be confirmed.
The other gene chosen as a candidate was LESK1,

which encodes a serine/threonine kinase, and was
reported as a marker of competence for in vitro
regeneration in tomato [27,28]. This gene was posi-
tioned on chromosome 3, but it is not located in the
Rg-3 QTL.
The recent release of the entire genome sequence of

tomato provides a powerful tool for interrogating QTL
data. In this respect, we have taken a preliminary look
at genes located at the peak areas of the detected QTLs,
and which could be related to organogenesis. Histidine
kinases were reported as cytokinin receptors [15-17]. In
our QTL peaks, only one histidine kinase is located in
the SpRg-7 QTL. The candidate tomato gene, LESK1,
which has been described as a marker for in vitro com-
petence, encodes a serine/threonine kinase. We looked
for serine/threonine kinases and found this kind of pro-
tein in all identified QTLs. Other putative candidate
genes could be ESR1 and its paralogue, ESR2, from Ara-
bidopsis, which are the best-characterized genes related
to regeneration [18,19]. These genes code for ethylene
response factors (ERF). We found ERFs, which contain
the AP2 domain, in all analysed QTLs with the excep-
tion of SpRg-4b. Cyclines related to cell division [13]
were found in SpRg-1, Rg-3, SpRg-4a and SpRg-7.
MADS-box genes, which have been correlated to adven-
titious regeneration induction and regulation [44,45],
were found in the SpRg-1, SpRg-4a and SpRg-7 QTL
peaks.

Conclusions
The results obtained in this study may very well repre-
sent a significant step toward the goal of understanding
the processes underlying tomato tissue culture and
regeneration responses. We have situated six QTLs on
chromosomes 1, 3, 4, 7 and 8, five from S. pennellii and
one from S. lycopersicum. The most important QTLs
are SpRg-1, which is most likely associated with the
morphogenetic response, and SpRg-7, which promotes
bud development. A QTL detected on chromosome 3,
Rg-3, likely contains a putative allele of the Rg-1 and Rg-
2 genes, as is shown by mapping the acid invertase gene
linked to Rg-2. QTLs detected on chromosomes 8 and 4
most likely contain genes influencing bud formation and
development, respectively.

Methods
Plant materials and growing conditions
S. pennellii PE-47, which showed a high ability for
regeneration [29], and the tomato cultivar Anl27 (cv.
Anl27), with a low ability for regeneration, were chosen
for obtaining the mapping population. The initial geno-
types were established in vitro, starting with the sterili-
zation of seeds by immersion for 10 min in a solution of
25% commercial bleach (40 g L-1 active chlorine), being
then washed twice with sterile deionized water for 5
min each and then sown in Petri dishes containing
nutrient medium (Murashige and Skoog [46] salts
including vitamins, 2% sucrose, 0.6% plant agar (DUCH-
EFA, the Netherlands). The pHs of the media were
adjusted to 5.8 before sterilization at 121°C for 20 min.
Cultures were incubated in a growth chamber at 26°C ±
2°C under a 16h photoperiod with cool white light pro-
vided by Sylvania cool white F37T8/CW fluorescent
lamps (90 μmol m-2 s-1). Clones of one plant of each
genotype were obtained and maintained in in vitro cul-
ture. The clones were multiplied by transferring nodes
to tubes with fresh basal medium (BM: Murashige and
Skoog -[46]- salts including vitamins, 1.5% sucrose and
7 g L-1 plant agar) every 3-4 weeks. The tubes were 15
cm in length and 22 mm in diameter, with 15 ml of
medium per tube.

Mapping population
One clone of tomato and another of S. pennellii were
transferred to a greenhouse in order to obtain the F1
plant that was reintroduced in vitro by disinfection of
shoots following a similar procedure as that carried out
for seed sterilization. F2 and BC1 populations were
obtained and seeds were germinated in vitro as
described above.
The F2 mapping population was composed of 106

individuals obtained from selfing one F1 plant, the result
of a cross between the tomato cv. Anl27 (P1) and S.
pennellii PE-47 (P2). The backcross (BC1) mapping
population, composed of 113 plants, was obtained by
crossing the cv. Anl27 and the F1 plant. To allow the
test to be reproduced, the F1 plant and F2 and BC1 indi-
viduals were clonally replicated and maintained in vitro
as described above.

Evaluation of the regeneration capacity
A first assay was performed with cloned P1, P2 and F1
plants. Leaf disks (0.6-0.8 cm2) obtained from in vitro
cultured plants that were at a similar growing stage
were placed with the abaxial side in contact with the
shoot induction medium (SIM) containing Murashige
and Skoog salts [46], 3% sucrose, 7% plant agar and 0.2
mg L-1 zeatin riboside (ZR). This growth regulator was
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sterilized by filtration and added to the sterile SIM.
After 30 days of culture on SIM, the explants were
transferred to BM for 20 days. In this medium, buds
develop into shoots. For each genotype, five explants per
plate (90 × 25 mm with 40 ml of medium per plate) and
10 repetitions per genotype were evaluated. At the end
of the experiment, the following variables were analyzed:
-Bud percentage (B): number of explants with buds ×

100/total number of cultured explants.
-Regeneration percentage (R): number of cultures that

differentiated into completely developed shoots × 100/
total number of cultured explants.
-Productivity rate (PR): total number of completely

developed shoots/total number of cultured explants that
regenerated plants.
In a second assay, leaf explants of F2, BC1, P1, P2 and

F1 plants were tested as explained above. In this case,
for each genotype, five explants per plate and 4 repeti-
tions per genotype were evaluated. Data for regeneration
was obtained for 102 genotypes of the F2 population and
104 genotypes of BC1. The average value for each trait
and genotype was used for QTL analysis.
To assess the effect of genotype on regeneration abil-

ity, data from the genetically uniform classes (P1, P2
and F1) were subjected to a unifactorial analysis of var-
iance (ANOVA), and then means for the different traits
were separated by a Duncan test. The correlations
between the different traits were calculated using the
Statgraphics Plus 4.0 software.

Genotyping
Preparation of genomic DNA
Young leaves from in vitro-cultured plants were col-
lected and immediately frozen with liquid nitrogen and
then stored at -80°C. DNA was prepared based on the
modified CTAB method of Doyle and Doyle [47]. Sub-
sequently, quality and quantity of the DNA was evalu-
ated on 0.8% agarose gel stained with ethidium
bromide and using the NanoDrop® ND-1000
Spectrophotometer.
Amplified fragment length polymorphism (AFLP) procedure
AFLPs were obtained following de Vos et al. [48] proce-
dure. Fifteen and sixteen selective combinations of pri-
mers were used for the F2 and BC1 populations,
respectively. The code of each selective combination is
specified in Table 3. Each code followed by the number
corresponding to each obtained band (size in bp) is
used to name the polymorphic AFLPs. Electrophoresis
of the PCR products was conducted using an ABI
PRISM 310 Genetic Analyzer (PerkinElmer Applied Bio-
systems, Foster City, California, USA). GeneScan™ 600
LIZ® Size Standard, with fluorophore LIZ, was used as a
molecular size marker. Raw data were analyzed with the
GeneScan 3.1.2 analysis software (PerkinElmer Applied

Biosystems) and the resulting GeneScan trace files were
imported into Genographer 1.6.0. The AFLP fragments
between 60 to 380 bp were scored in Genographer as
present (1) or absent (0).
Microsatellites (SSRs)
One hundred and forty-nine SSR markers were used to
detect polymorphism between P1 and P2, which
included 89 SSRs previously reported and mapped onto
the Tomato-EXPEN 2000 available at SGN [49,50],
along with 60 new SSRs: 18 from the COMAV research
group “Aprovechamiento de la variabilidad estraespecí-
fica en la mejora del tomate” and 42 designed from
sequences deposited in Genbank (see Additional File 2).
Primer pairs were designed from these sequences using
the SSR Primer 3 tool http://frodo.wi.mit.edu/[51]. The
criteria used for designing the primers were as follows:
the primer Tm ranged from 55 to 65°C and GC content
was 50%. The presence of G or C bases within the last
five bases from the 3’ end of primers (GC clamp), which
helps promote specific binding at the 3’ end, was taken
into account. In order to design the SSRs, wherever pos-
sible the AT/TA repetitions were selected based on the
results obtained by Frary et al. [49].

Table 3 Selective combinations of primers used for F2
and BC1 genotyping

Code Mapping population Selective primers combination

ME1 F2, BC1 MseI CTA-EcoRI AAC

ME2 F2 MseI CAA-EcoRI ACC

ME3 F2 MseI CAA-EcoRI ACG

ME4 F2, BC1 MseI CAA-EcoRI AGC

ME5 F2 MseI CAC-EcoRI ACA

ME6 F2, BC1 MseI CAC-EcoRI ACG

ME7 F2 MseI CAC-EcoRI AGC

ME8 F2, BC1 MseI CAA-EcoRI ACA

ME9 F2, BC1 MseI CAA-EcoRI AAC

ME10 F2 MseI CTA-EcoRI AGC

ME11 F2 MseI CTC-EcoRI AGC

ME12 F2 MseI CCG-EcoRI AAC

ME13 F2 MseI CCG-EcoRI ACC

ME14 F2 MseI CCG-EcoRI ACG

ME15 F2 MseI CTC-EcoRI AGG

ME16 BC1 MseI CAA-EcoRI ACT

ME17 BC1 MseI CTA-EcoRI ACC

ME18 BC1 MseI CTA-EcoRI ATG

ME19 BC1 MseI CTA-EcoRI ACA

ME20 BC1 MseI CCT-EcoRI ACC

ME21 BC1 MseI CCT-EcoRI AAC

ME22 BC1 MseI CCT-EcoRI ATG

ME23 BC1 MseI CCT-EcoRI ACA

ME24 BC1 MseI CAC-EcoRI ACC

ME25 BC1 MseI CAC-EcoRI ATG

ME26 BC1 MseI CAC-EcoRI AGG
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All the SSRs, with the exception of those specified
below, were labelled following the M13-tail method
described by Schuelke et al. [52]. DNA amplification
was carried out in volumes of 15 μL using a sample of
10 ng of DNA. The reaction mixture contained 1.5 μL
10 × PCR buffer [75 mM Tris-HCl (Ph 9.0), 50 mM
KCl, 20 mM (NH4)2SO4 and 0.001% BSA], 2 mM
MgCl2, 200 μM dNTPs, 0.133 μM of primers, 0.2 μM of
fluorescent labelled M13 primer and 0.3 units of TaqI
DNA polymerase (Need S. L., Valencia, Spain). An
Eppendorf 5333 Thermal Cycler was used. The PCR
parameters included the following: an initial 3 min at
94°C; 35 cycles, each with 30 s DNA denaturation at 94°
C; 45 s at an annealing temperature (depending on the
primer combination Tm) and a 1 min extension at 72°C,
and a final extension of 10 min at 72°C. Amplified
bands were visualized using a LI-COR sequencing gel
(DNA LI-COR 4300; LI-COR Biosciences, Lincoln,
Nebraska, USA); 10 μl of loading buffer (95% forma-
mide, 2 mM EDTA, 0.001% bromophenol blue) and 5 μl
of deionized water were added to the 5 μl PCR mix (2.5
μl of each IRDye 700 or IRDye800-labeled) samples
which were denatured at 96°C for 8 min. Electrophoresis
was performed in denaturing conditions at 50°C, using
6% acrylamide gels in TBE buffer.
The SSR356, SSR73, SSR248, SSR46 markers in which

polymorphisms were visible in the agarose gels were
amplified in volumes of 23.32 μl with: 10 ng of DNA,
1.6 mM MgCl2, 171.52 μM dNTPs, 0.214 μM of pri-
mers, 2.5 μl of 10 × PCR buffer, and 0.6 U TaqI DNA
polymerase. The PCR conditions were similar to those
applied before, with the exception of a final extension of
30 min in this case. Amplified bands were run in stan-
dard agarose gels (1 or 2%) in TAE buffer at 100V and
visualized by ethidium bromide staining.
Conserved ortholog set (COS) and cleaved amplified
polymorphic sequence (CAPS) markers
Ninety-six markers (86 COSII, 6 COSI, 4 CAPS) from
the Tomato-EXPEN 2000 map [53,54] and one devel-
oped CAPS marker (Solyc07g049350) were tested for
polymorphism between the P1 and P2 parents. The
restriction enzymes used when required were those indi-
cated in the SGN database. When restriction enzymes
was needed, the protocol described in the commercial
product’s instructions (Fermentas, York, UK or Biolabs,
Takara, Japan) was followed.
The PCR reaction was performed in a total volume of

12 μL using a sample of 10 ng of DNA. The reaction
mixture contained 1.5 mM MgCl2, 200 μM dNTPs, 0.25
μm of primers, 1.2 μL PCR buffer 10X, and 0.3 U TaqI
DNA polymerase. Amplification was performed using an
Eppendorf 5333 Thermal Cycler, which was programmed
as follows: 5 min at 94°C, 35 30-s cycles each at 94°C, 1
min at Ta (depending on the primer combination Tm)

and a 2 min extension at 72°C, with a final stage of 10
min at 72°C. Amplified bands were separated by 1 or 2%
agarose electrophoresis in TAE buffer at 100V, and visua-
lized by ethidium bromide staining.

Map construction and QTL mapping
Linkage analysis for both mapping populations was per-
formed with the JoinMap® 4.0 software [55]. Markers
were grouped into linkage groups at LOD ≥ 3, with the
exception of those in chromosomes 9 and 10 of the BC1

mapping population with LOD ≥ 2. Order was deter-
mined with a recombination threshold of 0.40 and dis-
tances were calculated using the Kosambi mapping
function (Kosambi 1944). For the genetic map construc-
tion, AFLP, SSR, COS and CAPS markers were used
(Additional File 8). The segregation ratio of alleles was
evaluated for each locus by the Chi-square test with a
significance threshold of P < 0.05. The expected segrega-
tion ratios were 3:1 and 1:1 for F2 and BC1, respectively.
Visual representations of the marker maps were created
with the MapChart software [56].
QTL analysis on the F2 and BC1 phenotypic data sets

was performed with the MapQTL® 6.0 software [57].
Significance thresholds for the LOD values, correspond-
ing to a genome-wide false discovery rate of 5% (p <
0.05) were calculated by genome-wide permutation tests
using 1, 000 permutations. Firstly, IM analysis was per-
formed (simple Interval Mapping). Then, if many puta-
tive QTLs were detected by IM, markers close to the
likelihood peaks of the detected QTLs were used as
cofactors for rMQM (also called composite Interval
Mapping) analyses.

Locating candidate genes and looking for other
regeneration-related genes
The S. pennellii acid invertase gene (invpenn) was ana-
lyzed and mapped as a marker. Primers described by
Harada et al. [58] were used for DNA amplification
using conditions previously described for COS and
CAPS markers. Amplified bands were separated using
the multicapillary electrophoresis QIAxcel System (Qia-
gen, Valencia, California, USA). We searched for the
location of the LESK1 gene at SGN and for its nearest
markers at International Tomato Annotation Group.
This database was also used for looking for genes puta-
tively related to organogenesis.

Additional material

Additional file 1: Regeneration response of leaf explants.
Regeneration response of leaf explants from parents [tomato (cv. Anl27);
S. pennellii (PE-47)], F1, F2 and BC1 populations, cultured on shoot
induction medium (SIM) for 30 days and transferred to basal medium
(BM) for 20 days.
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Additional file 2: In silico-designed SSR markers. Table with the
name, band size, repeat motif, temperature of annealing and primers
sequences of in silico-designed SSR markers.

Additional file 3: Genetic location and LOD score profile of the F2-
QTLs for regeneration components detected by Interval Mapping
on chromosome 7 (SpRg-7). Genetic location and LOD score profile of
the F2-QTLs for regeneration components (Bud percentage (B),
Regeneration percentage (R) and Productivity Rate (PR)). On the left,
projections of QTLs as black bars indicate the SpRg-7 for B, R and PR
traits. The vertical dotted line indicates the 95% significant threshold
value for declaring a QTL (B LOD threshold = 3.7) (R LOD threshold =
3.6) (PR LOD threshold = 4.4). Map position (cM) and distances are based
on the genetic linkage map developed in this study. QTLs characteristics
in attached table.

Additional file 4: Genetic location and LOD score profile of the BC1-
QTLs for Bud percentage (B), detected on chromosomes 1 (SpRg-1),
3 (SpRg-3) and 8 (SlRg-8). Results from the Interval Mapping (IM) and
restricted Multiple QTL Mapping (rMQM) approaches. On the left,
projections as black bars (IM) and grey bars (rMQM) indicate the range of
SpRg-1, SpRg-3 and SlRg-8 QTLs for B. The vertical dotted line indicates
the 95% significant threshold value for declaring a QTL (B LOD threshold
= 2.7). The horizontal dotted line indicates the position of the acid
invertase gene (invpenn) marker included in the chromosome 3 QTL
range. Map position (cM) and distances are based on the genetic linkage
map developed in this study.

Additional file 5: Genetic location and LOD score profile of the BC1-
QTLs for Regeneration percentage (R), detected in this study on
chromosomes 1 (SpRg-1), 4 (SpRg-4a), 7 (SpRg-7) and 8 (SlRg-8).
Results from the Interval Mapping (IM) and restricted Multiple QTL
Mapping (rMQM) approaches. On the left, projections as black bars (IM)
and grey bars (rMQM) indicate the range of SpRg-1, SpRg-4a, SpRg-7 and
SlRg-8 QTLs for R. The vertical dotted line indicates the 95% significant
threshold value for declaring a QTL (R LOD threshold = 2.7). Map
position (cM) and distances are based on the genetic linkage map
developed in this study.

Additional file 6: Genetic location and LOD score profile of the BC1-
QTLs for Productivity Rate (PR), detected in this study on
chromosomes 1 (SpRg-1), 3 (SpRg-3), 4 (SpRg-4b) and 7 (SpRg-7).
Results from the Interval Mapping (IM) and restricted Multiple QTL
Mapping (rMQM) approaches. On the left, projections as black bars (IM)
and grey bars (rMQM) indicate the range of SpRg-1, SpRg-3, SpRg-4b and
SpRg-7 for PR. The vertical dotted line indicates the 95% significant
threshold value for declaring a QTL (PR LOD threshold = 2.8). Horizontal
dotted lines indicate the position of the acid invertase gene (invpenn)
marker included in the chromosome 3 QTL range. Map position (cM)
and distances are based on the genetic linkage map developed in this
study.

Additional file 7: Polymorphic acid invertase gene marker (invpenn).
Amplified bands separated using the multicapillary electrophoresis
QIAxcel System. Lane 1: S. lycopersicum L. (Anl27), band size (~162bp).
Lane 2: S. pennellii PE-47, band size (~173bp). Lane 3: F1 Hybrid S.
lycopersicum L. (Anl27) × S. pennellii PE-47, both bands (~162bp-~173bp).
Lane 4: negative control.

Additional file 8: Markers used for genotyping the F2 and BC1
population. SSR, COS, COSII, CAP markers used for genotyping the F2
and BC1 population.
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