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Abstract

Background: Carrots (Daucus carota L) are among the 10 most economically important vegetable crops grown
worldwide. Purple carrot cultivars accumulate rich cyanidin-based anthocyanins in a light-independent manner in
their taproots whereas other carrot color types do not. Anthocyanins are important secondary metabolites in plants,
protecting them from damage caused by strong light, heavy metals, and pathogens. Furthermore, they are important
nutrients for human health. Molecular mechanisms underlying anthocyanin accumulation in purple carrot cultivars and
loss of anthocyanin production in non-purple carrot cultivars remain unknown.

Results: The taproots of the three purple carrot cultivars were rich in anthocyanin, and levels increased during
development. Conversely, the six non-purple carrot cultivars failed to accumulate anthocyanins in the underground
part of taproots. Six novel structural genes, CA4H1, CA4H2, 4CL1, 4CL2, CHIT, and F3'H1, were isolated from purple carrots.
The expression profiles of these genes, together with other structural genes known to be involved in anthocyanin
biosynthesis, were analyzed in three purple and six non-purple carrot cultivars at the 60-day-old stage. PAL3/PAL4,
CA4H1, and 4CLT expression levels were higher in purple than in non-purple carrot cultivars. Expression of CHST,
CHIT, F3H1, F3'H1, DFRI1, and LDOX1/LDOX2 was highly correlated with the presence of anthocyanin as these genes
were highly expressed in purple carrot taproots but not or scarcely expressed in non-purple carrot taproots.

Conclusions: This study isolated six novel structural genes involved in anthocyanin biosynthesis in carrots. Among
the 13 analyzed structural genes, PAL3/PAL4, CA4H1, 4CL1, CHSI1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 may
participate in anthocyanin biosynthesis in the taproots of purple carrot cultivars. CHST, CHIT, F3H1, F3'HI, DFRI,
and LDOX1/LDOX2 may lead to loss of light-independent anthocyanin production in orange and yellow carrots.
These results suggest that numerous structural genes are involved in anthocyanin production in the taproots of
purple carrot cultivars and in the loss of anthocyanin production in non-purple carrots. Unexpressed or scarcely
expressed genes in the taproots of non-purple carrot cultivars may be caused by the inactivation of regulator
genes. Our results provide new insights into anthocyanin biosynthesis at the molecular level in carrots and for
other root vegetables.
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Background

Anthocyanins are widely distributed water-soluble pig-
ments belonging to the flavanoid group of phyto-
chemicals. Over 635 types of anthocyanins have been
identified [1]. These mainly possess six common aglycones
(cyanidin, pelargonidin, delphinidin, peonidin, petunidin,
and malvidin) and various types of glycosylated and acyl-
ated compounds [2]. Anthocyanins protect plants from
strong light, heavy metals, and pathogens, and play an im-
portant role in flowers [3,4]. As they have low toxicity and
vary in color they are often used as healthier alternatives
to synthetic colorants [5]. Previous studies have confirmed
that anthocyanins provide antioxidants for human health
that protect against a broad range of diseases, including a
high blood cholesterol level, cardiovascular disease, and
ultraviolet radiation damage [2,6-8].

Carrots (Daucus carota L.) are among the 10 most
economically important vegetable crops grown world-
wide [9]. Carrot cultivars appear in five taproot color
types: purple, orange, yellow, red, and white. Although
orange carrot cultivars (D. carota ssp. sativus var.sativus)
account for the majority of production, purple carrots
(D. carota ssp. sativus var.atrorubens Alef.) are enjoying
increased popularity, largely because they contain high
amounts of anthocyanin in their flesh taproots. Purple
carrot cultivars have existed for over 3000 years, and are
much older than orange carrot cultivars [10]. Anthocya-
nins from purple carrots are commonly used as natural
food colorants in candies, ice cream, and beverages, this
is because they remain stable when exposed to heat and
light, and have increased pH values [11,12]. Purple car-
rots mainly contain cyanidin-based anthocyanins; some
cultivars also contain trace amounts of peonidin- or
pelargonidin-based anthocyanins in their taproots [13].

The anthocyanin biosynthesis pathway has been exten-
sively studied in numerous plant species, including bil-
berry (Vaccinium myrtillus L.), grape (Vitis vinifera L.),
apple (Malus x domestica), Arabidopsis (Arabidopsis
thaliana), Mitchell petunia [Petunia axillaris x (Petunia
axillaris x Petunia hybrida cv. Rose of Heaven’)], and
sweet potato (Ipomoea batatas L. Lam.) [14-20]. Two
classes of genes participate in the anthocyanin biosyn-
thesis pathway: structural genes and regulatory genes.
Structural genes encode enzymes that directly catalyze
reaction steps leading to the formation of anthocya-
nins; the transcription of these genes is controlled by
regulatory genes, such as MYB, bHLH, and WD40 genes
[16,17,21]. Structural genes that participate in anthocya-
nin biosynthesis have been identified in mumerous plant
species [14-18,20-23]. Some functional genes participat-
ing in this pathway have also been identified in carrots;
these include the phenylalanine ammonia-lyase (PAL),
chalcone synthase (CHS), flavanone 3-hydroxylase (F3H),
dihydroflavonol 4-reductase (DFR), and leucoanthocyanidin
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dioxygenase (LDOX) genes [24]. We described the presence
of the UDP-galactose: cyanidin 3-O-galactosyltransferase
(UCGT) in the purple carrot cultivars in our previous
study [25]. However, cinnamate 4-hydroxylase (CA4H),
4-coumaroyl-coenzyme A ligase (4CL), chalcone-flavonone
isomerase (CHI), and flavonoid 3-hydroxylase (F3'H)
genes have not been identified in carrots.

To obtain insights into differences in anthocyanin bio-
synthesis between purple and non-purple carrot culti-
vars, we cloned six novel structural genes involved in
anthocyanin biosyntheses from taproot-derived cDNA.
The expression patterns of 13 structural genes in the
taproots of three purple and six non-purple carrot culti-
vars were analyzed at the transcriptional level. The accu-
mulation of anthocyanins was determined in parallel.
The aim of this work was to determine the stage at
which the anthocyanin biosynthesis pathway switches
off, thus leading to loss of anthocyanins in non-purple
carrot cultivars.

Results

Taproot color of nine carrot cultivars at different
development stages

Anthocyanins accumulate in different parts of carrot
taproots at different development stages; this leads to
taproots displaying a purple or dark color. In 60-day-old
carrots, anthocyanins accumulated in the cortex and
xylem of ‘Deep purple’ and ‘Purple 68’ cultivar taproots,
but only in the cortex of ‘Tianzi2hao’ (Figure 1). In the
six other carrot cultivars, no purple or dark coloring was
detected in the taproot. In 90- and 120-day-old carrots,
anthocyanins accumulated in the cortex, phloem, and
xylem of ‘Deep purple’, Purple 68’, and ‘Tianzi2hao’ tap-
roots. In the six other carrot cultivars, no purple or dark
coloring was detected in these taproot parts, with the
exception of the hypocotyl-derived root part of 90- and
120-day-old ‘Kuroda’, 90-day-old ‘Sanhongliucun’, and
120-day-old ‘Junchuanhong’; these displayed dark color
in the epidermis when exposed to light (Figure 2). As
hypocotyl-derived parts of the taproots of 120-day-old
‘Sanhongliucun’ and 90-day-old ‘Junchuanhong’ cultivars
were not exposed to light, purple or dark coloring was
not detectable in their epidermis.

Anthocyanin content in the taproots of nine carrot
cultivars at different developmental stages

Total anthocyanin content in the taproots of the three
purple carrot cultivars (‘Deep purple’, ‘Purple 68’, and
‘Tianzi2hao’) increased significantly during develop-
ment (Figure 3). These cultivars accumulated antho-
cyanins more efficiently in their taproots between the
60- and 90-day-old stages than between the 90- and
120-day-old stages. Of these three purple carrot cultivars,
‘Purple 68 showed the highest anthocyanin content in
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Figure 1 Colors of the cross-sections of various carrot taproots at three different stages. Cultivar abbreviations: DPP, Deep purple; PP68,
Purple 68; TZ2H, Tianzi2hao; KRD, Kuroda; SHLC, Sanhongliucun; JCH, Junchuanhong; BJ, Bejo1719; QTH, Qitouhuang; BY, Baiyu.
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the taproots at all three stages. In the taproots of the
three orange carrot cultivars (‘Kuroda’, ‘Sanhongliucun;
and ‘Junchuanhong’), anthocyanin was not detected
at the 60-day-old stage. At the 90-day-old stage, the
anthocyanin content in ‘Kuroda’ and ‘Sanhongliucun’
taproots was 6.47 mg/100 g fresh weight (fw) and
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Figure 2 Epidermis color of the taproots of nine carrots
cultivars at three different stages.

1.35 mg/100 g fw, respectively; anthocyanin was not
detected in ‘Junchuanhong’ taproots at this stage. The
taproots of 120-day-old ‘Kuroda’, ‘Sanhongliucun’, and
‘Junchuanhong’ contained 0.56, 0.21, and 0.23 mg/100 g fw
anthocyanins, respectively. Anthocyanins did not accumu-
late in the taproots of the three yellow carrot cultivars in
any of the three stages.

Analysis of carrot structural genes for cyanidin-based
anthocyanin biosynthesis
As cyanidin-based anthocyanins represent almost all
anthocyanin content in carrots, we analyzed structural
genes for cyanidin-based anthocyanin biosynthesis. We
propose the following cyanidin-based anthocyanin bio-
synthesis pathway in purple carrots (Figure 4). PAL,
CA4H, and 4CL code enzymes implicated in the general
phenylpropanoid pathway of anthocyanin biosynthesis in
carrots. CHS, CHI, F3H, F3'H, DFR, LDOX, and UCGT
code enzymes involved in the anthocyanin pathway of
anthocyanin biosynthesis in carrots. The full names of
these genes and their corresponding accession numbers
in GenBank and CarrotDB are listed in Table 1 [25].

PALI (GenBank ID:D85850.1), PAL3 (GenBank ID:
AB089813.1), PAL4 (GenBank ID:AB435640.1), CHSI
(GenBank ID:AJ006779.1), CHS2 (GenBank ID:D16255.1),
CHS9 (GenBank ID:D16256.1), F3HI (GenBank ID:
AF184270.1), DFRI (GenBank ID:AF184271.1), LDOX1I
(GenBank ID:AF184273.1), and LDOX2 genes (GenBank
ID:AF184274.1) were present in GenBank. The CA4H1I,
CA4H?2, 4CL1, 4CL2, CHII, and F3'HI genes were
identified in CarrotDB using a BLAST-based search
tool; these genes were further identified by cloning
and sequencing genes from the ‘Deep purple’ cultivar.
The nucleotide and deduced amino acid sequences of
these genes were deposited at the National Center for
Biotechnology Information (NCBI). The NCBI acces-
sion numbers of CA4HI, CA4H2, 4CL1, 4CL2, CHII,
and F3'HI are listed in Table 1.

The PAL3 and PAL4, CHS2 and CHS9, and LDOXI
and LDOX2 genes were considered as allelic genes because
they share very high identity in their nucleotide acid
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Figure 3 Total anthocyanin content in the taproot of various carrot cultivars at three different stages. Values are means of three
independent experiments and are calculated as cyanidin 3-O-galactoside equivalents.
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sequences (>95%); furthermore, only one gene correspond-
ing to each pair of genes was found in the CarrotDB.
Therefore, only one pair of primers, specific to each pair of
genes, was used for quantitative real-time polymerase
chain reaction (qQRT-PCR).

Expression of cyanidin-based anthocyanin biosynthetic
genes in the taproot at the 60-day-old stage

Purple carrot cultivars had accumulated anthocyanins
in taproots by the 60-day-old stage. Nucleotide se-
quences of primer pairs used for qRT-PCR specific
to each anthocyanin biosynthetic genes are given in
Table 2. PAL3/PAL4, CA4HI, 4CL1, CHSI, CHII, F3H1,
F3’HI1, DFR1, and LDOX1/LDOX2 genes showed sig-
nificantly higher transcript abundance in the taproots
of ‘Deep purple’, Purple 68, and ‘Tianzi2hao’ than in the
taproots of ‘Kuroda’, ‘Sanhongliucun’, ‘Junchuanhong’,
‘Bejo1719’, ‘Qitouhuang’, and ‘Baiyu’ (Figure 5). Correlation
analysis results revealed that CHSI, CHII, F3HI, F3'HI,
DFRI, and LDOXI1/LDOX2 were highly correlated with
anthocyanin presence among the genes encoding enzymes
implicated in the anthocyanin pathway in anthocyanin
biosynthesis (Additional file 1: Table SI).

Among the cultivars, ‘Deep purple’ showed the highest
taproot mRNA levels of PAL3/PAL4, CA4HI, 4CLlI,
CHS1, F3HI, F3'HI, and LDOX1/LDOX2. ‘Purple 68
had the highest taproot mRNA levels of PALI, 4CL2,
and DFRI. ‘Tianzi2hao’ had the highest taproot mRNA

levels of CA4H2 and CHII, and ‘Kuroda’ showed the
highest mRNA levels of CHS2/CHS9 in the taproots.

Transcript levels of PALI and CA4H2 were lower than
PAL3/PAL4 and CA4H]I, respectively, in the taproots of
all carrot cultivars. Transcript levels of 4CL2 in the tap-
roots of ‘Kuroda, ‘Junchuanhong’, ‘Bejo1719’, ‘Qitouhuang’,
and ‘Baiyu’ were higher than those of 4CL1, but lower
than observed in the taproots of ‘Deep purple’, Purple 68,
‘Tianzi2hao’, and ‘Sanhongliucun’. In the three purple
carrot cultivars, mRNA abundance of CHS2/CHS9 in
the taproot was significantly lower than that of CHSI.
In the six other carrot cultivars, CHS2/CHS9 showed
similar mRNA expression levels as CHSI in the tap-
roots (Figure 5).

Discussion

In many plants, anthocyanin biosynthesis can be light
independent or light induced. The light-independent
anthocyanin biosynthesis pathway has been investi-
gated in other plant species, including apple and sweet
potato [16,22]. Light-induced anthocyanin biosynthesis
has been observed in several plant species, including
apple, grape, and Mitchell petunia [18,20,23]. In this
work, purple carrot cultivars could produce rich an-
thocyanins in taproots light independently. In contrast,
yellow carrot cultivars failed to produce anthocyanins
in the taproots, while orange carrots could only pro-
duce small amounts of anthocyanins in the epidermis
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of hypocotyl-derived root parts light dependently. To
determine genes involved in light-independent antho-
cyanin biosynthesis in purple carrots and those re-
sponsible for losses of light-independent anthocyanin
production in non-purple carrots, we analyzed antho-
cyanin pathway structural genes in three purple and
six non-purple cultivars.

Some structural genes (PALI, PAL3/PAL4, CHSI,
CHS2/CHS9, F3HI, DFRI, and LDOXI/LDOX2) in-
volved in anthocyanin biosynthesis have been previously
cloned, and their expression profiles analyzed under
ultraviolet light [24,26]. Our previous study identified
that UCGT1I expressed in purple carrot cultivars [25]. In
this study, six structural genes (CA4HI1, CA4H2, 4CLI,
4CL2, CHII, and F3'HI) present in purple (‘Deep
purple’) and non-purple (‘Kuroda’) carrot cultivars were
cloned and sequenced. PAL3/PAL4, CA4HI1, 4CLlI,
CHSI, F3HI, F3'HI, DFR1, and LDOXI1/LDOX2 genes
may be involved in the anthocyanin biosynthesis in pur-
ple carrots as these genes showed higher expression
levels in purple carrots than non-purple carrots. CHSI,
CHII, F3HI1, F3’'H1, DFRI1, and LDOXI1/LDOX2 genes
were strongly correlated with the presence of anthocya-
nins, as indicated by high gene expression levels in the
taproots of purple carrot cultivars but no or scarce ex-
pression in the taproots of non-purple carrot cultivars.
This suggests that these genes predominantly lead to loss
of anthocyanin production in non-purple carrot cultivars.
A similar result was observed in sweet potatoes [22]. Loss
of anthocyanins in the taproots of non-purple carrots is
possibly caused by inactivation of regulator genes such as
MYB, bHLH, and WD40 genes. Future investigation will
focus on transcription factors controlling expression of

Table 1 Cyanidin-based anthocyanin biosynthetic genes annotation and accession numbers in GenBank or CarrotDB

Gene family Annotation GenBank ID Scaffolds ID in CarrotDB Predict genes ID in CarrotDB
PAL PALT D85850.1 scaffold_229, 168181 g443,75570
PAL3/PAL4 AB089813.1/ AB435640.1 scaffold_16648, 16649, 169243 g17456, 17457, 76158
CA4H CA4H1 KM359961 scaffold_25749 g24733
CA4H2 KM359962 scaffold_45729 g36870
4CL 4CL1 KM359963 scaffold_1380 g1988
4CcL2 KM359966 scaffold_2619 93566
CHS CHST AJ006779.1 scaffold_27333, 21408 g25908, 21339
CHS2/ CHS9 D16255.1/ D16256.1 scaffold_139899, 4932 g61298, 6227
CHI CHIT KM359964 scaffold_8876 g10389
F3H F3H1 AF184270.1 scaffold_17226 g17950
F3'H F3'HI1 KM359965 scaffold_36531 931974
DFR DFR1 AF184271.1 scaffold_1955, 1956 931520, 2745
LDOX LDOX1/ LDOX2 AF184273.1/ AF184274.1 scaffold_20348, 20349, 20350 g20467, 78025, 20472

Gene abbreviations: PAL, Phenylalanine ammonia-lyase; CA4H, Cinnamate 4-hydroxylase; 4CL, 4-coumaroyl-coenzyme A ligase; CHS, Chalcone synthase; CHI, Chalcone-flavonone
isomerase; F3H, Flavanone 3-hydroxylase; F3'H, Flavonoid 3'- hydroxylase; DFR, Dihydroflavonol 4-reductase; LDOX, Leucoanthocyanidin dioxygenase.



Xu et al. BMC Plant Biology 2014, 14:262

http://www.biomedcentral.com/1471-2229/14/262

Page 6 of 9

Table 2 Nucleotide sequences of primers specific to cyanidin-based anthocyanin biosynthetic genes and Actin1 gene

used for qRT-PCR

Gene Forward primer 5'-3' Reverse primer 5'-3'

PALT ACATTACCCCTTGCTTGCCACT TCAAAGAATCCACCATCAACTCC
PAL3/PAL4 CTGGCATGGCCTCTATGGTACT TGTCCTGGATGGTGCTTCAACT
CA4H1 GTGGAGGCCAACGGAAATG CGTCCGATTGTGATACCGAGA
CA4H2 CCGGCAAAGAGCAAAGTTGT CAGCCCCGAATGGTAGGAAT

4CL1 AAACACCTGCCGTTACACTCG CGGAAGCAAGATCATCATCGTAT
4CcL2 AGAGCCAAGTTTCCTAATGCCA TCCCCGTTGATTCCTTGGTAG

CHST TTCCACCTTCTCAAAGATGTTCC GCTCAACTCTGTTTCAACTTGGTC
CHS2/CHS9 ATCAGGAAAAGGCAGAGGGC ATCCGCCTGGTAGACGCAGT

CHI TCCTGCCACGGTCAAACCT AAGAGCGAGCGACGGAATC

F3H1 GAGTACAGTGAGAAGCTGATGGGTC GGTTGAGGGCACTTGGGATAG
F3'H1 TTGAGGATGGTGAAGGTGGGA CTTTTGGGCGACGCAGAAC

DFR1 GTTATCAAGCCTACCGTACAGGG AGTTCCAGCAGACGAAGTGTAAAT
LDOX1/LDOX2 AGGTGCCCACAGTCGACATAGC CGCCTGTCCAGCCACTCTAA
DcActini CGGTATTGTGTTGGACTCTGGTGAT CAGCAAGGTCAAGACGGAGTATGG

these structural genes to identify the key gene(s) involved
in anthocyanin production in purple carrot cultivars and
responsible for anthocyanin loss in non-purple carrot
cultivars.

The taproots of purple carrots are rich in anthocya-
nins, reaching a maximum of 175 mg/100 g fw in
some cultivars [27]. In this study, anthocyanin content
varied significantly in the taproots of the three purple
carrot cultivars at the three different stages, as visually
indicated by the degree of root coloring. Anthocyanin
content in 60-day-old stage taproots of the three purple
carrot cultivars was comparable to previously reported
for several genotypes of purple carrots [13]. In 90- and
120-day-old purple carrots, anthocyanin content was
higher than previously reported, this may be because of
the different growth conditions and harvest time of the
carrots [13]; anthocyanin accumulation in carrots is
sensitive to variations in growth conditions, such as
temperature, light, and nutrients [28-30]. Anthocyanin
contents in taproots of the three purple carrot cultivars
at the 120-day-old stage were higher than those in
strawberries, red onion, and red grapes but lower than
that observed in blueberries [31]. Anthocyanins accu-
mulated in the epidermis of the hypocotyl-derived root
part of the three orange carrot cultivars after they were
exposed to light. This suggested that a light-induced
anthocyanin biosynthesis pathway is found in these or-
ange carrot cultivars.

Conclusions
Purple carrot cultivars produced rich amounts of antho-
cyanins in the taproots light independently, whereas

non-purple cultivars did not. The anthocyanin content
in purple carrot cultivars increased as root growth oc-
curred. Six novel candidate structural genes that existed
in both purple and non-purple carrots were successfully
cloned and sequenced. PAL3/PAL4, CA4H1, 4CL1, CHSI,
CHII, F3H1, F3'HI1, DFRI, and LDOXI1/LDOX2 may
participate in anthocyanin biosynthesis in the taproots
of purple carrot cultivars. CHS1, CHII, F3HI, F3'Hl,
DFRI, and LDOX1/LDOX2 were unexpressed or scarcely
expressed in non-purple carrots, thus may lead to the
loss of light-independent anthocyanins production in
orange and yellow carrots. Our results provide new
insights into anthocyanin biosynthesis in carrots at
the molecular level and are of importance for other root
vegetables.

Methods

Plant materials and growth conditions

Three purple carrot cultivars (‘Deep purple’, ‘Purple 68’,
and ‘Tianzi2hao’), three orange carrot cultivars (‘Kuroda’,
‘Sanhongliucun’, and ‘Junchuanhong’), and three yellow
carrot cultivars (‘Bejol719’, ‘Qitouhuang’, and ‘Baiyw)
were chosen for this work (Figure 2). Seeds were sown
in pots containing a soil/vermiculite mixture (1:1) in a
controlled artificial climatic chamber, with a photoperiod
of 12 h light (2000—-3000 lux) and 12 h dark at day/night
temperatures of 22°C/18°C. Carrot plants were grown
under the same conditions. Taproots of carrots at 60-,
90-, and 120-day-old stages were harvested, immediately
frozen in liquid nitrogen, and stored at -70°C for future
analysis. Three taproots were sampled for each carrot
cultivar at each stage.
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Figure 5 Expression of cyanidin-based anthocyanin biosynthetic pathway genes in 60-day-old stage carrot taproots. The mRNA level of
actinl was defined as 1. Data represents means of biological triplicate qRT-PCRs + SD. Statistical analysis of differences was performed using
Duncan’s multiple range test. Significant differences are indicated by different letters at the P < 0.05 level.

Determination of anthocyanin content

Carrot taproots were ground to a fine powder in the
presence of liquid nitrogen before anthocyanins were
extracted. The total anthocyanin content of carrot taproots
was determined in accordance with a previously described
method [20]. Total anthocyanin quantities were reported
in mg cyanidin 3-O-galactoside equivalents per 100 g fw
(mg/100 g fw). Values were means of three independent
experiments.

RNA isolation and cDNA synthesis

Total RNA was extracted from the taproots of carrots
using an RNA Simple Total RNA Kit (Tiangen, Beijing,
China) according to manufacturer’s instructions. First-
strand cDNA was synthesized from 1 pg of total RNA
using a PrimeScript™ RT reagent Kit with a gDNA Eraser
(Perfect Real Time) kit (Takara, Dalian, China) following
the manufacturer’s protocol. cDNA was diluted 20-fold
for gene cloning and qRT-PCR analysis.
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Gene identification, cloning, and sequencing

Nucleotide sequences of genes were searched from the
GenBank of the NCBI. Genes not accessed from the
NCBI were searched using the genome and transcrip-
tome databases of carrots [25]. Genes were further iden-
tified by cloning and sequencing from ‘Deep purple’ in
accordance with a previously described method [32].

gRT-PCR analysis

Primer pairs for qRT-PCR were designed using Primer 5
with a temperature of 59-62°C, length of 19-24 bp, and
GC content of 45-55% (Table 2). qRT-PCR was per-
formed on a MyiQ Real-Time PCR Detection System
(Bio-Rad) with a SYBR Premix Ex-Taq (Takara) in ac-
cordance with the manufacturer’s protocol. A total of
20 pL of each reaction contained 10 pL of SYBR Premix
Ex-Taq, 2 pL of diluted cDNA, 0.2 pM of each primer,
and 7.2 pL of ddH,0O. The qRT-PCR conditions were
as follows: denaturation at 95°C for 30 s; 40 cycles of
95°C for 10 s; and 60°C for 30 s. To confirm ampli-
con purity, melt-curve analysis was performed over a
temperature range of 60-95°C at the end of the
qRT-PCR. The DcActinl gene was used as an in-
ternal standard. Experiments were conducted in biological
triplicate using three biological RNA samples for each
carrot cultivar.

Statistical analysis

Differences in structural gene expression levels between
different carrot genotypes were statistically analyzed
using Duncan’s multiple-range test at a 0.05 significance
level. Correlation analysis was performed to determine
relationships between expression levels of genes encod-
ing enzymes implicated in the anthocyanin pathway of
anthocyanin biosynthesis (CHSI, CHS2/CHS9, CHII,
F3HI, F3'H1, DFRI1, and LDOXI1/LD0OX2) and antho-
cyanin presence by logistic regression analysis at a 0.05
significance level.

Availability of supporting data

The data supporting the results of this article are in-
cluded within the article.

Additional file

Additional file 1: Table S1. Correlation between the expression levels
of CHS1, CHS2/CHS9, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 and
anthocyanin presence by logistic regression analysis.
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CHI: Chalcone-flavonone isomerase; F3H: Flavanone 3-hydroxylase;
F3’H: Flavonoid 3’-hydroxylase; DFR: Dihydroflavonol 4-reductase;
LDOX: Leucoanthocyanidin dioxygenase; UCGT: UDP-galactose:cyanidin
3-O-galactosyltransferase.
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