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Abstract

genes (ANS, ANR, and LAR) for gRT-PCR analysis.

the mechanisms of catechins biosynthesis.

Background: Tea is a popular natural non-alcoholic beverage consumed worldwide due to its bioactive ingredients,
particularly catechins (flavan-3-ols). Catechins not only contribute to tea quality but also serve important functions
in the anti-stress regulation of secondary metabolic pathways. However, the percentages of various catechins are
different among tea plant [Camellia sinensis (L.) O. Kuntze] cultivars. This study aimed to elucidate the biosynthetic
mechanism of catechins. Transcriptomes from leaf tissues of four tea plant cultivars, 'Yunnanshilixiang’, ‘Chawansanhao’,
‘Ruchengmaoyecha’, and ‘Anjibaicha’, were sequenced using the high-throughput sequencing platform lllumina HiSeq"
2000. De novo assemble were also performed. Catechins contents were measured through reversed-phase high-
performance liquid chromatography (RP-HPLC), and the biosynthetic pathway was also surveyed.

Results: We constructed a unified unigene database. A total of 146,342 pairs of putative orthologs from the four tea
plant cultivars, 'Yunnanshilixiang’, ‘Chawansanhao’, ‘Ruchengmaoyecha’, and ‘Anjibaicha’ were generated. Approximately
68,890 unigenes (47.1%) were aligned to the sequences of seven public databases with a cut-off £-value of 1E-5. A total
of 217 differentially expressed genes were found through RPKM values, and 150 unigenes were assigned to the
flavonoid biosynthetic pathway using the integrated function annotation. The (-)-EGC and (-)-EC contents were
significantly lower and the (+)-GC and (+)-C contents were abnormally higher in ‘Ruchengmaoyecha’ than in
‘Yunnanshilixiang’, ‘Chawansanhao’, and ‘Anjibaicha’. The proportion of catechins was confirmed by selecting critical

Conclusions: This study provided a global survey of transcriptomes from four tea plant cultivars and serves as an
available resource of genetic diversity. The analyses of transcriptome profiles and physiological indicators not only
identified the putative genes involved in the flavonoid biosynthetic pathway but also provided some novel insights for

Keywords: Camellia sinensis, Transcriptome, High-throughput sequencing, Catechins, RP-HPLC, Genetic diversity

Background

The tea plant, Camellia sinensis (L.) O. Kuntze, is natur-
ally distributed in the Southeast Asia Monsoon region
and has been cultivated in China as a commercially valu-
able plant for at least 2000 years [1,2]. Tea is made from
tea plant leaves and is consumed as a popular natural
non-alcoholic beverage worldwide due to its bioactive
ingredients, including tea polyphenols [3], theanine [4],
and polysaccharides [5]. Numerous reports revealed that
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tea prevents cancer, cardiovascular, neurodegenerative,
and other oxidative stress-related diseases [6-10]. Green
tea, black tea or tea constituents have been shown to in-
hibit the development of cancer in animal models, such
as lung tumorigenesis in A/J mice [11,12] and intestinal
tumorigenesis in Apc™™* mice [13]. Population studies
suggested that green and black tea consumption could
reduce the risk for cardiovascular disease [14]. The po-
tent antioxidant and iron chelating actions of tea ex-
tracts were shown to attenuate the neurotoxic action of
6-hydroxydopamine (6-OHDA)-induced neuronal death
[7]. Moreover, tea also has been shown to prevent skin
aging, liver cell injury and inflammation [15-17]. The
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benefits of tea are mainly attributed to catechins (flavan-3-
ols), a group of polyphenolic compounds [18]. As tea prin-
cipal flavor substances, catechins usually account for 25%
to 30% of the dry weight of fresh tea plant leaves [19,20].
The accumulation of catechins in shoots may be related to
energy storage and stress resistance [21-23].

The catechins in fresh tea leaves are usually classified into
seven groups: (+)-gallocatechin [(+)-GC], (-)-epigallocate-
chin [(-)-EGC], (-)-epicatechin [(-)-EC], (+)-catechin
[(+)-C], (-)-epigallocatechin gallate [(-)-EGCG], (+)-gal-
locatechin gallate [(+)-GCG], and (-)-epicatechingallate
[(-)-ECG]. The flavonoid biosynthetic pathway of C. sinen-
sis has been identified by numerous physiological, biochem-
ical, and genetic studies [24-27]. However, the molecular
mechanisms of (-)-EGCG, (+)-GCG, and (-)-ECG remain
unclear to date. Catechins such as (-)-EGC, (-)-EC,
(+)-GC, and (+)-C are synthesized through the enzymatic
catalysis of anthocyanidin synthase (ANS), leucoanthocya-
nidin reductase (LAR), and anthocyanidin reductase (ANR)
in the late stage of flavonoid biosynthesis [24]. (-)-EGCG
and (-)-ECG may be biosynthesized by a newly discovered
enzyme (epicatechin:1-O-galloyl-5-D-glucose O-galloyl-
transferase) [27]. The genes that encode these enzymes
have been cloned or verified from C. sinensis, but informa-
tion on their regulatory mechanisms remains lacking. The
tea plant has a large genome [28,29]. Compared to other se-
quenced model plants, the genome size of tea plant (a per-
ennial woody plant, ~4,000 Mb) is about 32.0, 9.3, 8.4, 8.2
times than that of two annual herbaceous model plants,
Arabidopsis thaliana (125 Mb) [30] and rice (Oryza sativa,
430 Mb) [31,32], and two perennial woody model plants,
grapevine (Vitis vinifera, 487 Mb) [33,34] and black cotton-
wood poplar (Populus trichocarpa, 485 Mb) [35]. Some
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genes are involved in flavonoid biosynthesis, and almost all
genes may have multiple copies. Only a few flavonoid bio-
synthetic genes in C. sinensis have been completely cloned
and functionally identified. The catechins content of differ-
ent tea plant cultivars are different from one another. How-
ever, the exact mechanism responsible for this difference
remains unclear.

This study elucidated the mechanisms and critical genes
that regulate catechins biosynthesis. Transcriptomes of four
tea plant cultivars from different provinces in China were
sequenced using the high-throughput sequencing plat-
form Illumina HiSeq™ 2000 and were de novo assem-
bled. The tea plant samples used here included mid-leaf
“Yunnanshilixiang’ (Tea_T1) from Yunnan province, small-
leaf ‘Chawansanhao’ (Tea_T2) from Jiangsu province,
high-temperature-tolerant large-leaf ‘Ruchengmaoyecha’
(Tea_T3) from Hunan province, and low-temperature-
sensitive small-leaf ‘Anjibaicha’ (Tea_T4) from Zhejiang
province (Figure 1). Because of the obvious difference of
geographic and climate characteristics in these four tea
production areas, respectively plateau monsoon climate
(Yunnan), coastal temperate climate (Jiangsu), inland sub-
tropical monsoon climate (Hunan), and coastal subtrop-
ical monsoon climate (Zhejiang), the morphology and
physiology of tea plants of Tea_T1, Tea_T2, Tea_T3, and
Tea_T4 were different, such as leaf size and environmental
adaptability. The contents and component proportions of
catechins compounds are one of the important factors
of the characteristics of tea-processing suitability and
quality [36,37]. The tea plant cultivars of “Yunnanshilixiang’,
‘Chawansanhao’, and ‘Anjibaicha’ are suitable processed
into green tea, however, Ruchengmaoyecha’ is suitable for
black tea.

Yunnanshilixiang

»

Chawansanhao Rucheng-r.naoyecha

Figure 1 Four tea plant cultivars: ‘Yunnanshilixiang’, ‘Chawansanhao’, ‘Ruchengmaoyecha’, and ‘Anjibaicha’.
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The same set of reference genes was established to
analyze the subsequent expression abundance and the
reads per kb per million reads (RPKM) values of two li-
braries. A total of 217 differentially expressed unigenes
were identified. Function annotation analysis showed
that 150 unigenes are involved in flavonoid biosynthetic
pathway. Seven genes (LAR-1, LAR-2, LAR-3, ANS-1,
ANS-2, ANR-1, and ANR-2) that encode for three key
enzymes (ANS, ANR, and LAR) had different expression
patterns among the four tea plant cultivars, in which ex-
pression of six genes (LAR-2, LAR-3, ANS-1, ANS-2,
ANR-1, and ANR-2) positively associated with the con-
centration of their corresponding catechins. Another
gene LRA-I may not be primarily responsible for the
biosynthesis of catechins, replaced by the same set of
genes LRA-2 and LRA-3. Our study may served as a ref-
erence for further studies on the multi-gene regulation
of catechins biosynthesis in C. sinensis.

Results
Sequencing and de novo assembly
Four ¢cDNA libraries were constructed from fresh leaves
RNA samples of Tea_T1, Tea_T2, Tea_T3, and Tea_T4.
Approximately 25.7, 21.5, 20.7, and 27.1 million raw
reads of 200 bp, and 5.1, 4.3, 4.2, and 5.4 Giga base pairs
(Gbp) each, respectively, were generated by the Illumina
HiSeq™ 2000 sequencing device. The Q20 values (se-
quencing error rate, 1%) were more than 93.75%, and
the GC percentages were 44.41%, 46.65%, 51.08%, and
46.09%, respectively (Table 1). Adaptor sequences, dupli-
cated sequences, ambiguous reads, and low-quality reads
were removed, and the high-quality reads of each cultivar
were separately de novo assembled using the Trinity pro-
gram [38]. The assembly finally produced 86,523 unigenes
with the mean size of 591 bp for Tea_T1, 54,980 unigenes
with the mean size of 601 bp for Tea_T2, 34,442 unigenes
with the mean size of 530 bp for Tea_T3, and 74,894 uni-
genes with the mean size of 596 bp for Tea_T4 (Table 1).
The same set of reference genes (Tea.Unigene library)
was analyzed to determine the subsequent expression
abundance and differentially expressed genes. A total of
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146,342 unigenes were obtained from the tea plant culti-
vars, with an average unigenes and N50 length were
526 bp and 648 bp, respectively (Table 2). The length
distribution of the unigenes is shown in Figure 2.

Functional annotation and categorization

All unique sequences were annotated using BLASTX
against the NCBI non-nucleotide (Nt) sequences data-
base, NCBI non-redundant (Nr) protein database, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) [39], Clusters of Orthologous Groups
(COQG) [40], and UniProtKB/(Swiss-Prot, TrTEMBL) [41]
to annotate the assembly as comprehensively as possible.
A total of 68,890 unigenes (47.07%) were identified with
a significance threshold (E-value <1E-5). The remaining
unigenes (52.93%) cannot be annotated with known
genes (Table 3), which most likely caused by the pres-
ence of short sequences (44.36% <300) and the shortage
of relevant genetic data.

E-value and species distribution were also analyzed by
evaluating the matched unigenes (58,678) from the
returned BLASTX results of the Nr protein database.
Very strong homology was observed in 41.71% of the
aligned sequences (E <1E-50), and 58.29% of the homo-
log sequences ranged from 1E-50 to 1E-5 (Figure 3A).
The species distribution of the top hits that matched
the sequences showed that Vitis vinifera (41.16%) had the
greatest number of matches with C. sinensis, followed by
Populus trichocarpa (9.23%), Ricinus communis (7.84%),
Arabidopsis thaliana (4.32%), Glycine max (3.67%), Arabi-
dopsis lyrata (3.25%), Medicago truncatula (2.10%), Oryza
sativa Japonica Group (0.95%) and Hordeum vulgare
(0.88%) (Figure 3B).

GO classification

The expressed C. sinensis genes were searched against
the GO database to categorize standardized gene func-
tions. Of the 58,678 unigenes previously annotated to
the NR database, 50,846 were assigned to three main
GO categories (biological process, cellular component,
and molecular function) and 64 subcategories using the

Table 1 Summary of the sequence assembly for four cultivars of C. sinensis

Species Assembly size (n) Nucleotides (bp) GC% Q20% Average length (bp) N50 (bp)
Raw reads Tea_T1 25,733,467 5118861578 4441 95.70
Tea_T2 21,524,046 4,294,394,519 46.65 95.08 -
Tea_T3 20,674,230 4,163,349,704 51.08 93.75 -
Tea_T4 27,082,850 5,387,399,257 46.09 94.21
Unigene reads Tea_T1 86,523 51,143,990 591 829
Tea_T2 54,980 33,028,924 601 923
Tea_T3 34,442 18,248,161 530 700
Tea_T4 74,894 44,645,039 596 890
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Table 2 Statistics of the Tea.Unigene library of C. sinensis

Tea.Unigene length Total number Percentage
200-300 64917 44.36%
300-500 44,409 30.35%
500-1000 21,098 14.42%
1000-2000 10,812 7.39%
2000+ 5,106 349%

Total number 146,342

Total length 76,924,597

N50 length 648

Mean length 526

Blast2GO and WEGO software (Figure 4). A total of
14,278 GO terms were collected, which were most fre-
quently related to biological processes (9,106), followed
by molecular function (3,843), and cellular components
(1,329).

The major subcategories (above 25% genes) among
the biological processes were “cellular process” (78.74%,
40,036), “metabolic process” (75.78%, 38,532), “response to
stimuli” (50.38%, 25,615), “biological regulation” (49.66%,
25,248), “developmental process” (38.08%, 19,362), “cellular
component organization or biogenesis” (36.68%, 18,649),
“localization” (32.11%, 16,326), “multicellular organismal
process” (31.90%, 16,219), “establishment of localization”
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(29.18%, 14,838), “reproduction” (23.12%, 11,756), and
“reproductive process” (22.73%, 11,556). “Binding”
(69.38%, 35,276) and “catalytic activity” (55.20%, 28,068)
were the dominant molecular functions. The most highly
represented cellular component was “cell part” (82.15%,
41,770), followed by “cell” (81.26%, 41,320), “organelle”
(73.86%, 37,553), “membrane” (41.36%, 21,031), “organelle
part” (36.49%, 18,553), and “macromolecular complex”
(21.02%, 10,686).

COG classification

COG was used to further evaluate the completeness of the
tea plant transcriptome libraries and the validity of the an-
notation. A total of 17,028 unigenes were clustered into 25
functional categories (Table 3). The largest category was
“General function prediction only” (25.52%, 4,345), followed
by “replication, recombination and repair” (13.88%, 2,363),
“transcription” (12.38%, 2,108), “translation, ribosomal
structure and biogenesis” (11.35%, 1,933), “Signal transduc-
tion mechanisms” (10.14%, 1,726), “Posttranslational modi-
fication, protein turnover, chaperones” (9.95%, 1,695),
“Carbohydrate transport and metabolism” (7.32%, 1,246),
“Energy production and metabolism” (6.62%, 1,127), and
“Amino acid transport and metabolism” (6.60%, 1,124).
“Extracellular structure”, “nuclear structure”, and “cell mo-
tility” had the fewest unigenes (Figure 5).
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Figure 2 Length distribution of the Tea.Unigene library of C. sinensis.
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Table 3 Summary of annotation for the Tea.Unigene
library of C. sinensis

Anno database Annotated 300 <length length >
number <1000 1000
COG annotation 17,028 7,048 6,398
GO annotation 50,846 23,494 14,047
KEGG annotation 15,300 7113 3,898
Swissprot annotation 44,936 20,674 13214
TrEMBL annotation 58,446 27,648 15137
Nr annotation 58,678 27,829 15,152
Nt annotation 45,838 19,557 13,829
All annotated 68,890 32,770 15,348

KEGG classification
To further explore the gene interactions and biological
functions in C. sinensis leaves, the unigenes were
searched against the reference canonical pathways in
KEGG. A total of 15,300 unigenes were annotated with
their corresponding Enzyme Commission (EC) numbers
and were assigned to 251 KEGG pathways (Table 3, see
Additional file 1). The most representative pathways
were “ribosome” (ko03010, 856, 5.59%), “oxidative phos-
phorylation” (ko00190, 564, 3.69%), “protein processing
in endoplasmic reticulum” (ko04141, 522, 3.41%), “RNA
transport” (ko03013, 507, 3.31%), “spliceosome” (ko03040,
473, 3.09%), “purine metabolism” (ko00230, 355, 2.32%),
“endocytosis” (ko04144, 325, 2.12%), “ubiquitin-mediated
proteolysis” (ko04120, 311, 2.03%), “glycolysis/gluconeogen-
esis” (ko00010, 308, 2.01%), “starch and sucrose metabol-
ism” (ko00500, 307, 2.01%), “RNA degradation” (ko03018,
299, 1.95%), “plant hormone signal transduction” (ko04075,
299, 1.95%), “mRNA surveillance pathway” (ko03015, 293,
1.92%), “pyrimidine metabolism” (ko00240, 282, 1.84%),
“ribosome biogenesis in eukaryotes” (ko03008, 280, 1.83%),
“phagosome” (ko04145, 259, 1.69%), and “cysteine and me-
thionine metabolism “(ko00270, 244, 1.59%) (Figure 6A).
This study focused on the “Biosynthesis of other sec-
ondary metabolites” pathway present in C. sinensis leaves
and revealed 140 unigenes for “Phenylpropanoid biosyn-
thesis”, 38 unigenes for “Stilbenoid, diarylheptanoid, and
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gingerol biosynthesis”, 43 unigenes for “Flavonoid bio-
synthesis”, 35 unigenes for “Tropane, piperidine, and
pyridine alkaloid biosynthesis”, 31 unigenes for “Isoqui-
noline alkaloid biosynthesis”, 6 unigenes for “Flavone
and flavonol biosynthesis”, 3 unigenes for “Novobiocin
biosynthesis”, 2 unigenes for “Caffeine metabolism”, 1
unigene for “Indole alkaloid biosynthesis”, and 1 unigene
for “Streptomycin biosynthesis” (Figure 6B).

Differential gene expression in the tea plant libraries

The expression abundance of each sample was measured,
and differentially expressed genes (DEGs) were found be-
tween the two libraries. Clean reads from each sample
were mapped back to the above-constructed reference
genes, and the mapped reads were counted to obtain
RPKM values for evaluation. A total of 273 DEGs were de-
tected among the four C. sinensis libraries, of which 106,
25, 39, 64, and 39 DEGs were predicted from “Tea_T1_
vs_Tea T2”, “Tea_T1 vs Tea T3”, “Tea_T1 vs_Tea T4”,
“Tea_T2_vs_Tea_T3”, and “Tea_T2_vs_Tea_T4”, respect-
ively, no DEGs were found in “Tea_T3_vs_Tea_T4”
(Figure 7). Overlapping genes were removed, and 217
DEGs were obtained and hierarchically clustered. The gene
expression profiles are shown in a heat map (Figure 8). The
enriched genetic annotation for DEGs was analyzed, and
the COG, GO, KEGG, Swissprot, TrEMBL, Nr, and Nt da-
tabases were annotated to describe the functions and me-
tabolism of the genes compared with the transcriptome
database (P <0.05, hypergeometric test). The detailed re-
sults are given in Additional file 2.

Genes involved in the flavonoid biosynthetic pathway
based on tea plant leaf transcriptome

Catechins are the main ingredient of flavonoids, which are
not only important for tea quality but also related to the
growth and metabolism of tea plant. The catechins path-
ways in the four tea plant cultivars were analyzed in this
study (Figure 9). A total of 150 unigenes involved in flavon-
oid biosynthesis were annotated and found to encode 18
putative enzymes from integrated function annotation
(COG, GO, KEGG, Swissprot, TrEMBL, Nr, and Nt
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Figure 3 Characteristics of the homology search of the Tea.Unigene library of C. sinensis against the nr database. (A) £-value distribution
of BLASTX hits for each unigene with a cut-off of 1E-5. (B) Species distribution of the top nine BLAST hits for each unigene with a cut-off of 1E-5.
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Figure 4 GO classification of the Tea.Unigene library of C. sinensis.
extracted from the four parts of dry tea leaves were used

annotation). These genes potentially related to catechins
biosynthesis are detailed in Additional file 3.

Catechins contents among the four tea plant cultivars

detected through RP-HPLC
RP-HPLC was performed to separate and detect cate-

chins with high accuracy and sensitivity. The polyphenols

for testing (Figure 10). The contents and proportions of
the four components [(-)-EGC, (-)-EC, (+)-GC, and
(+)-C] were highly similar in three tea plant cultivars,
namely, Tea_T1, Tea_T2, and Tea_T4. The (-)-EGC and
(-)-EC contents were always higher than the (+)-GC and
(+)-C contents in these three tea plant cultivars. The
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leaves of these cultivars were similar in type and were
small and medium in size. However, these detected indi-
cators of large-leaf Tea_T3 were completely in contrast
with the rest of the cultivars (Tea_T1, Tea T2, and
Tea_T4). The (-)-EGC and (-)-EC contents were obvi-
ously lower than the (+)-GC and (+)-C contents in
Tea_T3 (Figure 11).

Expression profiles of the genes involved in catechins
biosynthesis in tea plant

RPKM values were used to analyze the expression of 150
unigenes involved in flavonoid biosynthesis in the four
tea plant cultivars to evaluate the catechins production
capacity of the tea plants (Additional file 3). The uni-
genes of the most and the least expression levels were
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Figure 7 Distribution of the differentially expressed genes between two C. sinensis cultivars.
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" Tea T2

Figure 8 Heatmap of the relative expression levels of 217 differentially expressed genes from four C. sinensis cultivars. Yellow
represents high expression. Blue represents low expression.
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taken as up-regulated and down-regulated genes, re-
spectively. We identified 38 up-regulated and 8 down-
regulated unigenes in Tea_T1, 40 up-regulated and 12
down-regulated unigenes in Tea_T2, 26 up-regulated
and 64 down-regulated unigenes in Tea_T3, and 44 up-
regulated and 12 down-regulated unigenes in Tea_T4.
The digital expression profiles revealed a different ex-
pression pattern in Tea_T3.

Seven long unigene fragments that encode for three en-
zymes (ANS, ANR, and LAR) at the stage of flavonoid bio-
synthesis were selected for verification through qRT-PCR
analysis (Figure 12). The three enzymes dominated cate-
chins production in tea plant. The results showed that the
expression profiles of the seven unigenes from Tea_T3
differed from those of the unigenes from other cultivars
and those five unigenes almost exactly coincided with

predictable results. Moreover, six unigenes, LAR-2, LAR-3,
ANS-1, ANS-2, ANR-1, and ANR-2, had strong positive
correlations with corresponding catechins concentration
compared with the expression profiles and the previously
measured catechins contents. This result suggests that the
difference in the gene expression profiles of Tea_T3 may
have caused catechins diversity.

Discussion

C. sinensis is a perennial cross-pollination plants that
has rich genetic diversity of populations [42,43]. Pheno-
typic diversity of C. sinensis mainly embodied in plant
height, flower, leaf size and locules number. Catechins
are special accumulation in tea plant leaves, and their
contents also have high variability in different tea plant
cultivars [44]. Multi-species transcriptome sequencing
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Figure 9 Unigenes involved in the flavonoid biosynthetic pathway in C. sinensis leaves.

provided good tool to understand the complex transcrip-
tional regulation and metabolic pathways of different cate-
chins components. The Illumina HiSeq™ 2000 sequencing
platform was used because of its higher throughput, lower
cost and greater output than Illumina Solexa Genmoe
Analyzer [45-47]. Multiple samples can also be simultan-
eously sequenced by barcoding (multiplexing). A total of
146,342 unigenes were obtained from the tea leaf tran-
scriptomes of the four cultivars; this number is higher
than that reported from the leaves of another tea variety
(25,637 unigenes) [48]. This number is between the se-
quencing assembly results from mixed tissues (127,094
unigenes) [29] and from cold acclimated leaves (179,753
unigenes) [49] of C. sinensis. The transcriptome of mixed
tissues may not reach saturation by mapping it to the tran-
scriptome of cold acclimated leaves [49]. In addition,
leaves acclimated to cold temperatures express more
genes than normal [49,50]. These findings indicated that
the information of this study on C. sinensis leaves were
relatively comprehensive. It is noteworthy that the data
sizes of the sequences from the four samples were differ-
ent. The smallest data size only had 34,442 unigenes from
Tea_T3, but the largest data size had 86,523 unigenes
from Tea_T1. Therefore, each of the four copies of data

independently contributed to the construction of the Tea.
Unigene library.

A total of 68,890 (47.07%) of the 146,342 unigenes
from the Tea.Unigene library were annotated to public
databases (GO, COG, KEGG, Swissprot, TrEMBL, Nr,
and Nt) for comprehensive analysis. Previous studies
only included 55,088 annotated unigenes from 127,094
unigenes [29], 22,872 annotated unigenes from 25,637
unigenes [48], and 53,201 annotated unigenes from
179,753 unigenes [49]. Compared with these studies, the
present study obtained more complete annotation infor-
mation. The annotations in this study were compared
with the GO annotation from Shi et al. [29], and the
principal difference was found between annotations from
“response to stimulus of biological processes”, “mem-
brane of cellular component”, and “nucleic acid binding
transcription factor activity of molecular function”, this
result indicated that the leaves were prominent at the
molecular level in response to stimulation and membrane
metabolism. The COG annotation was also compared with
previous studies on C. sinensis [29,48]. Results showed that
the unigene expression profiles under “the categories of
posttranslational modification”, “protein turnover”, and
“chaperones” did not specifically appear in tea leaf tissue.
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The present results were similar to the findings of Shi et al.
[29] rather than Wu et al. [48].

The abundance of gene expression is often used to ex-
plore gene expression profiles, and DEGs are found among
different developmental stages, organizations, treatments,
and species [51-54]. In the present study, 217 DEGs were
identified and annotated from the four tea plant cultivars.
The analysis results of orthologous groups of protein from
COG function classification showed that the major differ-
ences among the four tea plant cultivars were “energy

production and conversion”, “posttranslational modifica-
tion”, “protein turnover”, “chaperones”, “general function
prediction only and secondary metabolites biosynthesis”,
“transport”, and “catabolism”. However, no DEGs were
found for “RNA processing and modification”, “cell cycle
control”, “cell division”, “chromosome partitioning”, “nu-
clear structure”, “defense mechanisms”, “extracellular
structures and intracellular trafficking”, “secretion”, and
“vesicular transport”. Overall, the cultivars still exhibited

high molecular stability.
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Figure 11 Histogram of the GC, EGC, C, and EC contents from
four tea plant cultivars. The ordinate represents the weight of the
catechins in 1 g dry tea.

The four tea plant cultivars (Tea_T1 to T4) from dif-
ferent provinces differed in leaf size, plant morphology,
and stress resistance. It is generally believed that the cat-
echins contents were higher in large-leaf species than in
small-leaf species of tea plant. However, this has not
been validated at the molecular level. Many genes correl-
ate with the concentrations of catechins in the flavonoid
biosynthetic pathway of C. sinensis. These genes include
PAL [55], C4H [55], F3H [56], and ANR [57]. Almost all
genes involved in catechins biosynthesis were also found
in other species [58-61]. However, the expression of a
particular gene does not necessarily mean a relationship
with catechins contents because of the complexity of fla-
vonoid biosynthesis and the existence of gene isomers.
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Integrated functional annotation and further RPKM value
analyses of the four tea plant cultivars showed that 150 uni-
genes were involved in the flavonoid biosynthetic pathway.
Digital expression profiles revealed that different expression
profile patterns may exist in Tea_T3. We further confirmed
the expression variations and the relationship between the
gene expression and catechins biosynthesis as follows.
Three key enzyme genes (ANS, ANR, and LAR) were se-
lected for qRT-PCR analysis, and four types of end prod-
ucts [(-)-EGC, (-)-EC, (+)-GC, and (+)-C] of the flavonoid
biosynthetic pathway were selected for RP-HPLC detection.
ANS to ANR are unique for the synthetic pathway of
(-)-EC and (-)-EGC. The low expression levels of ANS-1,
ANS-2, ANR-1, and ANR-2 in Tea_T3 can explain the low
contents of (-)-EC and (-)-EGC in this cultivar. LAR is in-
volved in the synthesis of (+)-C and (+)-GC, which signifi-
cantly accumulated in Tea_T3. The LAR gene seems to be
higher expression level in Tea_T3. One of them, LAR-I ac-
tually had low expression in Tea_T3. These results revealed
that the other two LAR genes (LRA-2 and LRA-3) or more
may control (+)-C and (+)-GC generation in tea plant.

Catechins are the largest group of secondary metabolites
in tea and are very important for processing suitability and
quality [36,37]. The (-)-EGCG content of catechins is the
largest and next to this are (-)-EGC, (-)-ECG, (-)-EC in
green tea, the (+)-C and (+)-GC contents of catechins are
usually trace [62]. However, (+)-GC is considered the most
important catechin for sensory quality in black tea, (+)-C
is correlated positively and significantly with various indi-
vidual quality attributes and total quality scores [63]. The
contents and component proportions of catechins of C.
sinensis mainly determined by the cultivars of tea plant
and environmental conditions [64,65]. In the present
study, four tea plant cultivars from different origins were
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selected for RP-HPLC detection of catechins. The results
showed that the (-)-EC and (-)-EGC contents of catechins
in “Yunnanshilixiang’ (Tea_T1), ‘Chawansanhao’ (Tea_T2),
and ‘Anjibaicha’ (Tea_T4) were higher than that in
‘Ruchengmaoyecha’ (Tea_T3); the (+)-C and (+)-GC con-
tents of catechins in Tea_T3 were higher than that in the
other three tea plant cultivars. It conformed to their pro-
cessing characteristics of green tea or black tea. In
addition, the relevance between three key structural genes
(ANS, ANR, and LAR) and the diversity of catechins com-
ponents in the four tea plant cultivars was confirmed
through analyzing their expression profiles. This will help
to explore tea-processing suitability at the molecular level
and develop better germplasm resources of tea plants
based on the genetic metabolic regulation of catechins.

Conclusions

This study provides a global survey of transcriptomes from
four C. sinensis cultivars and thus may serve as an available
genetic diversity resource for the tea plant. Analyses of
transcriptome profiles and physiological indicators identi-
fied putative genes involved in the flavonoid biosynthetic
pathway. Results showed that the multi-gene regulation of
large-leafed catechins significantly differed relative to other
cultivars. The expression levels of genes ANS, ANR, and
LAR may cause differences in catechins components by
comparing the expression profiles and catechins contents
of the cultivars. This study provided novel insights into the
mechanisms of catechins biosynthesis in tea leaves.

Methods

Plant material and RNA isolation

Five-year-old cutting tea plant seedlings of Tea_T1,
Tea_T2, Tea_T3, and Tea_T4 were planted in a growth
chamber at the Tea Science Research Institute, College of
Horticulture, Nanjing Agricultural University (Nanjing,
China). The plants were grown in acidic soil (pH 5.6), and
the conditions were maintained at 23 + 2°C temperature
and 70+ 10% relative humidity. Four young tea plant
leaves were selected, quickly frozen in liquid nitrogen, and
then stored at —80°C for RNA extraction.

RNA was extracted from the tea plants according to
the instruction manual of the Quick RNA isolation Kit
(Huayueyang Biotech Co., Ltd., Beijing, China). The ex-
tracted RNA was treated with RNase-free DNasel (TaKaRa
Biotech Co., Ltd., Dalian, China) to remove residual DNA.
RNA integrity was checked through agarose gel electro-
phoresis (1.2%), and RNA concentration was estimated
using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Inc., Santa Clara, CA, USA).

Construction of cDNA library and illumina sequencing
High-quality RNA samples from tea plants were sent to
Biomarker Technologies Corporation (Beijing, China) for
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c¢DNA libraries construction and sequencing. Magnetic
oligo (dT) beads were used to enrich the poly (A) mRNA
tails of four independent RNA. The enriched mRNA was
fragmented into small pieces, which were prepared as
templates for cDNA synthesis. Double-stranded cDNA
was synthesized using SuperScript II, buffer, ANTPs, RNa-
seH, and DNA polymerase I. The ¢cDNA was purified
using a QiaQuick PCR extraction kit (Qiagen, Inc., Hilden,
Germany) and was eluted with EB buffer. The short cDNA
fragments were subjected to end repair, adapter ligation,
and agarose gel electrophoresis filtration. Then, the suit-
able fragments were selected as templates for PCR amplifi-
cation. The four constructed cDNA libraries of tea plant
were sequenced using the Illumina HiSeq™ 2000 platform.

Data filtering and de novo assembly

High-quality clean reads were obtained by removing the
adaptor sequences, duplicated sequences, ambiguous reads
(‘N’), and low-quality reads. Transcriptomes from four
datasets were separately assembled de novo using Trinity
(http://trinityrnaseq.sourceforge.net/). In brief, clean reads
with a certain overlap length were initially combined to
form long fragments without N. These fragments are
called contigs. Related contigs were clustered using the
TGICL software [66] to yield unigenes (without N) that
cannot be extended on either end, and redundancies were
removed to acquire non-redundant unigenes.

Functional annotation of the assembled unigenes

The unigene sequences of the four tea plant cultivars
were searched using BLASTX against the Nt, Nr, KEGG,
GO, COG, Swiss-Prot, and TrEMBL databases (E-value
<1E-5) to retrieve protein functional annotations based
on sequence similarity. High-priority databases (followed
by Nr, Swiss-Prot, and KEGG) were selected to deter-
mine the direction of the unigene sequences. The best
aligning results were used to predict the coding region
sequences from unigenes, and the coding sequences
(CDSs) were translated into amino sequences using the
standard codon table. The ESTScan software [67] was
used to decide the sequence direction of the unigenes
that could not be aligned to any of the above databases.
GO terms were assigned to each sequence annotated by
BLASTX against the Nr database using the Blast2GO
program with the E-value threshold of 1E-5 for further
functional categorization. The WEGO software [68] was
used to plot the distribution of the GO functional classi-
fication of the unigenes. The unigene sequences were
also aligned to the COG database to predict and classify
possible functions. The unigenes were assigned to KEGG
pathway annotations to analyze inner-cell metabolic
pathways and the related gene function using BLASTX.


http://trinityrnaseq.sourceforge.net/

Wu et al. BVMIC Plant Biology 2014, 14:277
http://www.biomedcentral.com/1471-2229/14/277

Table 4 Primers for qRT-PCR to verify above seven genes
involved in catechins biosynthesis in tea plant

Target CDSs

Primer Sequence (5' to 3')

Tea_T4_Unigene_BMK28458  F AAACTCTTCAAGACAAAGGCGCTAA
(LAR-T) R TCTATCAATCGCCGCACCCTC
Tea_T4_Unigene_BMK50436  F GACTGTAGCAGCAGAAGTAGCC
(LAR-2) R TCAATCTTATGGTCCCTCAAA
Tea_T4_Unigene_BMK41423  F GCTGTGGGTGGTGCTAAT
(LAR3) R GCGATCCAAAGGAGGAAT
Tea_T4_Unigene_BMK49588  F ATGACTACAGTGGCTGCCCCGA
ANS-T) R CAACGCCTCCCGACACCTCTC
Tea_T1_Unigene_BMK79499 F ACGAGGGCAAATGGGTCA
Ans-2 R CCTTATTAACGAGTCCACGATG
Tea_T1_Unigene_BMK72783  F CTGTCCGAGACCCAGGCAATC
(ANR-1) R GGGCGTCAAAGCTCTGTTCAT
Tea_T4_Unigene_BMK60174  F CAATGGCAATGGTAACAACA
(ANR2) R TCCAGTGCTACGAGGTGAG
TaGAPDH (internal control F TTGGCATCGTTGAGGGTCT
gene) R CAGTGGGAACACGGAAAGC

Analysis of the functional enrichment of DEGs

The RPKM method eliminated the influence of different
gene lengths and sequencing levels on the calculation of
gene expression. Therefore, RPKM values were directly
used to compare gene expression differences between dif-
ferent samples. The DESeq package was used to obtain
the “base mean” value for identifying DEGs. FDR <0.01
and the absolute value of log2 ratio >1 were set as the
thresholds for the significance of the gene expression dif-
ference between the two samples.

Chromatographic conditions of RP-HPLC

The catechins contents of the four tea plant cultivars were
analyzed through RP-HPLC according to GB/T8313-2008
(China). The samples were applied in the Shimadzu LC-
20A series (Shimadzu Co., Kyoto, Japan). A Hedera ODS-
2 C18 analytical column (250 mm x 4.6 mm id., 5 pm
nominal particle size) was used for chromatographic sep-
aration. Gradient elution conditions were modified to bet-
ter separate peaks. Double distilled water was used as
mobile phase A, and primary mobile phase A was used as
mobile phase B. For the gradient elution was at 2:3 mobile
phase A and B ratio. The separation of the catechins was
checked using a SPD-20A UV detector.

Validation of the digital expression profiles through
quantitative real-time PCR

Seven genes that encode for three enzymes (ANS, ANR,
and LAR) at the late stage of flavonoid biosynthetic
pathway by KEGG were chosen for validation among
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the four tea plant cultivars using quantitative real-time
PCR. Gene-specific primers were designed using the
Primer Premier 5.0 software. QRT-PCR was performed
on a Bio-Rad iQ5 real-time PCR platform (Bio-Rad
Laboratories, Inc., Hercules, CA, USA) using SYBR®
Premix Ex-Taq™ (Tli RNaseH Plus), ROX plus (TaKaRa
Biotech Co., Ltd., Dalian, China) according to the manu-
facturer’s instructions. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was selected as the internal control
gene for normalization as previously reported. The cDNAs
were diluted 18-fold with nuclease-free deionized water,
and 2 pL of each sample was extracted as template added
to the reaction mixture (20 pL) containing 10 pL of SYBR®
Premix Ex-Taq (2x) (Tli RNaseH Plus), ROX plus, 0.4 uL
of (10 uM) each primer, and 7.2 pL of ddH,O. Thermal
cycling was performed under the following conditions: 95°C
for 30 s, 40 cycles at 95°C for 5 s, and 55°C for 20 s. Each
reaction was performed in triplicate, in which the average
threshold cycle was calculated to estimate the relative gene
expression levels using the 27" method [69]. The data
were expressed as the mean + SD, and all primer informa-
tion is listed in Table 4.
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