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Abstract

drought stress tolerance in tomato.

Background: The SR/CAMTA proteins represent a small family of transcription activators that play important roles
in plant responses to biotic and abiotic stresses. Seven SISR/CAMTA genes were identified in tomato as tomato
counterparts of SR/CAMTA; however, the involvement of SISRs/CAMTAs in biotic and abiotic stress responses is not
clear. In this study, we performed functional analysis of the SISR/CAMTA family for their possible functions in defense
response against pathogens and tolerance to drought stress.

Results: Expression of SISRs was induced with distinct patterns by Botrytis cinerea and Pseudomonas syringae pv.
tomato (Pst) DC3000. Virus-induced gene silencing (VIGS)-based knockdown of either SISRT or SISR3L in tomato
resulted in enhanced resistance to B. cinerea and Pst DC3000 and led to constitutive accumulation of H,0,, elevated
expression of defense genes, marker genes for pathogen-associated molecular pattern-triggered immunity, and
regulatory genes involved in the salicylic acid- and ethylene-mediated signaling pathways. Furthermore, the expression
of SISRTL and SISR2L in detached leaves and whole plants was significantly induced by drought stress. Silencing of
SISRIL led to decreased drought stress tolerance, accelerated water loss in leaves, reduced root biomass and attenuated
expression of drought stress responsive genes in tomato. The SISRT and SISR3L proteins were localized in the nucleus
of plant cells when transiently expressed in Nicotiana benthamiana and had transcriptional activation activity in yeast.

Conclusions: VIGS-based functional analyses demonstrate that both SISR1 and SISR3L in the tomato SISR/CAMTA family
are negative regulators of defense response against B. cinerea and Pst DC3000 while SISR1L is a positive regulator of
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Background

Plants are vulnerable to various biotic and abiotic stresses
but have evolved to equip with sophisticated signaling net-
works to precisely regulate defense response to unfavorable
stresses. Upon perception of environmental stress, a set of
early signaling events including changes in the cytosolic
free calcium (Ca®*) concentration signatures (ie. oscilla-
tions varying in cellular location, amplitude, duration or
frequency) is often activated and integrated into different
signaling pathways, which ultimately initiate transcriptional
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reprogramming leading to expression of a large set of
stress-responsive genes [1-3]. Extensive biochemical
and genetic studies have demonstrated that cellular Ca>*
as a universal second messenger plays critical roles in
regulating defense responses to diverse biotic and abiotic
stresses [4-7].

Cellular Ca®* changes can be sensed and interpreted by
calcium-binding proteins (CaBPs) including calmodulin
(CaM), calcineurin B-like proteins and calcium-dependent
protein kinases [8-10]. These CaBPs regulate cellular
responses through two distinct pathways upon sensing
different biotic and abiotic signals [8-10]. Firstly, CaBPs
trigger rapid responses by direct binding to cytosolic
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target proteins and modulating their activity. Alternatively,
CaBPs modulate indirect and relatively slow cellular re-
sponses by interacting with transcription factors to regu-
late gene expression. Recently, a class of CaM-binding
transcription factors (CAMTA for CaM-binding transcrip-
tion activator) has been identified in plants [11-14]. The
CAMTA proteins, also called signal-responsive (SR) pro-
teins, are present in all plant and animal species examined
to date and are highly conserved in their protein struc-
tures. Typically, the SRICAMTA proteins contain a CG-1
DNA-binding domain (binding to specific cis-elements in
promoter regions of the target genes) at the N-terminus, a
TIG domain (an immunoglobulin-like fold involved in
nonspecific DNA binding), three ankyrin repeats (impli-
cated in protein-protein interaction) and five putative
CaM-binding motifs called as IQ motif [11-13]. Biochem-
ical studies with the Arabidopsis AtSR1 and rice OsCBT
proteins have identified the primary target of DNA cis-
element for SR/ICAMTA proteins as CGCG and CGTG
motifs in promoter regions of the target genes [12,14].

The SR/ICAMTA proteins represent a small family of
transcription activators in plants. For instance, six genes
encoding for SR/CAMTA proteins were identified in
Arabidopsis [11]. The SR/ICAMTA genes were shown to
be responsive to multiple abiotic and biotic stresses
including cold, wounding, drought and pathogen attack, as
well as to stress-related hormones like ethylene, auxin, me-
thyl jasmonate (MeJA) and salicylic acid (SA) [11,12,15-18].
Recent genetic studies with loss-of-function and gain-of-
function mutants have shown that members of the SR/
CAMTA family play important roles in plant response to
abiotic and biotic stresses. The Arabidopsis AtSR1 knock-
out mutant showed enhanced disease resistance against
multiple pathogens with different infection styles includ-
ing Pseudomonas syringae pv. tomato (Pst), Botrytis
cinerea and Golovinomyces cichoracearum [19-21] but de-
creased resistance against insect herbivores [22,23]. By
contrast, overexpression of AtSRI conferred an increased
susceptibility to Pst DC3000, B. cinerea and G. cichora-
cearum [21,24]. Similarly, the rice oscbt mutant exhibited
significant resistance to blast fungal pathogen Magna-
porthe grisea and leaf blight bacterial pathogen Xanthomo-
nas oryzae pv. oryzae [17]. On the other hand, it was
recently shown that the Arabidopsis AtSR1 and AtSR2
also play important roles in regulating tolerance to low
temperature [25,26] and drought stress [27]. The function
of SR/ICAMTA proteins in plant biotic and abiotic stress
response is achieved mainly through regulating expression
of genes whose promoter regions contain the CGCG
boxes [20,21,25,27].

Seven SISRs/CAMTAs (hereafter referred to as SISRs
for convenience) genes were identified in tomato and were
shown to be developmentally regulated during fruit devel-
opment and ripening and induced by ethylene [28,29].
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Further detailed analysis revealed that the SISR genes
showed differential expression patterns in tomato fruit
in response to low temperature, mechanical injury, infec-
tion of the necrotrophic fungal pathogen B. cinerea, and
treatments with the signaling molecules SA and MeJA
[30]. However, direct genetic evidence supporting the
involvement of the tomato SISRs in biotic and abiotic
stress responses is still lacking. In the present study, we in-
vestigated the possible functions of SISRs in disease resist-
ance and drought stress tolerance using virus-induced
gene silencing (VIGS) approach. Our VIGS-based func-
tional analyses demonstrate that both SISR1 and SISR3L
are negative regulators of defense response against B.
cinerea and Pst DC3000 while SISR1L is a positive regula-
tor of drought stress response.

Results

Expression patterns of SISRs in response to pathogen
infection

To explore the possible functions of SISRs in defense re-
sponse against pathogen infection, we analyzed the ex-
pression patterns of SISR genes in tomato plants after
infection with different pathogens, B. cinerea, a necro-
trophic fungal pathogen causing grey mold disease, and
Pst DC3000, a (hemi) biotrophic bacterial pathogen caus-
ing bacterial leaf spot disease. In analysis of expression
patterns of SISRs in response to infection of B. cinerea, leaf
samples collected from the whole plant inoculation assays
were used and the expression pattern of SILapA, a defense
gene regulated by the JA/ET-mediated signaling pathway
[31], was monitored to confirm the efficiency of the inocu-
lation procedure. As shown in Figure 1, the expression
level of SlLapA in B. cinerea-inoculated plants increased
significantly, leading to 50 folds of increase at 24 hr post
inoculation (hpi) and >300 folds of increase at 48 hpi rela-
tive to those in the mock-inoculated plants, suggesting
that our inoculation assays were appropriate for further
analysis of the expression patterns of SISRs in response to
B. cinerea. Data from repeated qRT-PCR analyses revealed
that the expression of almost all SISRs was induced by
infection of B. cinerea and the induced expression of
SISRs was evident after 24 hpi and showed distinct pat-
terns (Figure 1). The expression levels of SISRI, SISRIL,
SISR2L and SISR3L were induced significantly by B.
cinerea, leading to increases of 8, 8, 3 and 15 folds at 24
hpi and of 8, 20, 7 and 90 folds at 48 hpi, respectively, over
those in the mock-inoculated plants (Figure 1). The ex-
pression level of SISR4 in the B. cinerea-inoculated plants
showed 3-fold increase at 12 hpi, peaked with 7-fold
of increase at 24 hpi and then declined to the level in
the mock-inoculated plants (Figure 1). By contrast, the
expression levels of SISR2 and SISR3 in the B. cinerea-in-
oculated plants exhibited slight increases with less than 2
folds as compared with those in the mock-inoculated
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Figure 1 Expression of SISRs in response to infection by B. cinerea. Four-week-old plants were inoculated by foliar spraying with spore
suspension (2 x 10° spores/ml) of B. cinerea (filled bars) or with same volume of buffer as a mock inoculation control (open bars). Leaf
samples were collected at indicated time points after inoculation for analysis of SISR expression by gRT-PCR using gene-specific primers.
Relative expression levels were calculated after normalization with actin transcript values. Data presented are the means + SD from three independent
experiments and different letters above the columns indicate significant differences at p < 0.05 level between the pathogen-inoculated
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plants (Figure 1). These results indicate that the expres-
sion of SISRs could be induced with distinct patterns by
B. cinerea and that the expression of most SISR genes ex-
cept for SISR2 and SISR3 was highly responsive to infec-
tion of B. cinerea.

We next analyzed the expression patterns of SISRs in re-
sponse to a virulent strain of Pst DC3000. In these experi-
ments, the expression pattern of SIPR-P2, a defense gene
regulated by the SA-mediated signaling pathway [31], was
examined to confirm the efficiency of the inoculation pro-
cedure. As shown in Figure 2, the expression level of
SIPR-P2 in the Pst DC3000-inoculated plants increased at
6 hpi and showed 50 and >300 folds of increase at 12 and
24 hpi, over those in the mock-inoculated plants, confirm-
ing that the effectiveness of the inoculation procedure was
satisfied for further analysis of the expression patterns
of SISRs in response to Pst DC3000. The expression

levels of SISRIL, SISR2, SISR2L and SISR3 in the Pst
DC3000-inoculated plants were similar to those in the
mock-inoculated plants, indicating that their expression
was not responsive to infection of Pst DC3000 (Figure 2).
However, the expression levels of SISRI and SISR3L were
significantly induced by Pst DC3000 (Figure 2). A 3-fold
increase of the expression of SISRI in the Pst DC3000-
inoculated plants was observed at 24 hpi but no sig-
nificant increase in the expression level of SISRI in the Pst
DC3000-inoculated plants was observed within the first
12 hpi, as compared with those in the mock-inoculated
plants (Figure 2). The expression level of SISR3L in the Pst
DC3000-inoculated plants exhibited 2-fold and 4-fold in-
creases at 12 hpi and 24 hpi, respectively, relative to those
in the mock-inoculated plants (Figure 2). Interestingly, the
expression of SISR4 in the Pst DC3000-inoculated plants
was suppressed by Pst DC3000 during the first 12 hpi and
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Figure 2 Expression of SISRs in response to infection by P. syringae pv. tomato DC3000. Four-week-old plants were inoculated by vacuum
infiltration with P. syringae pv. tomato DC3000 (ODgy = 0.0002) (filled black bars) or with 10 mM MgCl, solution as a mock inoculation control (open bars).
Leaf samples were collected at indicated time points after inoculation for analysis of SISR expression by qRT-PCR using gene-specific primers. Relative
expression folds were calculated after normalization with actin transcript values. Data presented are the means + SD from three independent experiments

and different letters above the columns indicate significant differences at p < 0.05 level the pathogen-inoculated and mock-inoculated plants.

this suppression of SISR4 expression was very quick as the
expression level of SISR4 in the Pst DC3000-inoculated
plants decreased by approximately 4 folds relative to that
in the mock-inoculated plants (Figure 2). The expression
level of SISR4 in the Pst DC3000-inoculated plants re-
stored to the level in the mock-inoculated plants (Figure 2).
These results indicate that the expression of SISRs could
be induced with distinct patterns by Pst DC3000 and that
the expression of SISRI and SISR3L was induced but the
expression of SISR4 was suppressed by Psz DC3000.

Silencing of SISR7 and SISR3L conferred an increased
resistance to B. cinerea and Pst DC3000

To explore the possible functions of SISRs in plant
defense response, we used the TRV-based VIGS system

[32] to knockdown the expression levels of SISR genes in
tomato plants and compared the phenotypes and sever-
ity of diseases caused by B. cinerea and Pst DC3000, re-
spectively. In our VIGS study, we chose sequences that
encode for the highly diverged regions in the SISR proteins
to avoid interference with expression of other non-target
SISR genes when one target SISR gene was attempted to
be silenced (Additional file 1). Silencing efficiency and spe-
cificity were assessed by qRT-PCR analyzing the transcript
abundance of the target SISR gene in the silenced and
non-silenced pTRV2-GUS-infiltrated control plants. As
shown in Figure 3, the transcript levels of each SISR gene
in the corresponding silenced plants were significantly
reduced, leading to the silencing efficiency of 70-75%
in standard VIGS experiments, as compared with those
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Figure 3 Silencing efficiency and specificity for target genes in silenced plants. Two-week-old tomato seedlings were infiltrated with
agrobacteria carrying pTRV2-SISRs or pTRV2-GUS constructs and leaf samples were collected from pTRV2-SISRs- and pTRV2-GUS-infitlrated
plants at 4 weeks after agroinfiltration. Expression levels of each SISR genes in targeted and nontargeted SISR genes-silenced and non-silenced
plants were analyzed by gRT-PCR and data obtained were normalized with actin transcript values. Data presented are the means + SD from three
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in the pTRV2-GUS-infiltrated plants. By contrast, the
transcript levels of each SISR gene in those plants that
were silenced for one of the other six SISR genes were
comparable to the level in the pTRV2-GUS-infiltrated
control plants (Figure 3), indicating that silencing only oc-
curred for the targeted gene but not for the other non-
targeted SISR genes. Thus, the silencing efficiency and
specificity under our experiment conditions were satisfied
for further study and all the subsequent experiments were
performed only on those pTRV2-SISR-infiltrated plants
with high levels of silencing efficiency (>70%).

We first examined the possible roles of SISRs in resist-
ance against B. cinerea by challenging the pTRV2-SISRs-

infiltrated plants with spore suspension of B. cinerea and
comparing the disease severity and in planta fungal growth
with those in pTRV-GUS-infiltrated non-silenced plants.
In our detached leaf assays, B. cinerea-caused lesions on
detached leaves from the pTRV2-SISR1L-, pTRV2-SISR2-,
pTRV2-SISR2L-, pTRV2-SISR3- and pTRV2-SISR4-infiltrated
plants were similar to the lesions on the detached leaves
from pTRV2-GUS-infilrtratd plants (Figure 4A and B),
suggesting that SISRIL, SISR2, SISR2L, SISR3 and SISR4
may not be involved in disease resistance against B. cinerea.
However, B. cinerea-caused lesions on detached leaves
from the pTRV2-SISR1- and pTRV2-SISR3L-infiltrated
plans developed slowly and were still separated, as
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Figure 4 Silencing of either SISRT or SISR3L resulted in enhanced disease resistance to B. cinerea. Two-week-old tomato seedlings were
infiltrated with agrobacteria carrying pTRV2-SISRs or pTRV2-GUS constructs and leaves were detached from pTRV2-GUS- or pTRV2-SISR-infiltrated
plants at 3 weeks after VIGS infiltration. Inoculation with B. cinerea was done by dropping 5 ul of spore suspension (1 x 10° spores/ml). (A) Disease
symptom on detached leaves at 3 days after inoculation. (B) Lesion size in leaves of the pTRV2-GUS- or pTRV2-SISR-infiltrated plants at 4 days after
inoculation. At least 10 leaves from ten individual plants were used for each experiment. (C) Growth of B. cinerea in inoculated plants from whole
plant inoculation experiments. Fungal growth in planta was assumed at 3 and 4 days after inoculation by gRT-PCR analyzing the transcript level
of B. cinerea BcActinA gene using SIActin gene as an internal control. Relative fungal growth was shown as folds of transcript levels of BcActin
compared to SlActin. Data presented are the means +SD from three independent experiments and different letters above the columns

compared with the large merged lesions on leaves from
the pTRV2-GUS-infiltrated plants, at 4 days after in-
oculation (dpi) (Figure 4A). At 4 dpi, the lesion sizes on de-
tached leaves from the pTRV2-SISR1- and pTRV2-
SISR3L-infiltrated plants were significantly reduced,
leading to a reduction of approximately 35%, as

compared with that of the pTRV2-GUS-infiltrated
plants (Figure 4B). We further analyzed and com-
pared the in planta fungal growth in the pTRV2-
SISR1-, pTRV2-SISR3L- and pTRV2-GUS-infiltrated
plants after inoculation by foliar spraying with spore
suspension of B. cinerea in whole plant inoculation
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experiments. qRT-PCR analysis of the transcript levels
of the B. cinerea actin gene BcActin, which was used
as an indicative of the rate of fungal growth in planta,
showed that the fungal growth in the pTRV2-SISR1- and
pTRV2-SISR3L-infilrated plants were significantly sup-
pressed, resulting in reductions of 35-51% at 3 and 4 dpi,
as compared with those in the pTRV2-GUS-infiltrated
plants (Figure 4C). These results indicate that the SISRI-
and SISR3L-silenced plants were more resistant to B.
cinerea infection than the pTRV2-GUS-infiltrated plants.
Taken together, these data demonstrate that silencing of
SISR1 or SISR3L resulted in increased resistance against B.
cinerea and thus both SISR1 and SISR3L may act as nega-
tive regulators of disease resistance against B. cinerea.

We next explored whether SISRs have functions in re-
sistance against Pst DC3000. Disease phenotypes and
bacterial growth in planta were compared between the
pTRV2-SISRs- and pTRV2-GUS-infiltrated plants after
inoculation with a virulent strain of Pst DC3000. At 4
dpi, the pTRV2-GUS-infiltrated plants showed typical
bacterial speck disease symptoms, including necrotic le-
sions surrounded by chlorosis (Figure 5A). The disease
severity and bacterial growth in planta in inoculated
pTRV2-SISR1L-, pTRV2-SISR2-, pTRV2-SISR2L-, pTRV2-
SISR3- and pTRV2-SISR4-infiltrated plants were
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comparable to those in the pTRV2-GUS-inflitrated
plants (Figure 5A and B), suggesting that SISRIL, SISR2,
SISR2L, SISR3 and SISR4 are not involved in disease re-
sistance to Pst DC3000. By contrast, the pTRV2-SISR1-
and pTRV2-SISR3L-infiltrated plants showed very weak
visible symptoms of disease caused by Pst DC3000, as
compared with that in the pTRV2-GUS-infiltrated plants
(Figure 5A). This reduced disease symptoms on leaves of
the pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants
were coincided with relatively low levels of bacterial
growth in planta after inoculation with Pst DC3000. At 4
dpi, the bacterial populations in leaves of the pTRV2-
SISR1- and pTRV2-SISR3L-infiltrated plants were 2.8 x
10° and 2.2 x 10° CFU/cm?, leading to a reduction of 10-
fold, as compared to that in leaves of the pTRV-GUS-
infiltrated plants (2.5 x 10° CFU/cm?) (Figure 5B). These
results demonstrate that silencing of either SISRI or
SISR3L led to increased resistance against Pst DC3000 and
thus both of SISR1 and SISR3L are also negative regulators
of disease resistance to Pst DC3000.

Silencing of SISRT and SISR3L resulted in constitutive
defense response

The Arabidopsis srl mutant plants were previously
found to display chlorosis and constitutive expression of
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Figure 5 Silencing of either SISRT or SISR3L led to enhanced resistance to P. syringae pv. tomato DC3000. Two-week-old tomato seedlings
were infiltrated with agrobacteria carrying pTRV2-SISRs or pTRV2-GUS constructs and the pTRV2-GUS- and pTRV2-SISRs-infiltrated plants were
inoculated by vacuum infiltration with infiltration with P. syringae pv. tomato DC3000 (ODggo = 0.0002) at 3 weeks after VIGS infiltration.
(A) Representative symptom of disease caused by P. syringae pv. tomato DC3000 at 4 days after inoculation. (B) Bacterial growth in inoculated
leaves of pTRV2-GUS- and pTRV2-SISRs-infiltrated plants. Leaf samples were collected at 0 and 4 days after inoculation and bacterial growth was
measured. Data presented are the means +SD from three independent experiments and different letters above the columns indicate significant
differences at p < 0.05 level.
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defense genes under lower temperature, indicating that
loss of SR1 function in Arabidopsis led to constitutive
defense response [20]. To examine whether silencing of
SISRI or SISR3L could also confer constitutive defense
responses, we analyzed and compared the accumulation
of H,O, and expression of genes involved in different
signaling pathways and defense response between the
pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants and
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the pTRV2-GUS-infiltrated plants. Results from 3,3-di-
aminobenzidine (DAB) staining of in situ H,O, accumu-
lation showed that significant brown precipitates,
representing the accumulation of H,O,, were easily and
clearly observed in leaves of the pTRV2-SISR1- and pTRV2-
SISR3L-infiltrated plants without infection of pathogen, while
no significant brown precipitate was seen in leaves of the
pTRV2-GUS-infiltrated plants (Figure 6A). These results
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agrobacteria carrying pTRV2-SISR1, pTRV2-SISR3L or pTRV2-GUS constructs and leaf samples were collected at 2 weeks after VIGS infiltration for
detection of H,0, accumulation and analysis of expression of signaling- and defense-related genes. (A) Accumulation of H,O, in leaves of the
pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants. (B) Expression of defense-related genes and ROS production-related genes in the
pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants. (C) Expression of genes involved in different defense signaling pathways in the pTRV2-SISR1- and
pTRV2-SISR3L-infiltrated plants. Data presented are the means+SD from three independent experiments and different letters above the
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indicate that silencing of either SISR1 or SISR3L resulted in
constitutive accumulation of H,O, in tomato plants. To ex-
plore the possible mechanism for the constitutive accumu-
lation of HyO, in the SISRI- and SISR3L-silencedd plants,
we analyzed and compared the expression of genes encod-
ing for NADPH oxidases, which are plasma membrane-
localized ROS generating enzymes [33], and for catalases
(CAT), superoxide dismutases (SOD) and ascorbate
peroxidases (APX), which are involved in scavenging of
ROS, in the pTRV2-SISR1- and pTRV2-SISR3L-infiltrated
plants. As shown in Figure 6B, the expression levels of
Rbohl and Wfil, two genes for NADPH oxidases, in the
pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants were
significantly elevated, giving increases of 5~ 7-fold for
Rbohl and 4 ~ 5-fold for Wfil, as compared with those in
the pTRV2-GUS-infiltrated plants. Similarly, the expres-
sion levels of CAT and APX in the pTRV2-SISR1- and
pTRV2-SISR3L-infiltrated plants were also increased as
compared with those in the pTRV2-GUS-infiltrated plants
(Figure 6B). By contrast, no significant difference was ob-
served in the expression level of SOD between the
pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants and
the pTRV2-GUS-infiltrated plants (Figure 6B). These re-
sults indicate that the constitutive accumulation of H,O,
in the SISRI- and SISR3L-silenced plants might be attrib-
uted to the increased ROS generating ability resulted from
the high level of expression of the NADPH oxidases.

We next examined whether silencing of SISRI or SISR3L
led to constitutive expression of defense genes. The expres-
sion levels of five representative defense genes that are reg-
ulated through different defense signaling pathways and
three marker genes for pathogen-associated molecular
patterns-triggered immunity (PTI) were analyzed and com-
pared between the pTRV2-SISR1- and pTRV2-SISR3L-
infiltrated plants and the pTRV2-GUS-infiltrated plants. As
shown in Figure 6B, the expression levels of PRIa, PR1b
and PR-P2, which are thought to be regulated by the SA-
mediated signaling pathway [31], and of PIN2 and LapA,
which are considered to be regulated by the JA/ET signaling
pathway [31], were increased significantly in the pTRV2-
SISR1- and pTRV2-SISR3L-infiltrated plants, leading to 8
~ 25 folds of increases for the PR1a, PR1b and PR-P2 genes
and 1 ~ 11 folds of increases for the PIN2 and LapA genes,
as compared with those in the pTRV2-GUS-infiltrated
plants. Similarly, the expression levels of Pti5, Lrr22 and
WRKY28, three PTI marker genes in tomato [34,35], in the
pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants were
significantly higher than those in the pTRV2-GUS-infiltrated
plants, resulting in increases of 0.5~3.0 folds in the
expression levels (Figure 6C). These data demonstrate that
silencing of either SISRI or SISR3L activates constitu-
tively the expression of the defense and PTI genes, lead-
ing to constitutive defense response in the SISRI- and
SISR3L-silenced plants.
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To determine whether silencing of SISRI and SISR3L ac-
tivates defense signaling pathways, we further analyzed
and compared the expression levels of the key genes en-
coding important components involved in the SA- and
JA/ET-mediated signaling pathways between the pTRV2-
SISR1- and pTRV2-SISR3L-infiltrated plants and the
pTRV2-GUS-infiltrated plants. The expression levels of
NPRI, EDSI and TGA1I, known to be critical components
in the SA-mediated signaling pathway [36], in the pTRV2-
SISR1- and pTRV2-SISR3L-infiltrated plants were signifi-
cantly increased, especially for the expression levels of the
EDSI and TGAI genes, showing 1-fold increase relative to
those in the pTRV2-GUS-infiltrated plants (Figure 6C).
Similarly, the expression levels of ETR4 and ERFI, known
to be associated with ET signaling pathway [37,38], in
the pTRV2-SISR1- and pTRV2-SISR3L-infiltrated plants
showed 1~ 2-fold increase over those in the pTRV2-
GUS-infiltrated plants (Figure 6C). By contrast, the ex-
pression level of JAZ1, known to be associated with JA
signaling pathway [39], in the pTRV2-SISR1- and pTRV-
SISR3L-infiltrated plants was reduced as compared with
those in the pTRV2-GUS-infiltrated plants (Figure 6C).
These results suggest that silencing of either SISRI or
SISR3L can activate both the SA- and ET-mediated signal-
ing pathways but suppress the JA-mediated signaling
pathway in the SISRI- and SISR3L-silenced plants.

Expression patterns of SISRs in response to drought stress
and ABA

To explore the possible involvement of SISRs in drought
stress response, we first examined whether the expression
of SISRs could be induced by drought stress and abscisci
acid (ABA) treatment. Two different methods, the de-
tached leaf and the whole plant assays, were adapted to
analyze the expression of SISRs in response to drought
stress. In these experiments, a previously reported drought
stress-responsive gene, SGN-213276 [40], was included to
confirm the efficiency of the drought stress treatment.
The expression level of SGN-213276 was markedly in-
creased after drought stress treatment, leading to increases
of >100-fold at 5 hr after treatment in the detached leaf
assays (Figure 7A) and at 7 days after treatment in the
whole plant assays (Figure 7D), indicating that the experi-
ments for drought stress assays were satisfied for further
analyzing the expression of the SISR genes. In the de-
tached leaf assays, as compared with the expression levels
of the corresponding genes in the water-saturated de-
tached leaves, no significant change in the expression
levels of SISR1, SISR2, SISR3 and SISR4 was observed over
a period of 5 hr after detachment (Figure 7A), whereas a
maximal increase of 4 ~ 8-fold in the expression levels of
SISR2L and SISR3L was observed during 3-5 hr after
treatment (Figure 7A). By contrast, the expression kinetic
of SISRIL under drought stress condition was similar to
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Figure 7 Expression patterns of SISRs in response to drought stress and ABA treatment and phenotypes of the SISRs-silenced plants
under drought condition. (A) Expression of S/SRs in detached leaves under drought stress. Fully expanded leaves were detached from
four-week-old plants and subjected to drought stress treatment by placing on lab blench or water-saturated filter papers in Petri dishes
as a control and samples were collected at different time points as indicated. (B) Expression of SISRs in detached leaves after ABA treatment.
Four-week-old plants were treated by foliar spraying with ABA solution (100 uM) or water as control and leaf samples were collected at different time
points as indicated. Relative expression levels of the SISR genes in the treated plants were shown as folds of the expression levels in the control plants
after normalization with actin transcript values. (C) and (D) Expression of SISRs in leaves of plants under drought stress. Four-week-old plants were
treated for drought stress by stopping watering for a period or watered normally as controls and leaf samples were collected at 7 days after
treatment when wilting symptom appeared (C). Total RNA was extracted and used for gqRT-PCR analysis of expression of S/SRs (D). Relative
expression levels of the SISR genes in the treated and control plants were shown as folds of the actin transcript values. (E) Phenotypes
of the SISRs-silenced plants under drought condition. Two-week-old seedlings were infiltrated with agrobacteria carrying pTRV2-SISRs or
pTRV2-GUS constructs and 3 weeks later the pTRV2-GUS- and pTRV2-SISRs-infiltrated plants were subjected to drought stress by stopping
watering for 10 days. Data presented in (A), (B) and (D) are the means+SD from three independent experiments and different letters
above the columns in (D) indicate significant difference at p <0.05 level.

that of the SGN-213276 gene (Figure 7A). The expression
level of SISRIL in the drought stress treated leaves started
to increase at 2 hr after detachment and exhibited ap-
proximately an increase of 50 ~ 90 folds as compared with
that in the water-saturated leaves (Figure 7A). In the
whole plant assays, the drought stressed plants exhibited
clear wilting symptom at 7 days after withholding water
whereas the normally watered plants did not show any
wilting symptom (Figure 7C). qRT-PCR analyses revealed

that the expression of SISRs except SISR4 was induced by
drought stress. The expression levels of SISRI, SISR2,
SISR3 and SISR3L in the drought stressed plants showed a
slight increase, leading to an increase of approximately 1
fold or less over those in the normally watered plants
(Figure 7D). However, the expression levels of SISRIL and
SISR2L in the drought stressed plants increased significantly
as compared with those in the normally watered plants,
resulting in increases of 20 folds and 7 folds, respectively
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(Figure 7D). Taken together, these results suggest that some
SISRs especially SISRIL are responsive to drought stress.
We also analyzed whether the expression of SISRs could
be induced by exogenous application of ABA, a well-
known hormone involved in drought stress response [41].
In these experiments, the expression level of the drought
stress-responsive gene SGN-213276 in the ABA-treated
plants was markedly increased, leading to increases of 5 ~
34-fold over those in the control plants (Figure 7B); how-
ever, the expression levels of SISRs in the ABA-treated
plants showed changes with less 2 folds as compared
with those in the control plants (Figure 7B), indicating
that exogenous ABA did not affect the expression of
SISRs.
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Silencing of SISRTL reduced drought tolerance in tomato

VIGS assays were performed to explore the involvement
of individual SISRs in drought stress response. For this
purpose, we stopped watering for 7-10 days to compare
the phenotype between the pTRV2-SISRs- and pTRV2-
GUS-inflitrated plants. In repeated experiments, silen-
cing of SISR1, SISR2, SISR2L, SISR3, SISR3L or SISR4 did
not affect drought stress response over an experimental
period of 10 days (Figure 7E), indicating that these SISR
genes may not be involved in drought stress response.
However, the pTRV-SISR1L-infiltrated plants showed sig-
nificant wilting symptom at 7 days after drought stress
treatment as compared with that of the pTRV2-GUS-
infiltrated plants (Figure 7E), implying a role for SISRIL in
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Figure 8 Silencing of SISR1L led to reduced drought stress tolerance. Two-week-old tomato seedlings were infiltrated with agrobacteria
carrying pTRV2-SISR1L or pTRV2-GUS constructs and 3 weeks later the pTRV2-GUS- and pTRV2-SISR1L-infiltrated plants were subjected to drought
stress by stopping watering. (A) Phenotype of the pTRV2-GUS- and pTRV2-SISR1L-infiltrated plants before and after treatment of drought stress.
(B) Rates of water loss in detached leaves of the pTRV2-GUS- and pTRV2-SISR1L-infiltrated plants. (C) Root system of the pTRV2-GUS- and
pTRV2-SISR1L-infiltrated plants. The intact root systems are shown from one representative pTRV2-GUS- or pTRV2-SISR1L-infiltrated plant.
(D) Dry weights of roots from the pTRV2-GUS- and pTRV2-SISR1L-infiltrated plants. (E) Expression of some drought-responsive genes in
the pTRV2-GUS- and pTRV2-SISR1L-infiltrated plants before and after treatment of drought stress. Data presented in (B), (C) and (E) are the means
+ SD from three independent experiments and different letters above the columns indicate significant differences at p < 0.05 level.
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drought stress tolerance. The pTRV2-SISR1L-infiltrated
plants grew well as the pTRV2-GUS-infiltrated plants
before withholding water, but they were easier to ap-
pear wilting symptom after stopping watering and
their leaves became curly and the plants wilted at 7
days after withholding water (Figure 8A). This result
indicates that silencing of SISRIL attenuated the
drought stress tolerance in tomato. To explore the
possible mechanism for the reduced drought stress tol-
erance in the SISRIL-silenced plants, we first analyzed
and compared the physiological and morphological
changes between the pTRV2-SISR1L- and pTRV2-
GUS-infiltrated plants before and after drought stress
treatment. The rate of water loss in leaves from the
pTRV2-SISR1L-infiltrated plants was higher than those
in leaves from the pTRV2-GUS-infiltrated plants dur-
ing the first 3 hr after detachment (Figure 8B), indi-
cating that silencing of SISRIL accelerated water loss
in leaves. The pTRV2-SISR1L-infiltrated plants had
smaller root system as compared to the pTRV2-
GUS-infiltrated plants (Figure 8C). Similarly, dry
weights of the roots from the pTRV2-SISRIL-
infiltrated plants were significantly lower than that
of the roots from the pTRV2-GUS-infiltrated plants,
resulting in a reduction of approximately 40%
(Figure 8D). Furthermore, we also analyzed and com-
pared the expression of some previously reported
drought stress-responsive genes SIAREBI [42], SIAREB2
[42], SIDREB [43], SISpUSP [44], SIGRX1 [45], SGN-
213276 [40] and SGN-214777 [40] in the pTRV2-
SISR1L- and pTRV2-GUS-infiltrated plants before and
after drought stress treatment. Before drought stress
treatment, the expression levels of SIAREB1, SIAREB2,
SIDREB, SISpUSP and SGN-213276 in the pTRV2-
SISR1L-infiltrated plants were comparable to those in
the pTRV2-GUS-infiltrated plants, whereas the expres-
sion levels of SIGRXI and SGN-214777 the pTRV2-
SISR1L-infiltrated plants showed a slight increase as
compared with those in the pTRV2-GUS-infiltrated plants
(Figure 8E). At 10 days after drought stress treatment, the
expression levels of SIAREBI1, SIDREB, SISpUSP, SIAREB2
and SGN-213276 in the pTRV2-GUS-infiltrated plants in-
creased significantly as compared with those in the nor-
mally watered control plants (Figure 8E). After drought
stress treatment, however, the expression levels of SIAREBI,
SIDREB, SISpUSP, SIAREB2 and SGN-213276 in the
pTRV2-SISR1L-infiltrated plants decreased markedly as
compared with those in the pTRV2-GUS-infiltrated plants
(Figure 8E). The expression level of SGN-214777 decreased
in the pTRV2-GUS-infiltrated plants as compared with that
in the normally watered plants but increased significantly
in the pTRV2-SISR1L-infiltrated plants as compared with
that in the pTRV2-GUS-infiltrated plants after drought
stress treatment (Figure 8E).
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Figure 9 Subcellular localization and transactivation activity of
SISR1 and SISR3L proteins. (A) SISR1 and SISR3L are localized in
nucleus. Agrobacteria carrying pFGC-Egfp-SISR1, pFGC-Egfp-SISR3L
or pFGC-Egfp were infiltrated into N. benthamiana leaves and the
images were taken in dark field for green fluorescence (left), in
white field for the morphology of the cell (middle), and in combination
(right), respectively. (B) SISR1 and SISR3L have transactivation
activity. Yeast cells carrying pBD-SISR1, pBD-SISR3L or pBD empty
vector (as a negative control) were streaked on SD/-Trp plates
(left) or SD/-Trp/-His plates (middle) for 3 days at 28°C. The
x-a-gal was added to the SD/-Trp/-His plates and kept at 28°C
for 6 hr (right).

SISR1 and SISR3L are localized in nucleus and have
transactivation activity

Because of the importance of SISR1 and SISR3L in defense
response against B. cinerea and Pst DC3000, we investi-
gated the biochemical characteristics of these two SISR
proteins. Firstly, we examined the subcellular localization
of SISR1 and SISR3L using a transient expression ap-
proach. We transiently expressed SISR1 and SISR3L in
leaves of 4-week-old N. benthamiana plants by infiltration
with agrobacteria carrying pFGC-Egfp-SISR1, pFGC-Egfp-
SISR3L or pFGC-Egfp constructs and GFP was observed at
2 days after agroinfiltration. As shown in Figure 9A, the
SISR1-GFP and SISR3L-GFP fusions accumulated exclu-
sively in the nucleus of N. benthamiana cells, whereas the
GEFP protein alone accumulated in both the cytoplasm and
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the nucleus, demonstrating that both SISR1 and SISR3L
proteins are localized in the nucleus of cells. Furthermore,
we also examined whether the SISR1 and SISR3L proteins
had transactivation activity using a yeast assay system. As
shown in Figure 9B, all yeast transformants grew well on
SD/-Trp medium. However, only yeast transformants con-
taining pBD-SISR1 or pBD-SISR3L were able to grow on
the SD/-Trp/-His medium and produced a blue pigment
after the addition of x-a-gal, showing a -galactosidase ac-
tivity, whereas transformants containing the pBD empty
vector did not. These results indicate that both SISR1 and
SISR3L have transactivation activity in yeasts. Taken to-
gether, our experimental data demonstrate that both SISR1
and SISR3L are nucleus-localized transcriptional activators.

Discussion

Previous studies have identified a total of seven SISRs
genes in tomato and found that expression of SISRs was
regulated in tomato fruit by developmental cues and by
biotic and abiotic environmental stress signals [29,30];
however, the biological functions of SISRs in tomato re-
sponse to biotic and abiotic stress remain unclear. In the
present study, data from our VIGS-based functional ana-
lyses demonstrate that both SISR1 and SISR3L act as
negative regulators of defense response against B.
cinerea and Pst DC3000 while SISR1L functions as a
positive regulator of drought stress tolerance in tomato.
These findings not only demonstrate that members of
the small SISR family play important roles in regulation
of defense responses to biotic and abiotic stresses but
also extend our understanding on the biological function
of SISRs in regulating stress response.

In plants, members of the SR family have been shown to
be induced by infections from different pathogens. For ex-
ample, the expression of AtSRI in Arabidopsis was in-
duced by Pst DC3000 and G. cichoracearum [21]. In this
study, we observed that the expression of SISRs could be
induced with different patterns by Pst DC3000 and B.
cinerea (Figures 1 and 2). In response to infection of
B. cinerea, all the SISRs showed upregulated expression
patterns in leaf tissues, especially for SISRI, SISRIL,
SISR3L and SISR4, whose expression levels were signifi-
cantly upregulated (Figure 1). The B. cinerea-induced ex-
pression patterns of SISRs in leaf tissues are somewhat
different from the previous observation that the expres-
sions of SISR1, SISRIL, SISR2L and SISR3 in wounded to-
mato fruit were suppressed by B. cinerea [30], probably
due to the tissue-specific expression feature of the SISRs
[29]. In contrast to the B. cinerea-induced expression pat-
terns of SISRs, expression of SISRI, SISRIL, SISR3 and
SISR3L in leaf tissues was upregulated in response to
infection of Pst DC3000 (Figure 2). The Pst DC3000-
induced expression of SISRI is similar to that of the
Arabidopsis AtSRI, closely related to SISRI [29], whose
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expression was induced by Pst DC3000 [21]. However, in-
fection of Pst DC3000 did not affect the expression of
SISR2 and SISR3 but suppressed the expression of SISR4
in leaf tissues (Figure 2), which is contrast to the observa-
tion that the expression of SISR4 in fruit tissues was in-
duced by B. cinerea [30]. Therefore, it seems reasonable
that the expression of SISRs is precisely controlled by
complex mechanisms in response to infection from differ-
ent pathogens. On the other hand, the B. cinerea- and Pst
DC3000-induced expressions of SISRs, especially for SISR1
and SISR3L, were much evident after 24 hr of inoculation
(Figures 1 and 2), which is similar to the observation that
the expression of AtSRI in Arabidopsis leaves was only
significantly induced by Pst DC3000 after 24 hr of in-
oculation [21]. It was also found that the expression of
most SISRs in tomato fruits was markedly induced by
exogenous SA and MeJA only after 8 hr of treatment
[30]. These observations suggest that most of the SISRs
should belong to late pathogen-responsive genes [30]. The
B. cinerea- and Pst DC3000-induced expression of SISRI
and SISR3L in leaves (Figures 1 and 2), along with their
SA- and MeJA-induced expression patterns in fruits [30],
suggest that SISR1 and SISR3L may play important roles
in defense response to infection of B. cinerea and Pst
DC3000.

In our VIGS-based functional analyses of SISRs in defense
response against different pathogens, we found that silen-
cing of either SISRI or SISR3L resulted in increased disease
resistance against B. cinerea and Pst DC3000, as the SISR1-
and SISR3L-silenced plants exhibited less severity of the
diseases and supported less in planta growth of the patho-
gens than the non-silenced plants (Figures 4 and 5), indi-
cating that loss-of-function of either SISRI or SISR3L
confers a broad-spectrum disease resistance against dif-
ferent pathogens with distinct infection styles. SISR1
is phylogenetically closely related to the Arabidopsis
AtSR1 [29], whose loss-of-function mutant plants showed
increased disease resistance against three different patho-
gens including Pst DC3000, B. cinerea and G. cichora-
cearum [19-21] and gain-of-function mutant plants
exhibited compromised systemic acquired resistance and
basal immunity [21,24]. Similar results were also observed
in the mutant plants of the OsCBT gene, a rice SR family
member closely related to AtSRI and SISRI, which exhib-
ited significant enhanced resistance to blast fungal patho-
gen M. grisea and leaf blight bacterial pathogen X. oryzae
pv. oryzae [17]. Thus, it is likely that loss-of-function
of some of the SR family members can confer broad-
spectrum disease resistance in plants. This may have exten-
sive significance that members of the SR family can be used
for generating transgenic varieties with broad-spectrum
resistance in economically important crops through RNA
interference-mediated suppression of expression of target
SR genes. Notably, in addition to SR1, the function of
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other SR family members in disease resistance has not
been elucidated so far. In this study, we demonstrated that
SISR3L, like SISR1 in tomato (Figures 4 and 5) and AtSR1
in Arabidopsis [19-21], acts as a negative regulator of dis-
ease resistance against different pathogens in tomato. This
finding characterized one member with important func-
tion in disease resistance from the relatively small SR
family. It will be interesting to examine whether the
Arabidopsis homologs of SISR3L, AtSR3 and AtSR6 [29],
play roles in regulating disease resistance. Although ex-
pression of SISRIL, SISR2, SISR2L and SISR3 was induced
by B. cinerea and/or Pst DC3000 (Figures 1 and 2), silen-
cing of each of these SISR genes had no effect on disease
resistance against these two pathogens (Figures 4 and 5).
The expression of SISR4 was induced by B. cinerea but
suppressed by Pst DC3000 (Figures 1 and 2); however, si-
lencing of SISR4 did not lead to any alteration in disease
resistance to B. cinerea and Pst DC3000 (Figures 4 and 5).
These results indicate that the SISR genes are highly re-
sponsive to pathogen infection but the responsiveness of
these SISR genes may be a side effect caused by pathogen
infection but not a true reflection for their function in dis-
ease resistance.

The observed increased disease resistance against B.
cinerea and Pst DC3000 in the SISRI- and SISR3L-silenced
plants may be attributed to an improved basic immunity
resulted from loss-of-function of SISRI and SISR3L. This
hypothesis is supported by several lines of evidence ob-
tained from some biochemical and molecular analyses
toward the SISRI- and SISR3L-silenced plants under
pathogen-free conditions. Firstly, the SISR1- and SISR3L-
silenced plants constitutively accumulated high level
of H,O, in leaves, as revealed by in situ DAB staining
(Figure 6A). Similar phenomenon was also observed in the
Arabidopsis srl mutant plants that accumulated high level
of HyO, in leaves without pathogen infection [19,20]. It was
previously found that suppression of SIWfil expression
resulted in significant decrease of H,O, accumulation
in antisense tomato plants [46]. The expression of SIWfil
and SIRboh1, encoding plasma membrane-localized NADPH
oxidases that are involved in generating ROS [33], was sig-
nificantly upregulated in the SISRI- and SISR3L-silenced
plants (Figure 6B), indicating an accelerated generation of
ROS in these plants. By contrast, the ROS scavenging cap-
acity in the SISRI- and SISR3L-silenced plants might not
be affected significantly as the expression of the SOD gene
was not changed (Figure 6B). The upregulated expression
of the CAT and APX genes in the SISRI- and SISR3L-
silenced plants might be a response to the high level of
H,0O, accumulated in these plants as H,O, was found to
be capable of mediating the expression of CAT genes
under stress conditions [47,48]. An accelerated generation
with an unchanged scavenging capacity in the SISRI- and
SISR3L-silenced plants broke the ROS generating and
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scavenging balance and favored to accumulate high level
of H,O,, which in turn acts as signaling molecules to acti-
vate defense response against pathogens. Secondly, the
SISRI- and SISR3L-silenced plants constitutively expressed
defense genes and PTI marker genes. Similar to the obser-
vations that the Arabidopsis srl and rice oscbt mutant
plants constitutively expressed a diverse set of defense
genes [17,19,20], constitutive high levels of expression of
defense genes including SIPRIa, SIPR1b, SIPR-P2, SIPIN2
and SlLapA, which are regulated by different signal-
ing pathways, were observed in the SISRI- and SISR3L-
silenced plants (Figure 6B). In addition, the expression of
the PTI marker genes including Pti5, Lrr22 and WRKY28
[34,35] was also significantly upregulated in the SISRI-
and SISR3L-silenced plants (Figure 6C). These data
indicate that both SISR1 and SISR3L negatively regu-
late PTI response. In this regarding, silencing of either
SISRI or SISR3L would relieve their suppression on PTI
response and thus lead to increased resistance against
multiple pathogens including B. cinerea and Pst DC3000
(Figures 4 and 5). This is supported by general knowledge
that PTI but not effector-triggered immunity (ETI) plays
important roles in regulating immunity against necro-
trophic fungal pathogens like B. cinerea [49] while both
the PTI and ETI are require for immunity to biotrphic/
hemibiotrophic pathogens such as Pst DC3000 [50].
Thirdly, the SISRI- and SISR3L-silenced plants constitu-
tively activated the SA- and ET-mediated defense signaling
pathways. It was previously found that the Arabidopsis sr!
mutant plants contained high level of SA and had upregu-
lated expression of defense and signaling genes [19,20]
and that AtSR1 can bind to the CGCG box in the pro-
moters of EDSI, NDR1 and EIN3 [20,21], indicating the
involvements of AtSR1 in the SA- and ET-mediated sig-
naling pathways. Our qRT-PCR analyses of expression
of some defense signaling pathway-associated genes
also demonstrated that both SISR1 and SISR3L have
functions that negatively regulate the SA- and ET-
mediated signaling pathways in tomato, as revealed by the
upregulated expression of the SINPRI, SIEDS1, SITGAI,
SIETR4 and SIERFI genes in the SISRI- and SISR3L-si-
lenced plants (Figure 6C). This is partially supported by
the facts that the expression of SISRI and SISR3L in to-
mato fruits was induced rapidly by exogenously applied
SA and ET [29,30]. In particular, it was shown that the
Arabidopsis AtSR1 could bind to the CGCG box, a char-
acteristic cis-elements for the SR proteins [12], in the pro-
moter region of EDSI and suppressed the expression of
EDS1 [20], which is critical to biosynthesis of SA. Bioinfor-
matics analysis also identified a CGCG box within 1.3 Kb
from the starting codon in the promoter of tomato
SIEDS1 gene [30]. It is thus possible that SISR1 and per-
haps SISR3LI regulate negatively the expression of SIEDS1
through binding to the CGCG box as the expression
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level of SIEDS1 was upregulated when either SISRI or
SISR3L was silenced (Figure 6C). Furthermore, the ex-
pression of SIJAZI, known to be associated with the
JA-mediated signaling pathway [39], was downregu-
lated in the SISRI- and SISR3L-silenced plants (Figure 6C),
suggesting a negative impact of SISR1 and SISR3L on the
JA-mediated signaling pathway. This is in agreement
with the observations that the Arabidopsis AtSR1 is a
negative regulator for JA biosynthesis and herbivory
tolerance [22,23]. Another possibility that the consti-
tutively activated SA-mediated signaling pathway in
the SISRI- and SISR3L-silenced plants antagonistically
suppressed the JA-mediated signaling pathway cannot be
ruled out because the antagonistic cross-talk between
these two signaling pathways is a common phenomenon
occurred in regulating defense response against infection
by different pathogens [51]. Taken together, these data
suggest that both SISR1 and SISR3L negatively regulate
basic immunity in tomato through modulating the SA-
and ET-mediated signaling pathways.

The involvement of the SR family members in abiotic
stress was recently investigated using Arabidopsis knock-
out mutant lines [25,27]. Our VIGS-based functional
analyses discovered that silencing of SISRIL resulted in
decreased drought stress tolerance (Figures 7E and 8A).
SISRIL is phylogenetically related to the Arabidopsis
AtSR2 [29], which was shown to regulate drought stress
responses [27]. Thus, it is likely that SISR1L plays an im-
portant role in regulation of drought stress tolerance in
tomato. The expression of SISRIL was induced signifi-
cantly by drought stress in detached leaves and in whole
plants (Figure 7A and D). The decreased drought toler-
ance in the SISRIL-silenced plants might be caused by
multiple factors including morphological, physiological
and molecular changes, which are affected by loss-of-
function of SISRIL. Like the stunted primary root in the
Arabidopsis sr2 mutant plants [27], the SISRIL-silenced
plants had limited root system and biomass under nor-
mal growth condition (Figure 8C and D). Although the
exact function of SISRIL in development of the root sys-
tem in tomato needs to be further investigated, the limited
root system in the SISR1L-silenced plants may result in re-
duced capacity of water uptake. Another fact that affected
the water status in the SISRIL-silenced plants was the
accelerated rate of water loss, as revealed in the detached
leaves (Figure 8B). Furthermore, the expression of SIAREB1
[42], SIDREB [43], SISpUSP [44], SIAREB2 [42] and SGN-
213276 [40] was suppressed in the SISRIL-silenced plants
(Figure 8E), indicating that SISR1L may regulate the ex-
pression of a large set of drought stress-responsive genes.
Recent microarray-based analyses of gene expression
profiling between the Arabidopsis srl and wild type
plants revealed that hormone-mediated signaling such
as ABA-mediated signaling plays important roles in
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AtSR1-regulated abiotic stress response [18,27]. How-
ever, exogenous ABA did not induce the expression of
SISRIL in tomato (Figure 7B) and AtSR2 in Arabidopsis
[12]. Thus, it is likely that, as a transcription factor, SISR1L
acts in a yet-unknown signaling pathway, in which some
hormones such as ABA are involved, to regulate drought
stress response in tomato.

Our data presented in this study clearly demonstrate
that SISR1/SISR3L and SISR1L play important roles in bi-
otic and abiotic stress responses, respectively. However,
several questions regarding the mechanism of action of
SISR1/SISR3L and SISRI1L in biotic and abiotic stress re-
sponse need to be addressed. Further identification of
downstream target genes regulated by SISR1/SISR3L and
SISRIL will help to elucidate the molecular mechanisms
and the signaling pathways involved in the SISR1/SISR3L-
regulated defense response against pathogens and the
SISR1L-regulated drought stress response. Of particular,
the SISR3L will be a priority for further study because the
function of its orthologs in other plants such as the Arabi-
dopsis AtSR3 and AtSR6 [29] has not been defined yet.
On the other hand, biochemical studies have shown that
the Arabidopsis AtSR2/CAMTAL [11], rice OsCBT [14]
and tomato SISR1 and SISR3L (Figure 9) are functionally
transcriptional activators in yeast. However, the Arabidop-
sis AtSR1 was shown to bind to the CGCG box in the pro-
moters of the EDS1, NDRI and EIN3 genes and repress
their expression [20,21]. Thus, the biochemical mechan-
ism regarding how the SR proteins as transcriptional acti-
vators repress the expression of the target genes after
binding to the CGCG box in the promoters of these genes
needs to be further investigated.

Conclusion

Tomato genome encodes seven SISR genes and expres-
sion of SISRI and SISR3L was significantly induced by
B. cinerea and Pst DC3000. Silencing of either SISRI or
SISR3L resulted in enhanced resistance to B. cinerea and
Pst DC3000 and led to constitutive accumulation of H,O»,
elevated expression of defense genes, PTI marker genes
and regulatory genes involved in the SA- and ET-mediated
signaling pathways. Meanwhile, expression of SISRIL
was significantly induced by drought stress and silen-
cing of SISRIL led to decreased drought stress tolerance.
These results demonstrate that both SISR1 and SISR3L in
the tomato SISR/CAMTA family are negative regulators of
defense response against B. cinerea and Pst DC3000 while
SISRIL is a positive regulator of drought stress tolerance
in tomato.

Methods

Plant growth and treatments

Tomato (Solanum lycopersicum) cv. Suhong 2003 was
used for all experiments. Seeds were scarified on moist
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filter paper in Petri dishes for 2 days and the sprouted
seeds were transferred into a mixture of perlite: vermicu-
lite: plant ash (1:6:2). All tomato plants were grown in a
growth room at 22-24°C with 60% relative humidity
(RH) under a 14 hr light (350 pmol -s™ - m™ photons m™
sec!)/10 hr dark cycle. Two-week-old plants were used
for VIGS assays and four-week-old plants were used for
other experiments. For analysis of gene expression in
response to pathogen infection, whole plant inoculation
assays for B. cinerea and vacuum infiltrated inoculation
assays for Pst DC3000 along with corresponding mock-
inoculation controls were performed (see below). For ana-
lysis of gene expression in drought stress, drought stress
was applied to the plants by stopping watering for a period
until wilting symptom appeared and normally watered
plants were used as controls in the whole plant drought
stress assays. Alternatively, fully expanded leaves were de-
tached and subjected to drought stress treatment by pla-
cing on lab blench or on water-saturated filter papers in
Petri dishes as controls in detached leaf assays. For ABA
treatment, a solution of ABA (100 pM) or same volume of
water as a control was sprayed onto leaf surface of the to-
mato plants. Leaf samples were collected at indicated time
points after treatment or inoculation and stored at -80°C
until use.

Plant inoculation and disease assays

Pst DC3000 was grown overnight in King’s B (KB) liquid
medium containing rifampicin at 50 pg/ml. The bacteria
were collected and resuspended in 10 mM MgCl, to
ODgoo =0.0002 for plant inoculation. Four-week-old
plants were vacuum infiltrated with suspension of Pst
DC3000 or with MgCl, solution as a mock inoculation
control. The inoculated plants were kept in a sealed con-
tainer to maintain high humidity (RH>90%) and dis-
ease progress was observed daily. Leaf samples were
collected from at least six Pst DC3000-inoculated or
mock-inoculated plants at different time points after
inoculation and used for analysis of gene expression
and in planta bacterial growth. For measurement of
bacterial growth, leaf discs (6 mm in diameter) were
surface sterilized in 70% ethanol for 10 s, homoge-
nized in 200 ul of 10 mM MgCl,, diluted in 10 mM
MgCl,, and plated on KB agar plates containing ri-
fampicin at 50 pg/ml. The plates were incubated at
28°C and the bacterial numbers were counted 3 days
after incubation.

B. cinerea was grown on 2x V8 agar (36% V8 juice,
0.2% CaCOs, and 2% agar) at 22°C and spores were col-
lected and resuspended in 1% maltose buffer to 2 x 10°
spores/ml for whole plant inoculation and 1 x10°
spores/ml for detached leaf inoculation. Whole plant
inoculation and detached leaf inoculation assays were
performed according to previously reported procedure
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[52,53]. In the detached leaf inoculation assays, leaves
were detached from at least 10 four-week-old VIGS-
infiltrated plants and inoculated by dropping 5 pl of
spore suspension on leaf surface. In the whole plant
inoculation assays, four-week-old plants were inocu-
lated by foliar spraying with spore suspension of B.
cinerea or with same volume of 1% maltose buffer as
a mock-inoculation control and leaf samples were col-
lected at different time points after inoculation for ana-
lysis of gene expression and in planta fungal growth.
The inoculated leaves and plants were kept at 22°C in
sealed containers to retain the moist conditions favor-
able for disease development. In planta fungal growth
was analyzed by the amplification of the transcripts of
a B. cinerea Actin gene as a marker [53,54] using a
pair of primers BcActin-F and BcActin-R (Additional
file 2). Relative fungal growth was expressed as folds of
the transcript levels of BcActin vs the transcript levels of a
tomato Actin gene.

Construction of vectors and VIGS assays

Based on the cDNA sequences of all seven SISR genes
[29], fragments of 386-462 bp for each SISR gene
(Additional file 3) were amplified with gene-specific
primers (Additional file 2) from ¢cDNAs synthesized from
total RNA prepared from tomato leaf samples. After
cloning and sequencing, these VIGS fragments were
cloned into pTRV2 vector [32], yielding pTRV2-SISRs.
These pTRV2-SISR constructs were then introduced into
Agrobacterium tumefaciens strain GV3101 by electro-
poration using GENE PULSER II Electroporation System
(Bio-Rad Laboratories, Hercules, CA, USA). Agrobac-
teria carrying pTRV2-GUS (as a negative control),
pTRV2-PDS (as a positive control for silencing effi-
ciency examination) or pTRV2-SISRs were cultivated
in YEP medium (10 g/l peptone, 10 g/l yeast extract,
5 g NaCl/l, 50 pg/ml rifampicin, 50 pg/ml kanamycin
and 25 pg/ml gentamicin) for 36 hr with continuous
shaking in a 28°C incubator. Cells were centrifuged
and resuspended in infiltration buffer (10 mM MgCl,,
150 uM acetosyringone, MES, pH5.7). The agrobacteria
carrying pTRV2-GUS, pTRV2-PDS or pTRV2-SISR were
mixed with the agrobacteria carrying pTRV1 in a ratio of
1:1 and maintained at ODgyy=1.5 for 3 hr at room
temperature. The mixed agrobacteria suspension was
infiltrated into the abaxial surface of the 2-week-old
seedlings using 1 mL needleless syringes. Efficiency of
the silencing procedure was evaluated based on the
appearance of bleaching phenotype in the pTRV2-
PDS-infiltrated plants [32]. When more than 90% of
the pTRV2-PDS-infiltrated plants showed bleaching
phenotype, the pTRV2-GUS- or pTRV2-SISR-infiltrated
plants in an independent experiment with same VIGS
procedure were used for further study. Leaf samples
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were collected at 2 weeks after VIGS infiltration and
used for analysis of the silencing efficiency by qRT-
PCR.

Subcellular localization

The coding sequences of SISRI and SISR3L were PCR
amplified using pairs of gene-specific primers SISR1-
3F/SISR1-3R and SISR3L-3E/SISR3L-3R, respectively
(Additional file 2). After confirmation by sequencing, the
coding regions of the SISRI and SISR3L genes were cloned
into pFGC-Egfp. The recombinant plasmids pFGC-
Egfp-SISR1, pFGC-Egfp-SISR3L and pFGC-Egfp were
transformed into A. tumefacies strain GV3101 and the
transformed agrobacteria were infiltrated individually into
leaves of four-week-old N. benthamiana plants using
1-ml needless syringes. These agroinfiltrated plants were
allowed to grow in a growth chamber at 25°C for 48 hr,
and the GFP fluorescence was examined under a Leica
TCS SP5 laser confocal microscope with excitation wave-
length of 488 nm.

Transcription activation assay in yeast

The coding sequences of SISRI and SISR3L were ampli-
fied using gene-specific primers (Additional file 2) and
cloned into pBD-GAL4Cam vector to yield pBD-SISR1
and pBD-SISR3L. These two recombinant plasmids and
the pBD empty vector (as a negative control) were trans-
formed into yeast strain AH109. The transformed yeasts
were confirmed by colony PCR and then cultivated on
the SD/-Trp and SD/-Trp/-His medium for 3 days at
28°C, followed by addition of x-a-gal (5-bromo-4-
chloro-3-indolyl-a-D-galactopyranoside). Transactivation
activity of the fused proteins was evaluated according to
the growth situation and production of blue pigments
after the addition of x-a-gal of the transformed yeast
cells on the SD/-Trp/—His medium.

Detection of H,0, accumulation

Detection of in situ H,O, was carried out using DAB
staining method as described previously [55]. Leaves
were collected from pTRV2-SISR1- or pTRV2-SISR3L-
infiltrated and pTRV2-GUS-infiltrated plants and dipped
into DAB solution (1 mg/ml, pH3.8) and incubated for 8
hr in dark at room temperature. Thereafter, leaves were
placed into acetic acid/glycerol/ethanol (1:1:1, vol/vol/
vol) and boiled for 5 min in a water bath. After several
changes of the solution, then leaves were maintained in
60% glycerol and accumulation of H,O, in leaves was
photographed using a digital camera.

Drought tolerance assays

At least 10 individual pTRV2-SISRs- or pTRV2-GUS-
infiltrated plants were used in each experiment. Drought
stress was applied to the tomato plants by stopping
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watering for a certain period of 10-12 days or until the
wilting symptoms were obvious. To assess the ratio of
water loss, fully expanded leaves from 6 individual
pTRV2-SISRIL- or pTRV2-GUS-infiltrated plants were
detached and placed on the bench top. The weights of the
leaves were recorded at different time points after detach-
ment and the average water loss ratio was calculated by
comparing with the initial weights. Roots from 6 individ-
ual pTRV2-SISRI1L- or pTRV2-GUS-infiltrated plants
were cut, cleaned and dried in 70°C oven for 24 hr
and the final weight was calculated and compared. Leaf
samples were collected from the pTRV2-SISRs- or
pTRV2-GUS-infiltrated plants at 0 hr (as unstressed con-
trol) and 7 days after stopping watering and were sub-
jected to analysis of gene expression.

gRT-PCR analysis of gene expression

Total RNA was extracted from frozen leaf samples using
TRIzol reagent (Invitrogen, Shanghai, China) and treated
with RNase-free DNase (TaKaRa, Dalian, China) to erase
any genomic DNA in the RNA samples. First-strand
¢DNA was synthesized from 0.6 pg total RNA using
AMV reverse transcriptase (TaKaRa, Dalian, China) ac-
cording to the manufacturer’s recommendations. Each
qRT-PCR reaction contained 12.5 pul SYBR Premix Ex
Taq (TaKaRa, Dalian, China), 0.1 ug cDNA and 7.5 pmol
of each gene-specific primer (Additional file 2) in a final
volume of 25 pl, and run on three independent biological
replicates. The qRT-PCR was performed in a CFX96 real-
time PCR detection system (BioRad, Hercules, CA, USA)
and relative expression levels were calculated using the
2728CT method. The expression level of a tomato actin
gene was used as an internal control to normalize the ex-
pression data for the target genes. Relative expression
levels of the target genes were shown as folds of the ex-
pression level of the actin gene or as folds of the expres-
sion levels in treated plants/control plants.

Statistical analysis

All experiments were repeated independently three times
and data were collected from experiments on three bio-
logical samples. All data obtained were subjected to statis-
tical analysis according to the Students t-test and the
probability values of p <0.05 were considered as signifi-
cant difference.

Accession numbers for SISRs

The tomato SISR gene sequences used in this study were
retrieved from GenBank under the following accession
numbers: SISRI, GU170838; SISRIL, JN558810; SISR2,
JN566047; SISR2L, TN566048; SISR3, IN566049; SISR3L,
JN566051; SISR4, IN566050. These SISR gene sequences
were deposited by Yang et al. [29].
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Availability of supporting data

The sequences of SISR proteins and sequences of VIGS
fragments for SISR genes used in this study are included
in Additional files 1 and 3.

Additional files

Additional file 1: Alignment of tomato SISR protein sequences and
positions of the VIGS fragments in the SISR proteins. The GenBank
accession numbers for SISR proteins are as follows: SISRT, ADK47999;
SISRTL, AEX31181; SISR2, AEXQ7774; SISR2L, AEXQ7775; SISR3, AEX07776;
SISR3L, AEX07778; SISR4, AEX07777. These SISR protein sequences were
deposited by Yang et al. [29]. Regions selected for the VIGS fragments of
each of SISR genes were underlined with red lines.

Additional file 2: Table S1. Primers used in this study.
Additional file 3: Sequences of the VIGS fragment for SISR genes.
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