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Modeling the vacuolar storage of malate shed
lights on pre- and post-harvest fruit acidity
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Abstract

Background: Malate is one of the most important organic acids in many fruits and its concentration plays a critical
role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level
of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins
of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study,
we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of
malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis
during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate
growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes.
Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use
the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from
three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and
harvested at different stages.

Results: The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy
for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was
analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations,
had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate
accumulation. The model also helped distinguish differences in malate concentration among the three cultivars
and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity
and particularly of the free energy of ATP hydrolysis and vacuolar pH.

Conclusions: This model appears to be an interesting tool to study malate accumulation in pre and postharvest
fruits and to get insights into the ecophysiological determinants of fruit acidity, and thus may be useful for fruit
quality improvement.
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Vacuolar storage
Background
Malate is one of the most important organic acids in
many fruits [1], and its concentration in the pulp plays a
critical role in organoleptic properties [2-4]. The malate
concentration varies considerably among cultivars of many
fruit species including peach [5], apples [6,7] and loquat [8].
The malate concentration undergoes great changes during
fruit growth [9,10] and also during postharvest ripening
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[11,12]. Understanding the mechanisms that control malate
accumulation is thus of primary importance for fruit quality
improvement.
The accumulation of malate in fruit cells is a complex

phenomenon because it involves several metabolic path-
ways and transport mechanisms across different com-
partments, mainly cytosol, mitochondria, and vacuole.
Concerning malate, we showed in a previous paper [13]
that the thermodynamic conditions of its transport into
the vacuole may limit its accumulation. Therefore, one
can hypothesize that malate accumulation in fruit cells is
mainly controlled at the level of vacuolar storage, and
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that metabolism responds appropriately to regulate the
cytosolic concentration of malate since it plays a funda-
mental role in the regulation of cytosolic pH [14].
However, the regulation of vacuolar malate storage
throughout fruit development, and the origins of the
phenotypic variability of the malate concentration within
fruit species remain to be clarified. Given the complexity
of the processes, ecophysiological process-based simula-
tion models (PBSMs) could advance our understanding of
the mechanisms underlying malate accumulation in pre
and postharvest fruits. PBSMs could also help to elucidate
the differences in malate accumulation among cultivars,
as was the case for sugar accumulation in peach [15], and
grape berry [16].
Despite the importance of pulp malate concentration

for fruit quality, attempts to mechanistically model it are
rare. To our knowledge, the only PBSM was proposed
by Lobit et al. [17] to simulate malate concentration in
peach. This model is based on a simplified representation
of the functioning of the tonoplast to simulate vacuolar
malate storage and thus appears to be a good framework
to study malate accumulation in fleshy fruit.
In the present study, we adapted Lobit’s model in

order to study the accumulation of malate in pre and
postharvest fruit using a mechanistic model-based ana-
lysis. The main adaptation concerned the variation of the
free energy of ATP hydrolysis during fruit development.
Banana fruit was taken as a reference because it has the
particularity of having separate growth and post-harvest
ripening stages, during which malate concentration
undergoes substantial changes [18]. Moreover, the con-
centration of malate in banana pulp varies greatly among
cultivars which make possible to use the model as a tool
to analyze the genotypic variability [11,19]. The physio-
logical age of the fruit at harvest is known to affect the
concentration of malate in the pulp of banana during
post-harvest ripening [20]. Fruit pruning and potassium
fertilization, two cultural practices commonly used by the
banana growers, can also impact the concentration of
malate in fleshy fruits (for review see [13]). Consequently,
we chose to calibrate and validate the model on three
cultivars with contrasting malate accumulation, grown
under different fruit loads and potassium supplies, and
harvested at different stages. To study how these factors
could affect malate accumulation, we analyzed the sensi-
tivity of the model to parameters and input variables.
The model enabled us to: improve our understanding
of malate accumulation during growth and post-harvest
ripening of fruit; propose a possible explanation for dif-
ferences in malate accumulation among cultivars; study
the possible effects of fruit growth conditions on malate
accumulation. Finally, this model appears to be an inter-
esting tool to study malate accumulation in pre and post-
harvest fruits and to get insights into the ecophysiological
determinants of fruit acidity, and thus may be useful for
fruit quality improvement.

Methods
Model description
The model of malate accumulation proposed by Lobit
et al. [17] assumes that the accumulation of malate in
fleshy fruits is mainly determined by the conditions of
its storage in the vacuole of pulp cells. The model provides
a simplified representation of the functioning of the
tonoplast (Figure 1).
The transport of malate across the tonoplast is passive

and occurs by facilitated diffusion of the di-anion form
through specific ion channels [21-23] and transporters
[24,25]. It follows the electrochemical potential gradient
of the di-anion across the tonoplast, defined as follows:

ΔGMal
2‐ ¼ −2FΔΨþ RTln

�
Mal2‐vac
� �

= Mal2‐cyt
� �� ð1Þ

where (Mal2− cyt) and (Mal2− vac) are the activities of the di-
anion malate in the cytosol and in the vacuole respect-
ively (mol L−1), ΔΨ is the electric potential gradient
across the tonoplast (ψvac-ψcyt; V), T is temperature (K),
R is the gas constant (8.3144621 J mol−1 K−1), and F is
Faraday’s constant (9.65∗104 C mol−1).
This implies that the accumulation of malate in the

vacuole is controlled mainly by the ratio of the di-anion
malate activity across the tonoplast and the ΔΨ.
The activity of the di-anion is the product of its activity

coefficient aMal
2− (dimensionless) and of its concentration

[Mal2−] (mol L−1):

Mal2−
� � ¼ aMal

2− � Mal2−
� � ð2Þ

In the cytosol, the concentration of the di-anion malate
is unlikely to vary much because it plays a fundamental
role in the regulation of cytosolic pH [14]. In addition, its
activity coefficient, which depends only on the ionic
strength of the cytosol, is also unlikely to vary much
[17]. Therefore, in the model, (Mal2− cyt) is considered
as a constant.
In the vacuole, the activity coefficient of the di-anion

malate (aMal
2−

vac) is related to the concentration of all
ionic species [18], while its concentration is proportional
to the total malate concentration and is controlled by
the dissociation equation, since malate is a weak acid:

Mal2−vac
� � ¼ Malvac½ � � K′1K′2ð Þ= h2 þ hK′1 þ K′1K′2

� �� �
ð3Þ

where [Malvac] is the total concentration of malate in the
vacuole (mol L−1), h = 10-pHvac, and K′1 and K′2 are the
apparent acidity constants of malate (mol L−1).
In plant cells, ΔΨ is mainly generated by the tonoplas-

tic proton pumps, which catalyze the active transport of
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Figure 1 Schematic representation of the model of vacuolar malate storage proposed by Lobit et al. (2006) [17]. State variables:
[Malfruit] = concentration of malate in the pulp; [Malvac] = concentration of malate in the vacuole; pHvac = vacuolar pH; ΔΨ = electric potential
gradient across the tonoplast; n = coupling ratio of the proton pump ATPase. Model parameters: pHcyt = cytosolic pH; ΔGATP = free energy of
ATP hydrolysis; α, β, and n0 = fitted parameters of the coupling ratio equation (Eq. 5); (Mal2−cyt) = cytosolic activity of the di-anion malate.
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protons into the vacuole. Two types of pumps are present
on the tonoplast of fruit cells: the ATPase [26] and the
PPiase [27], which respectively hydrolyze ATP and PPi as
a source of energy. Both are known to be active in most
fruits [24,28,29], but for the sake of simplicity, only
ATPase was taken into account in the model. Proton
pumping can occur only if the variation in free energy of
the chemiosmotic reaction ΔGATPase defined below is
negative:

ΔGATPase ¼ ΔGATP þ nFΔΨ−nRTln 10ð Þ � pHvac−pHcyt
� �

ð4Þ

where ΔGATP is the free energy of ATP hydrolysis
(J mol−1), n is the coupling ratio i.e. the number of
protons pumped by hydrolyzed ATP, pHvac and pHcyt

are vacuolar and cytosolic pH respectively.
The pH gradient across the tonoplast plays a role in

this equation, both directly, and because it affects the
coupling ratio n. Lobit et al. [17] fitted the following
equation to the data of Davies et al. [30] to calculate the
coupling ratio:

n ¼ n0 þ α pHvac−7ð Þ þ β10 pHcyt−7ð Þ ð5Þ

where n0, α, and β are fitted parameters.
The approach used in this model is to represent changes

in vacuolar composition as a succession of stationary
states during which malate concentration, pHvac, and ΔΨ
can be considered to be constant. The assumption is that
the transport of the di-anion malate and protons operate
in conditions close to their respective thermodynamic
equilibrium.
Assuming that the di-anion malate is at thermo-

dynamic equilibrium across the tonoplast implies that
ΔGMal

2− = 0. So rewriting and combining equations 1, 2
and 3 gives:
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Malvac½ � ¼ 1=aMal
2−

vac
� �
�
�

h2 þ hK′1 þ K′1K′2
� �

= K′1K′2ð Þ
�

� Mal2−cyt
� � � exp 2FΔΨ=RTð Þ

ð6Þ

Assuming that proton transport occurs at thermo-
dynamic equilibrium implies that ΔGATPase = 0. So, rewrit-
ing and combining equations 4 and 5 gives:

ΔΨ ¼ −ΔGATP= n0 þ α pHvac−7ð Þ þ β10 pHcyt−7ð Þ
� �

F
� �� �

þ RT=Fð Þ � ln 10ð Þ � pHvac−pHcyt
� �

ð7Þ

The acid/base composition of the vacuole determines
aMal
2−

vac, K′1, K′2, and pHvac. These variables are calcu-
lated using a model of pH prediction that was described
and validated on banana fruit in a previous paper [18]. As
input variables, the model requires the concentrations
of the three main organic acids present in banana pulp,
citrate, malate, and oxalate (oxalate being present in
large amounts at the green stage [18]), and of the main
soluble mineral elements, namely potassium, magnesium,
chloride, calcium, and phosphorus.
Solving the malate model means solving a system of

equations with two unknowns, [Malvac] and pHvac, and
six parameters, pHcyt, (Mal2− cyt), ΔGATP, n0, α, and β.
Once the concentration of malate in the vacuole is deter-
mined, the concentration of malate in the pulp can be cal-
culated by assuming that the volume of water in the
vacuole is equal to the water mass of the pulp:

Malfruit½ � ¼ Malvac½ � � FW−DWð Þ=FWð Þ � 1000 ð8Þ

where [Malfruit] is the concentration of malate in the
pulp (mmol Kg FW−1), FW and DW are the pulp fresh
weight and pulp dry weight respectively (g).

Changes in ΔGATP during banana development
According to the sensitivity analysis of the model per-
formed by Lobit et al. [17] on peach, malate accumulation
is strongly dependent on ΔGATP. According to the litera-
ture, ΔGATP can vary considerably depending on cytosolic
conditions [31,32], so that one may expect ΔGATP to vary
during banana development. The possible variation of
ΔGATP required (according to the model) to sustain malate
accumulation during banana growth and postharvest ripen-
ing was assessed by reorganizing and combining equations 6
and 7, and by assuming that pHcyt = 7 (common notion of
a neutral cytosol), (Mal2− cyt) =0.001 mol L−1 (reasonable
value according to Lobit et al. [17]), aMal

2−
vac =0.3 (average

value found by the banana pH model [18]), and parame-
ters n0 = 4, α = 0.3, and β = −0.12 (to calculate n with
equation 5) [17].
ΔGATP ¼ nRTln 10ð Þ � pHvac−pHcyt
� �

− nRT=2ð Þ
� ln �

K′1K′2 Malvac½ �aMal
2−

vac
� �

=
�
h2 þ hK′1 þ K′1K′2
� �

Mal2−cyt
� �ÞÞ

ð9Þ

Changes in ΔGATP over time, calculated with equa-
tion 9 and using 12 datasets including three cultivars,
two developmental stages (pre- and post-harvest stage),
and 2 years, were plotted. During fruit growth, ΔGATP

varied little (Figure 2A) whereas during post-harvest
ripening, there was a negative relationship between ΔGATP

and the number of days after ethylene treatment in all
three cultivars (Figure 2B). Thus, we considered ΔGATP as
a constant during fruit growth and simulated the observed
relationship with days after ethylene treatment during
ripening by the following function:

ΔGATP ¼ G1 � DAE2 þ G2 � DAEþ G3 ð10Þ
where DAE is the day after ethylene treatment, and G1

(J mol−1 day−2), G2 (J mol−1 day−1), and G3 (J mol−1) are
fitted parameters.

Model inputs
The input variables required were temperature (T; K),
pulp fresh weight (FW; g), pulp dry weight (DW; g), pulp
potassium content (K; mol L−1), pulp magnesium content
(Mg; mol L−1), pulp phosphorus content (P; mol L−1),
pulp calcium content (Ca; mol L−1), pulp chloride content
(Cl; mol L−1), pulp citrate content (mol L−1), and pulp
oxalate content (mol L−1).

Plant materials and experimental conditions
All experiments were conducted at the Pôle de
Recherche Agroenvironnementale de la Martinique
(PRAM, Martinique, French West Indies; latitude 14°37 N,
longitude 60°58 W, altitude 16 m) using three cultivars
of dessert banana (Musa spp.) diploids AA, differing in
predominant organic acid at the eating stage: Indonesia
110 (IDN), Pisang Jari Buaya (PJB), and Pisang Lilin (PL).
The plant material is deposited at the in vitro collection of
Bioversity International (Bioversity International Transit
Center c/o KU Leuven, Division of Crop Biotechnics,
Laboratory of Tropical Crop Improvement Willem de
Croylaan; 42 box 2455, BE3001 Heverlee, Belgium) under
the internal codes ITC0712, ITC0690, ITC1121 respect-
ively. Bioversity International Transit Center collection is
an FAO ‘in trust’ collection for which Bioversity has the
commitment to ensure the long term storage of holdings
and provide unrestricted access by the Musa community.
The collection is part of the multilateral system of the
International Treaty on Plant Genetic Resources for Food
and Agriculture. Experiments were conducted during the
2011 and 2012 growing seasons on continental alluvial
soil. In both growing seasons, irrigation was adjusted to
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the amount of rainfall to supply at least 5 mm of water
per day, and non-systemic fungicide was applied to
control foliar diseases. During the first period of bunch
growth (March–November 2011) the mean daily tem-
perature was 27 ± 1.2°C. During the second period of
bunch growth (February–August 2012) the mean daily
temperature was 26 ± 0.9°C.

2011 experiment: effect of fruit load on banana pulp acidity
For each cultivar, 36 plants were randomly chosen and
tagged at inflorescence emergence. Two contrasted fruit
loads were used: 18 plants of each cultivar were used as
the control treatment i.e. high fruit load, and 18 other
plants were highly pruned i.e. low fruit load. In the
control treatment, the number of leaves and hands left
on the plants were calculated in order to have the same
leaf area: fruit ratio among cultivars (approximately equal
to 0.5 cm2 leaf. g fruit−1). Thus, 15 days after inflorescence
emergence, 8, 6, and 5 leaves were left on the plant for
cultivars IDN, PL, and PJB respectively, and the top 10, 5
and 7 hands were left on the bunch for cultivars IDN, PL,
and PJB respectively. To ensure the situation was the same
among the three cultivars, fruit pruning in low fruit load
treatment was calculated to increase the leaf area: fruit
ratio by approximately 2.5. Consequently, 15 days after
inflorescence emergence, the top 4, 2, and 3 hands were
left on the bunch for cultivars IDN, PL, and PJB respect-
ively. Banana plants received 12 g of nitrogen, 1.7 g of
phosphorus, and 23 g of potassium at 4-week intervals
during fruit growth.

2012 experiment: effect of potassium fertilization on banana
pulp acidity
Two plots containing 50 banana plants of each cultivar
were planted. Two contrasted levels of potassium
fertilization were started six months before the beginning
of fruit sampling. For each cultivar, one plot received
124 g of potassium per plant (high potassium fertilization)
at 4-week intervals, while the other received no potassium
at all. All the banana plants received 12 g of nitrogen and
10 g of phosphorus at 4-week intervals. Twenty-four
plants of each cultivar were randomly chosen in each
plot and tagged at inflorescence emergence. At 15 days
after inflorescence emergence, 9, 7, and 9 leaves were
left on cultivars IDN, PL, and PJB respectively, which
corresponded to the average leaf number in 2012, and
the top 10, 5, and 7 hands were left on the bunch of
cultivars IDN, PL, and PJB respectively, which corre-
sponded to a high fruit load.

Fruit growth monitoring
In the two growing seasons, six bunches were selected
for each cultivar∗treatment combination. One fruit located
in the internal row of the second proximal hand was
collected for analyses every 15 days. Natural ripening on
standing plants, i.e. when the first yellow finger appears,
determined the end of sampling.

Monitoring of post-harvest ripening
In the 2011 experiment, two harvest stages were studied.
The stages were calculated so that each cultivar was at
70% and 90% of the average flowering-to-yellowing time
(FYT) of the bunch on the tree. At each harvest stage, six
bunches per cultivar and per treatment were harvested. In
the 2012 experiment, only one harvest stage was studied.
For each cultivar, this stage was calculated to be 75% of
the average FYT of the bunch on the tree. Six bunches per
cultivar and per treatment were harvested. After the
bunches were harvested, the second proximal banana
hand per bunch was rinsed and dipped in fungicide
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(bitertanol, 200 mg L−1) for 1 min. The fruits were placed
in a plastic bag with 20 μm respiration holes and stored
in boxes for 6 days at 18°C. The fruits were then stored
in a room at 18°C and underwent ethylene treatment
(1 mL L−1 for 24 h) to trigger the ripening process.
After 24 h, the room was ventilated. Bananas were
maintained at 18°C during 13 days. One banana fruit
was sampled before ethylene treatment, and at day 3, 6,
9 and 13 after ethylene treatment.

Biochemical measurements
The fresh and dry pulp of each sampled fruit was
weighed. The dried pulp was then ground to obtain a
dry powder for biochemical measurements. Citric acid
and malic acid concentrations were determined according
to Etienne et al. [18] using an enzymatic method and a
microplate reader. The soluble oxalic acid concentration
was determined using the LIBIOS Oxalic acid assay kit.
Pulp soluble K, Mg, and Ca concentrations were deter-
mined by mass spectrometry, and soluble P was measured
by colorimetry [33]. The Cl concentration in the pulp was
determined by potentiometry using the automatic titrator
TitroLine alpha [34].

Model solving and parameterization
The model was computed using R software (R Develop-
ment Core Team, http://www.r-project.org) (Additional
files 1, 2, 3, 4 and 5). For each sampling date, the system
was solved to calculate the concentration of malate in
the pulp, using the “nleqslv” function of the R software,
which solves a system of non-linear equations using a
Broyden method (http://cran.r-project.org/web/packages/
nleqslv/index.html). (Mal2− cyt) was set at 0.001 mol L−1
which is within the range mentioned by Lobit et al. [17].
pHcyt was set at 7 according to the common notion of a
neutral cytosol. For parameters n0, α, and β, which define
the stoechiometry of the pump ATPase, Lobit et al. [17]
estimated values very close to those found by fitting equa-
tion 5 to the data of Davies et al. [30] and Kettner et al.
Table 1 Values of model parameters

Parameter Value Unit Descr

IDN PJB PL

pHcyt 7 Unit pH Cytoso

(Mal2− cyt) 0.001 mol L−1 Cytoso

n0 4 dimensionless Param

α 0.3 dimensionless

β −0.12 dimensionless

ΔGATP −36.9∗103 −39.1∗103 −47.4∗103 J mol−1 Free e

G1 75 69 110 J mol−1 day−2 Param
days a

G2 −1176 −1108 −1959 J mol day−1

G3 −45.2∗103 −48.9∗103 −46.3∗103 J mol−1
[35]. This suggests that these parameters correspond to a
structural characteristic of ATPase and are unlikely to vary
much, so we chose to set them to the values found by
Lobit et al. [17] (Table 1).

Model calibration
Parameter ΔGATP was estimated by fitting the model to
observed values of the pre-harvest 2011 dataset separated
by cultivar (24 < n < 36) (Additional file 6). Parameters G1,
G2, and G3 were estimated by fitting the model to ΔGATP

values calculated according to equation 9 from the 2011
post-harvest dataset separated by cultivar (54 < n < 60).
The harvest stage was not taken into account since there
were no differences in the variations in ΔGATP calculated
with equation 9 between fruits harvested at 70% and 90%
of FYT (data not shown). Parameters were estimated using
the “hydroPSO” function of R software [36]. The hydroPSO
function uses the computational method of particle swarm
optimization (PSO) that optimizes a problem by iteratively
trying to improve a candidate solution with regard to a
given measure of quality. Parameters were estimated by
minimizing the following criterion:

X
j

X
i
xij−yij

� �2
ð11Þ

where xij is the predicted value and yij is the observed
value of the fruit of the jth banana plant at date ti.

Goodness of fit and predictive quality of the model
The goodness of fit of the model was evaluated using
two commonly used criteria, the root mean squared
error (RMSE) and the relative root mean squared error
(RRMSE), to compare the mean difference between sim-
ulated and observed results [37]. The smaller the value
of RMSE and RRMSE, the better the fit.

RMSE ¼ √
X

yij−xij
� �2

=n

� 	
ð12Þ
iption Origin

lic pH Literature

lic activity of the di-anion malate Literature

eters to calculate the coupling ratio of the proton pump Literature

Literature

Literature

nergy of ATP hydrolysis during banana growth Estimated

eters to calculate ΔGATP as a function of the number of
fter ethylene treatment during banana post-harvest ripening

Estimated

Estimated

Estimated

http://www.r-project.org
http://cran.r-project.org/web/packages/nleqslv/index.html
http://cran.r-project.org/web/packages/nleqslv/index.html
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where yij is the predicted value and xij is the measured
value of the fruit of the jth banana plant at date ti. n is
the data number.

RRMSE ¼ RMSE=�x ð13Þ
Where �x is the mean of all observed values.
The predictive quality of the model, which ascertains

model validity over various scenarios, was quantified by
the RMSE and RRMSE calculated using the 2012 data
set (Additional file 6).

Sensitivity analysis of the model
The sensitivity of the malate model during banana growth
and post-harvest ripening to variations in parameter
and input values was quantified by normalized sensitivity
coefficients, defined as the ratio between the variation in
malate concentration (ΔM) relative to its standard value
(M), and the variation in the parameter or input value
(ΔP) relative to its standard value (P) [38].

Normalized sensitivity coefficient
¼ ΔM=Mð Þ= ΔP=Pð Þ ð14Þ

The interpretation of the sensitivity coefficient is
referred to as local sensitivity analysis since these coef-
ficients provide information on the effect of small changes
in the parameters on the model response. They do not
provide information about the effect of simultaneous or
large parameter changes. Normalized sensitivity coeffi-
cients were calculated by altering one parameter or input
variable by ±0.1% while keeping all other parameters and
inputs at their default values. Sensitivity analysis of the
model to parameters was conducted by considering pHvac

as known (approximated by the measured pH of the pulp).
Sensitivity analysis of the model to pulp composition and
temperature was conducted by considering the total
model, i.e. the combination of the malate and pH models.

Results
Overview of the effects of the cultivar and of the treatment
The effects of cultivar and treatments on malate concen-
tration in banana pulp during the pre and post-harvest
stages are detailed in a previous paper [19], so only the
main conclusions are presented here. During banana
growth, the concentration of malate increased and was
significantly affected by the cultivar in both 2011 and
2012. During banana post-harvest ripening, the ripening
stage and the cultivar had a significant effect on the
concentrations of malate in 2011 and 2012. Fruits
harvested later (at 90% of FYT) had significantly higher
concentrations of malate at the beginning of ripening
and lower concentrations at the end of ripening. Low
fruit load and potassium fertilization significantly increased
fruit fresh mass but had no effect on malate concentration
in the three cultivars either during growth or post-harvest
ripening.

Model calibration and evaluation
Values of the estimated parameters of the model are
summarized in Table 1. The values of ΔGATP estimated
during banana growth were higher (less negative) than the
values commonly found in the literature, which range
between −50 and −58 KJ mol−1 [31,32,39,40]. The ΔGATP

estimated for the PL cultivar was lower (more negative)
than those estimated for the IDN and PJB cultivars.
During postharvest ripening, values of ΔGATP calculated
from equation 10 with the estimated values of parameters
G1, G2, and G3 were in the range of values found in the lit-
erature (between −45 and −55 KJ mol−1) (data not shown).
From day 6 to the end of ripening, cultivars PJB and PL
had a lower (more negative) ΔGATP than cultivar IDN.
Simulated and observed malate concentrations during

banana growth and post-harvest ripening are presented
in Figures 3 and 4 respectively. For the three cultivars,
the goodness of fit of predictions of data from 2011 was
satisfactory both during banana growth and post-harvest
ripening. During growth, the RMSEs were between 2.86
and 3.43 mmol Kg FW−1, and RRMSEs between 0.25
and 0.38. During postharvest ripening, the RMSEs were
between 6.07 and 11.08 mmol Kg FW−1, and RRMSEs
between 0.18 and 0.32. However, model validation during
banana growth was not satisfactory in any of the three
cultivars, as revealed by the RMSEs and RRMSEs of
predictions of data from 2012, whose values ranged
between 3.67 and 5.60 mmol Kg FW−1, and between
0.40 and 0.74 respectively. Model validation during
banana post-harvest ripening for the three cultivars was
satisfactory, as revealed by the RMSEs and RRMSEs of
predictions of data from 2012, whose values ranged
between 6.55 and 10.54 mmol Kg FW−1, and between
0.24 and 0.29 respectively. Statistical analysis revealed
that the model predicted a large effect of the cultivar and
of fruit age, and no effect of the fruit load and potassium
fertilization on malate concentration during banana
growth (Table 2) and postharvest ripening (Table 3)
which is in accordance with observed data. The model
predicted a small effect of fruit age at harvest in agree-
ment with observed data, but was not able to simulate
the minor differences correctly (data not shown).

Sensitivity analysis of the model
A sensitivity coefficient (SC) was calculated to identify
model responses to variations in parameters and inputs. A
positive and negative sign of SC correspond, respectively,
to a response in the same or reverse direction as the
variation in the parameter or input. The larger the
absolute value of SC, the more highly sensitive the
model is to the parameter or input concerned. Since
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the SC behaved similarly between years with respect to
a given cultivar, only results in 2011 are presented here.
The SCs of model parameters behaved similarly with
respect to the three cultivars and between banana
growth (Figure 5A) and post-harvest ripening (Figure 5B).
(Mal2−cyt) had a positive effect on malate concentration.
This is as expected, since an increase in (Mal2−cyt) increases
the gradient of concentration of the di-anion malate in
favor of its transport into the vacuole. Malate concen-
tration was greatly influenced by pHcyt in a negative
way. Malate accumulation decreases when cytosolic pH
increases because the gradient of pH across the tonoplast
increases, which depresses the ΔΨ (see equation 7).
Increasing ΔGATP, i.e. a less negative ΔGATP, (which
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means increasing G1, G2, or G3 during postharvest
ripening) depressed malate concentration, because it
decreased proton pumping and consequently the ΔΨ.
The parameter n0 had a strong negative effect on
malate accumulation. This is as expected, since in-
creasing n0 decreases the ΔΨ. The sensitivity to α was
positive because increasing α increases the ΔΨ. The
sensitivity to β was negative because increasing β
decreases the ΔΨ.
The SCs of model inputs during banana growth and

post-harvest ripening are shown in Figures 6 and 7 re-
spectively. Increasing citrate and oxalate concentration
strongly depressed malate concentration during banana
growth in all three cultivars. During postharvest ripening,



Table 2 LMM analysis of predicted and measured
concentrations of malate (mmol Kg FW−1) during
fruit growth

F-valuea and significanceb

Year Factorsc Predicted malate
concentration

Measured malate
concentration

2011

c 51*** 79***

p Ns Ns

a 78*** 1599***

a2 Ns 44***

a3 Ns 9**

p : a Ns Ns

c : a 10*** 155***

c : p Ns Ns

c : p : a Ns Ns

2012

c 77*** 92***

f Ns Ns

a 8** 560***

a2 7** 70***

a3 5* 6**

c : a Ns 54***

c : f Ns Ns

f : a Ns Ns

c : f : a Ns Ns
aThe F-value is given only for the factors kept in the optimal model.
b***p-value <0.001; **p-value <0.01; *p-value < 0.05; Ns : not significant.
cCodes for factors: c = cultivar; p = pruning treatment; a = fruit age (in%
of flowering-to-yellowing time); f = potassium fertilization treatment.
The factors studied were fruit age, cultivar, and pruning treatment in the 2011
experiment, and fruit age, cultivar, and potassium fertilization in the 2012
experiment. There were six replicates per combination cultivar∗treatment.
Linear mixed-effects models [LMMs [41]] were used to examine the relationship
between malate concentration and explanatory variables (fruit age, cultivar,
treatment), and interactions. We used quadratic and cubic terms of fruit age
when the curve passed through a maximum and had an asymmetrical shape.
We used the lme function in the ‘nlme’ library [42] in the statistical program R
2.14.0. “Banana plant” was treated as a random effect because banana plants were
assumed to contain unobserved heterogeneity, which is impossible to model. A
temporal correlation structure was used to account for temporal pseudo-replication.
Model selection was made using the top-down strategy [43]: starting with a
model in which the fixed component contains all the explanatory variables
and interactions, we found the optimal structure of the random component.
We then used the F-statistic obtained with restricted maximum likelihood (REML)
estimation to find the optimal fixed structure. Finally, the significance of each
factor kept in the optimal model was assessed using the F-statistic obtained
with REML estimation.

Table 3 LMM analysis of predicted and measured malate
concentration (mmol Kg FW−1) during post-harvest fruit
ripening

F-valuea and significanceb

Year Factors Predicted malate
concentration

Measured malate
concentration

2011

c 199*** 284***

p Ns Ns

a 6* 11**

r 363*** 327***

r2 563*** 241***

r3 12*** Ns

p : r Ns Ns

a : c 4* 15***

a : r Ns 15***

c : r 92*** 50***

p : a Ns Ns

p : c Ns Ns

a:c:r Ns Ns

p : a : c Ns Ns

p : a : r Ns Ns

p : a : c : r Ns Ns

2012

c 139*** 73***

f Ns Ns

r 473*** 386***

r2 341*** 184***

r3 Ns Ns

c : f Ns Ns

c : r 46*** 51***

f : r Ns Ns

c : f : r Ns Ns
aThe F-value is given only for the factors retained from the optimal model.
b*** p-value <0.001; **p-value <0.01; *p-value < 0.05; Ns: not significant.
cCodes for factors: c = cultivar; p = pruning treatment; a = fruit age at harvest;
r = ripening stage; f = potassium fertilization treatment.
The factors studied were ripening stage, fruit age at harvest, cultivars, and
pruning treatment in the 2011 experiment, and ripening stage, cultivars, and
potassium fertilization treatment in the 2012 experiment.
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citrate and oxalate concentration also had a negative but
less important effect on malate concentration. Increasing
K concentration had a strong positive effect on malate
concentration during growth and a lesser effect during
post-harvest ripening in the three cultivars. Increasing P
concentration slightly depressed malate concentration
both during growth and post-harvest ripening in the three
cultivars. Increasing the Mg concentration had a positive
effect on malate concentration during growth and a lesser
effect during post-harvest ripening in all three cultivars.
Increasing the Ca concentration had a slight positive effect
on malate concentration both during growth and post-
harvest ripening in all three cultivars. Increasing the Cl
concentration had a negative effect on malate concen-
tration during banana growth, and a lesser effect during
post-harvest ripening in all three cultivars. Increasing
temperature depressed malate accumulation during banana
growth and post-harvest ripening in all three cultivars.
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Discussion
Quality of predictions and model simplifications
The concentrations of malate in the pulp were satisfactor-
ily simulated by the model during postharvest ripening
in the two experimental years, whereas model validation
during fruit growth was not convincing. Differences in
prediction quality between the pre and post-harvest stages
have several possible explanations. First, the pH model
was less accurate during fruit growth than during
post-harvest ripening [18] which is certainly partially
responsible for the discrepancies between observed and
predicted malate concentrations during fruit growth.
Second, we assumed that the ΔΨ was determined only
by the ATPase functioning, whereas in reality, ΔΨ may
also depend on the transport of mineral ions across the
tonoplast (which generate currents and/or proton move-
ments) and on the contribution of the PPiase to proton
pumping [13]. To check if this hypothesis is reasonable,
we compared the ΔΨ required to reach the thermo-
dynamic equilibrium of the di-anion malate across the
tonoplast (by inverting equation 6) with the ΔΨ predicted
by the ATPase model (by inverting equation 7). During
postharvest ripening, the changes in both ΔΨ were very
similar (Figure 8B). Therefore, the ATPase model ap-
pears to be adequate for post-harvest ripening. This is
consistent with the fact that at this stage, when mineral
concentrations in the pulp remain constant [18], there
should be no transport of minerals across the tonoplast.
In addition, PPiase activity should be negligible since
starch synthesis, which leads to the synthesis of PPi
[27], has stopped. During fruit growth, there were some
discrepancies between the variations in the ΔΨ calcu-
lated with equations 6 and 7, especially for cultivars
IDN and PJB, for which malate predictions were worst
(Figure 8A) and the ATPase model overestimated the
ΔΨ required to sustain malate accumulation. During
fruit growth, minerals, especially potassium, accumulate
in the vacuole of pulp cells [18], which implies that
electric currents may alter the ΔΨ. Moreover, starch
synthesis is high, so that PPi might be available in large
quantities and PPiase activity might consequently be
important [27], however, to our knowledge, no informa-
tion is available concerning the tonoplastic PPiase of
banana fruit cells. In the future, predictions of malate
concentrations during fruit growth might be improved
by taking into account mineral fluxes and the possible
contribution of the PPiase. Third, we assumed that pHcyt

and (Mal2−cyt) remained constant during fruit development,
whereas in reality they certainly fluctuate in response to
the supply of acids and bases by the sap, their metabolism,
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and their vacuolar storage. Since the model was very
sensitive to cytosolic pH, one way to improve model
predictions during fruit growth would be to take these
possible fluctuations into account.
Predicted variability in vacuolar malate accumulation
among cultivars and between pre and post-harvest stages
The model revealed possible differences in vacuolar mal-
ate accumulation among the three cultivars studied here.



Figure 7 Normalized sensitivity coefficients of the concentrations of citrate, oxalate, potassium (K), magnesium (Mg), phosphorus (P),
calcium (Ca), and chloride (Cl) in the pulp, and of temperature (T) during banana post-harvest ripening for cultivars IDN, PJB, and PL.
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During fruit growth, the value of estimated ΔGATP was a
lot more negative for cultivar PL than for the two other
cultivars, suggesting that the higher concentrations of
malate in the fruits of cultivar PL could be the result of
higher proton pumping due to a higher energy of ATP
hydrolysis. During post-harvest ripening, the model pre-
dicted a more negative ΔGATP after ethylene treatment
than before. This could be linked to the climacteric crisis.
Indeed, the dramatic increase in respiration in response to
ethylene treatment might be associated with an enhanced
level of ATP exceeding the needs of the cells [44]. Conse-
quently, the ratio of ATP to ADP might increase greatly,
making ΔGATP more negative, which would increase the
activity of the proton pumps and the accumulation of
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malate. The predicted increase in the activity of the proton
pumps during banana ripening is in agreement with the
results of Terrier et al. [45] on grape berry. The slight
decrease in malate concentration at the end of ripening
may be the consequence of a higher rate of malate leakage
across the tonoplast, as observed in grape [45]. However,
since this phenomenon was not represented in the present
model, it resulted in a less negative ΔGATP at the end of
ripening. The model predicted a significantly less nega-
tive ΔGATP for cultivar IDN than for cultivars PL and
PJB, suggesting that the lower concentrations of malate in
cultivar IDN might be due to lower proton pump activity.
Differences in malate accumulation between cultivars
PL and PJB were not due to differences in ΔGATP, but
to differences in vacuolar pH. Indeed, cultivar PL had a
higher vacuolar pH than cultivar PJB during post-harvest
ripening [18]. Vacuolar pH has contrasting effects on
proton pump activity and malate dissociation. On one
hand, increasing vacuolar pH decreases the di-anion
concentration gradient, which reduces malate accumu-
lation. On the other hand, it activates the proton pumps,
which increases the ΔΨ and consequently malate accumu-
lation. Finally, the positive effect on proton pump activity
appears to prevail over the negative effect on malate dis-
sociation. The possible involvement of vacuolar proton
pumps in the difference in acidity among cultivars has
been reported in peach [46] and in apple [7]. It should
be noted that even though we assumed a common value
of (Mal2− cyt) among cultivars, this parameter might be
cultivar dependant, which would explain some of the
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differences in malate concentrations among cultivars.
However, when we tried to fit the model with a common
value of ΔGATP but different values of (Mal2−cyt) for the
three cultivars, predictions were not in good agreement
with the data (data not shown). This supports a role for
ΔGATP in genotypic differences in malate accumulation.

Model behavior
The positive effect of potassium concentration on malate
accumulation revealed by the sensitivity analysis is in
agreement with the positive relationships found in ripe
peaches between malate content and ash alkalinity, which
is closely linked with potassium content [47,48]. The
model did not predict any effect of potassium fertilization
on malate concentration, which is in agreement with
observed data and with the fact that no significant dif-
ferences in potassium concentration in banana pulp were
found between the two treatments [19]. From a physio-
logical point of view, increasing potassium concentration
increases vacuolar pH (data not shown), which, according
to the model, activates malate transport into the vacuole
(see section Predicted variability in vacuolar malate
accumulation among cultivars and between pre and post-
harvest stages). According to the model, magnesium
and chloride concentrations can influence malate accu-
mulation, especially during fruit growth. Until now, no
experiments have been conducted on the effects these
minerals have on banana acidity, so it would be inter-
esting to check the model predictions experimentally.
The negative effect of organic acids (citrate and oxalate)
on malate accumulation is the consequence of the de-
crease in vacuolar pH (see section Predicted variability
in vacuolar malate accumulation among cultivars and
between pre and post-harvest stages). The negative effect
of temperature on the concentration of malate pre-
dicted by the model is in agreement with the results of
Lobit et al. [17], and with some observations made in
fields experiments on grape [49-51], and banana [52].
This is an interesting outcome of the model since temp-
erature can easily be adjusted during post-harvest ripening.
However, this result needs to be checked experimentally in
post-harvest conditions.

Model validity
The model was based on the hypothesis that malate di-
anion and proton transport across the tonoplast occurs
in conditions that are close to their respective thermo-
dynamic equilibrium. We can see if these hypotheses are
reasonable by checking that a number of conditions are
met. One condition is that the ΔΨ calculated under the
assumption of the model falls within the range expected
from data cited in the literature. We found that the ΔΨ
calculated with the equation of the thermodynamic equi-
librium of the di-anion malate across the tonoplast
(equation 6) or with the ATPase model (equation 7) was
between 0 and 25 mV (Figure 8), i.e. comparable with
the expected ΔΨ, which most authors estimate to be
around 30 mV [53]. Therefore, the electric conditions of
the vacuole appear to be compatible with the partition-
ing of the malate di-anion across the tonoplast in a state
of thermodynamic equilibrium, and also with ATPase
functioning in a state of thermodynamic equilibrium.
Another condition is that the malate channel and the
ATPase are not saturated; otherwise the transport of
malate and proton would be limited by kinetic consider-
ations and not just by thermodynamic considerations. In
other words, the observed rate of malate accumulation
must be lower than the maximum rate of malate transport
through the di-anion channel, and the observed rate of
proton accumulation must be lower than the maximum
rate of proton transport through the ATPase. Concerning
the malate channel, from the literature, Lobit et al. [17]
calculated a maximum rate of malate transport of around
20 mmol jour−1 Kg FW−1. From our data, it can be calcu-
lated that the maximum rate of malate accumulation dur-
ing banana development was 15 mmol jour−1 Kg FW−1.
Therefore, the assumption that the activity of the malate
transport system does not limit its storage appears to be
reasonable. Concerning ATPase, from the literature, Lobit
et al. [17] calculated a maximum rate of proton transport
of around 50 mmol jour−1 Kg FW−1. From our data on
titratable acidity [18], it can be calculated that the max-
imum rate of proton accumulation during banana devel-
opment was 27 mmol jour−1 Kg FW−1. Therefore, the
assumption that the activity of the ATPase does not limit
proton pumping appears to be reasonable.

Conclusion
In conclusion, the model proposed in this study predicted
the concentration of malate in banana pulp during post-
harvest ripening with good accuracy for three cultivars.
However, it needs to be improved to predict malate con-
centration during fruit growth, maybe by taking into
account the transport of minerals across the tonoplast,
and/or the contribution of the PPiase, and/or possible
fluctuations in cytosolic pH. The model suggested that
the significant increase in malate concentration observed
after the climacteric crisis could be due to an increase in
ATPase activity in response to a higher free energy of ATP
hydrolysis. The model also helped to dissect differences in
malate accumulation among cultivars by highlighting the
likely importance of the free energy of ATP hydrolysis and
vacuolar pH. In the future, connecting such a model with
a model of citrate prediction, and models relating titrat-
able acidity and pulp composition [18], would provide a
useful tool to study fruit acidity with an integrative view.
Finally, the present adaptation of the malate model ini-
tially developed on peach, to banana fruit, highlights the
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possible generic quality of the model and its suitability for
studying the genotypic variability and environmental regu-
lation of malate accumulation in fleshy fruits during the
pre and postharvest stages.
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