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Abstract

mutants during rapid cell elongation.

Background: Cotton fiber length is a key determinant of fiber quality for the textile industry. Understanding the
molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon lintless-1 (Li;)
and Ligon lintless-2 (Li») are monogenic and dominant mutations, that result in an extreme reduction in the length
of lint fiber to approximately 6 mm on mature seeds. In a near-isogenic state with wild type (WT) cotton these two
short fiber mutants provide an excellent model system to study mechanisms of fiber elongation.

Results: We used next generation sequencing (RNA-seq) to identify common fiber elongation related genes in
developing fibers of Li; and Li, mutants growing in the field and a greenhouse. We found a large number of
differentially expressed genes common to both mutants, including 531 up-regulated genes and 652 down-regulated
genes. Major intrinsic proteins or aquaporins were one of the most significantly over-represented gene families among
common down-regulated genes in Li; and Li, fibers. The members of three subfamilies of aquaporins, including plasma
membrane intrinsic proteins, tonoplast intrinsic proteins and NOD26-like intrinsic proteins were down-regulated in
short fiber mutants. The osmotic concentration and the concentrations of soluble sugars were lower in fiber cells of
both short fiber mutants than in WT, whereas the concentrations of K™ and malic acid were significantly higher in

Conclusions: We found that the aquaporins were the most down-regulated gene family in both short fiber mutants.
The osmolality and concentrations of soluble sugars were less in saps of Li; — Li,, whereas the concentrations of malic
acid, K" and other detected ions were significantly higher in saps of mutants than in WT. These results suggest that
higher accumulation of ions in fiber cells, reduced osmotic pressure and low expression of aquaporins, may contribute
to the cessation of fiber elongation in Li; and Li, short-fiber mutants. The research presented here provides new
insights into osmoregulation of short fiber mutants and the role of aquaporins in cotton fiber elongation.

Background

Cotton is the major source of natural fibers used in the
textile industry. Apart from its economic importance, the
cotton fiber provides a unique single-celled model system
to study cell elongation and cell wall biogenesis in the ab-
sence of cell division [1]. Cotton fiber development con-
sists of four distinct but overlapping stages, including fiber
initiation, elongation, secondary cell wall biosynthesis, and
maturation [1]. Each cotton fiber is a single cell that
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initiates from the epidermis of the outer integument of the
ovules at or just prior to anthesis [2]. Fiber elongation
starts on the day of anthesis and continues for about
3 weeks before the cells switch to intensive secondary cell
wall cellulose synthesis. Lint fibers of the economically
important Gossypium hirsutum generally grow about
30-40 mm in length. During peak elongation fiber cells
can increase in length at rates of 2 mm per day or more
depending on environment and genotype [1-3]. The fiber
cells elongate up to 3000 fold during 3 weeks which makes
them the fastest growing and longest single cell known in
higher plants [4]. Understanding the molecular basis of
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fiber elongation would provide a means for cotton breeders
and researchers to improve the fiber length while main-
taining yield and other cotton characteristics.

Genetic mutants are useful tools for studying the mo-
lecular mechanisms of fiber development. Our laboratory
uses two short fiber mutants, Ligon lintless-1(Li;) and
Ligon lintless-2 (Li) as a model system to study fiber
elongation [5-10]. Both Li; and Li, are monogenic and
dominant mutations, resulting in an extreme reduction in
the length of lint fiber to approximately 6 mm on mature
seeds [11,12]. Both mutations are located in the Dt subge-
nome of G. hirsutum: the Li; gene is on chromosome 22
[8,13,14], whereas the Li, gene is on chromosome 18
[5,10,14,15]. Cytological studies of cotton ovules did not
reveal much difference between mutants and their near-
isogenic WT lines during initiation and early elongation
up to 3 DPA [5,13]. In a fiber developmental study Kohel
and co-authors observed that the elongation pattern is
similar and restricted in both, Li; and Li, fibers [16]. How-
ever, unlike the normal morphological growth of the Li,
plants, the Li; mutant exhibits pleiotropy in the form of
severely stunted and deformed plants in both the homozy-
gous dominant and heterozygous state [8,11,12]. The
near-isogenic lines (NILs) of Li; and Li, with the elite Up-
land cotton variety DP5690 previously used in our re-
search [5,8] provide an excellent model system to study
mechanism of fiber elongation.

In our previous report we used a microarray approach
to identify common genes related to fiber elongation,
those with altered expression as a result of the Li; and
Li, mutations, growing in the field and a greenhouse [7].
We found a relatively small number; 88 genes were dif-
ferentially regulated in both short fiber mutants, which
may be due to limitations of microarray technology.
RNA-seq offers a larger dynamic range of quantifica-
tion, reduced technical variability, and higher accuracy
for distinguishing and quantifying expression levels of
homeologous copies than microarray [17]. RNA-seq
can provide a more comprehensive and accurate tran-
scriptome analysis of cotton fiber development by using
the reference genome sequence of Gossypium raimondii
Ulbr. [18].

In this study we used a RNA-seq approach for the same
goal: to determine fiber elongation related genes affected
in both mutants growing in the field and a greenhouse.
We found a larger number of differentially regulated genes
common to both mutants, and from those the major in-
trinsic proteins were significantly over-represented among
the down regulated genes. We measured the osmolality
and concentrations of major osmotic solutes in sap of fiber
cells. Although the osmolality and the concentrations of
soluble sugars were less in saps of both short fiber
mutants than in WT the concentrations of K™ and malic
acid were significantly higher in saps of mutants than in
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WT during rapid elongation time. The higher concentra-
tions of malic acid and ions suggest limited uptake of
water into fiber cells of mutants that can be result of down
regulation of major intrinsic proteins.

Results
Sources of variability in RNA-seq data
We examined genome-wide gene expression in elongating
cotton fiber cells at 8 DPA in Li;, Li, mutants and WT
under different growing conditions, in the field and green-
house. The time point 8 DPA was selected because our
earlier research revealed significant transcript and metab-
olite changes between the Li, and WT NILs during this
time of fiber development [5,6]. Approximately 1.06
billion 100 bp reads from 13 libraries, including 9 libraries
from field grown plants (this work) and 4 libraries from
greenhouse grown plants (previously reported [9]), were
trimmed with Sickle [19] and mapped to transcripts from
the G. raimondii genome reference sequence [18,20]. The
results of mapping reads are provided in Additional file 1.
Principal component analysis (PCA) was applied to ex-
plore relationships in gene expression among the samples.
According to PCA, the samples from the near-isogenic
lines and from the same lines growing in the field and a
greenhouse are separated, indicating effects of the muta-
tions and growth conditions on gene expression (Figure 1A).
To further investigate the proportion of variation in gene
expression explained by each factor, a principal variance
components analysis (PVCA) was run on the same data set.
This approach first reduces data dimensionality with PCA,
and then fits a mixed linear model to each principal com-
ponent with variance components analysis (VCA). The lar-
gest source of variability in fiber transcriptome was the
variance component L (the near-isogenic lines; weighted
average proportion of 56.4%), whereas the variance compo-
nent E (environmental factor) explained 13.8% of the total
transcriptional variance (Figure 1B).

Differential gene expression analysis

An ANOVA model for gene expression was specified in
which the measured level of gene expression in Li; and Li,
under different growth conditions was compared with gene
expression in corresponding WT. The ANOVA analysis of
transcript data is provided in Additional file 2. We found
that 4,128 genes were significantly (FDR g-value < 0.05)
up-regulated in field grown Li; fibers, whereas only 2,144
genes were up-regulated in field grown Li, fibers and 3,442
genes were up-regulated in greenhouse grown Li, fibers
(Figure 2A). The largest amount of down-regulated
genes 2,536 was detected in field grown Li; fibers,
whereas 1,740 and 1,914 genes were down-regulated in
field and greenhouse grown Li, fibers, consequently.
Only small portions of these genes were common
among up-regulated (531) and down-regulated (652) in
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Figure 1 Sources of variability in RNA-seq data. (A) Principal component analysis of RNA-seq samples from developing fibers (at 8 DPA) of Li;,
Li, and WT NILs. F: field grown plants; GH: greenhouse grown plants. (B) Proportion of the transcriptional variance explained by each variance
component. L: near-isogenic lines, Li;, Li> and WT; E: environmental factors, greenhouse and field; BR: biological replicates; and R: residual.
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all tested conditions by ANOVA model (Figure 2A). In the
following gene set enrichment analysis we focused only on
these common genes since our objective was to identify
fiber elongation related genes common between short
fiber mutants growing in the field and a greenhouse.

MapMan ontology was used for gene set enrichment ana-
lysis [21]. Two main categories (electron transport and
transport) were overrepresented among up-regulated genes
and five main categories (transport, enzyme families, cell
wall, cell and development) were overrepresented among
down-regulated genes in Li;- Li, developing fibers. Figure 2B
shows only sub-categories from the above mentioned main
categories which are significantly (Chi-square, p < 0.05) over-
represented in the Li; — Li, fiber transcriptomes. Particu-
larly, NADH dehydrogenase, cytochrome ¢ and alternative
oxidase were significantly (p < 0.0001) overrepresented sub-
categories in electron transport, whereas ABC transporters
and transport of amino acids were overrepresented sub-
categories Li; — Li, up-regulated genes. The most sig-
nificantly (p <0.0001) overrepresented sub-categories in
Li; — Li, down-regulated genes were: major intrinsic pro-
teins and transport of sulphate in transport category; and
the plastocyanin —like enzyme family.

Genes categorized into transport functional category
were overrepresented among up-regulated and down-
regulated pools of genes; however, proportions of gene
family members of transporters were different among
up-regulated or down-regulated genes. Significantly up-
regulated and down-regulated transporters in Li; — Li, mu-
tants growing in the field and a greenhouse are shown in
Tables 1 and 2. Major intrinsic proteins, sulphate and
phosphate transporters were present only among pool of
down-regulated genes, whereas proportions of amino acids
and ABC transporters were significantly higher among
pool of up-regulated genes. The sugars transporters were

not significantly more abundant among up-regulated than
down-regulated genes.

Major intrinsic proteins

Major intrinsic proteins or aquaporins were one of the
most significantly (p < 0.0001) over-represented gene family
among down-regulated genes in Li; — Li, fibers. Aquapo-
rins facilitate the efficient transport of water and other
small molecules across membranes in plants and other
organisms [22]. Cotton aquaporins form a large family
of proteins phylogenetically divided into five subfam-
ilies including: plasma membrane intrinsic proteins
(PIP), tonoplast intrinsic proteins (TIP), NOD26-like
intrinsic proteins (NIP), small basic intrinsic proteins
(SIP), and the recently identified X (or unrecognized)
intrinsic proteins (XIP) [23]. To assess which subfamily
members of aquaporins were affected by Li; — Li, mu-
tations: first, we conducted phylogenetic analysis of G.
raimondii genes annotated as aquaporins; and second,
evaluated their expression level in Li; — Li, developing
fibers. The analyzed G. raimondii aquaporins clustered
into five main clades (marked by empty squares) repre-
senting the above mentioned subfamilies (Additional
file 3). The members of subfamilies PIP (7 genes), TIP
(4 genes) and NIP (2 genes) were down-regulated in
Li; — Li, developing fibers (marked by black triangle in
Additional file 3). The most highly induced aquaporins
in WT fibers, for which transcript levels were dramatic-
ally reduced in Li; — Li, mutants, were tested by RT-
qPCR. In most cases results of RT-qPCR analysis were
consistent with results of RNA-seq analysis (Figure 3).
There were a number of aquaporins which showed in-
creased transcript level only in greenhouse grown Li,
(Additional file 4), indicating interactive response to Li,
mutation and growth conditions. However, relative
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Figure 2 Overview of differentially expressed genes in developing fibers of mutants comparing with WT under different growth
conditions. (A) Venn diagrams of significantly up-regulated genes (left) and down-regulated genes (right) in Li;/wt and Li»/wt grown in field and
greenhouse (GH). Total number of significantly regulated genes in each comparison is indicated in parentheses. (B) Gene set enrichment analysis of
common regulated genes among short fiber mutants grown in field and greenhouse. As indicated in section (A) of this figure there are 531
up-regulated and 652 down-regulated common genes. MapMan BIN structure was used for functional categorization of common regulated genes.
Shown are only the significantly overrepresented subcategories; the number of asterisks indicate the level of significance (i.e. *p < 0.05, **p < 0.001).
Relative gene frequencies in functional categories are presented in percents from amount of up-regulated or down-regulated genes; background
represents pseudo-G. hirsutum genome generated by doubling the reference G. raimondii genome. Abbreviations: ET, electron transport; and
EF, miscellaneous enzyme families.
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Table 1 Significantly up-regulated transporters in Li; and Li, mutants regardless of growth conditions

Gene-subgenome/subcategory Li;/wt F Li/wt F Li/wt GH Description

Sugars

Gorai.007G292300_A 29 1.5 1.7 sugarhydrogen symporter
Gorai.012G130400_A 25 23 1.5 mannitol transporter
Gorai.011G046300_D 17 16 19 inositol transporter 2
Gorai.005G139700_D 26 16 1.7 sucrose transporter 2

Amino acids

Gorai.009G126900_D 20 1.1 1.0 Inorganic H pyrophosphatase family
Gorai.013G148800_A 35 18 23 amino acid permease 7
Gorai.002G233100_D 1.0 13 2.1 aromatic and neutral transporter 1
Gorai.005G253300_D 13 14 12 amino acid permease
Gorai.013G148600_A 22 1.8 1.6 amino acid permease 7
Metabolite transporters at the envelope membrane

Gorai.007G313700_D 13 1.2 13 phosphate translocator 1
NDP-sugars at the ER

Gorai.008G116300_A 42 2.1 14 UDP-galactose transporter 2

Metal

Gorai.007G173100_A 2.7 22 24 zinc transporter 5 precursor
Peptides and oligopeptides

Gorai.004G290200_D 43 34 4.1 Major facilitator superfamily protein
Gorai.008G190200_D 24 13 1.7 Major facilitator superfamily protein
Unspecified cations

Gorai.010G187200_D 30 13 1.8 tonoplast dicarboxylate transporter
Gorai.012G145500_A 14 1.1 1.0 Magnesium transporter CorA-like family
Potassium

Gorai.009G055600_D 25 14 15 K+ channel tetramerisation domain

ABC transporters

Gorai.007G310800_A 22 26 1.3 multidrug resistance-associated protein 3
Gorai.007G310800_D 28 29 20 multidrug resistance-associated protein 3
Gorai.007G310700_D 24 29 23 multidrug resistance-associated protein 3
Gorai.007G310600_A 23 26 14 multidrug resistance-associated protein 3
Gorai.007G310600_D 3.0 29 2.7 multidrug resistance-associated protein 3
Gorai.001G003100_D 1.7 28 19 pleiotropic drug resistance 10
Gorai.013G154800_D 13 22 1.6 multidrug resistance-associated protein 3
Gorai.007G070500_D 20 17 12 multidrug resistance protein

Calcium

Gorai.007G021200_D 1.5 14 14 CAX interacting protein 1
Gorai.013G148900_D 1.8 23 20 cation exchanger 2

Miscellaneous

Gorai.009G306300_D 16 1.7 1.2 Auxin efflux carrier family protein
Gorai.013G014100_D 28 3.1 2.8 Auxin efflux carrier family protein
Gorai.005G179100_A 23 1.2 1.7 MATE efflux family protein

Gorai.013G170200_A 26 1.8 13 MATE efflux family protein
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Table 1 Significantly up-regulated transporters in Li; and Li, mutants regardless of growth conditions (Continued)

Gorai.009G171800_A 1.8 1.0
Gorai.009G208500_D 20 14
Gorai.009G208500_A 23 1.3

1.1 secretory carrier 3
1.2 Xanthine/uracil permease family protein

1.3 Xanthine/uracil permease family protein

Numbers represent the log base 2 ratio of mutants to wild-type expression; F, field grown plants; and GH, greenhouse grown plants.

expression level of those genes was considerably less
compared with WT expressed aquaporins as shown in
Figure 3 (1,500 reads in greenhouse Li, induced vs.
500,000 reads in WT expressed).

Osmotic concentrations and solutes in saps of Li; and Li,
fiber cells

We measured the osmotic concentration and calculated
osmotic pressure of the sap of cotton fiber cells. The sap
solution represents the average osmotic concentration of
the vacuole, the cytoplasm, and the apoplast (i.e. free-
space solution) of the fiber cells. In fiber cells the vacu-
ole occupies approximately 90% of the cell volume [4];
therefore the measured osmotic concentration values
largely represent the solute concentration of the vacu-
oles. The calculated osmotic pressure in sap of WT fibers
was steadily high during rapid fiber elongation, at 3 — 16
DPA, and significantly dropped during the transition to
the cell wall biosynthesis stage (Figure 4). The pattern of
osmotic pressure in sap of Li; fibers was similar with pat-
tern in WT; although the osmotic pressure was signifi-
cantly lower (p<0.05) at 3 — 8 DPA. In sap of Li, fibers
the osmotic pressure was significantly lower than in WT
at 3 — 5 DPA, but higher at 24 DPA.

Soluble sugars, K*, and malate are major active solutes
in elongating fibers, to which are often attributed 80% of
the fiber sap osmolality [4,24,25]. To assess which os-
motic solutes altered in the Li; and Li, developing fibers
we measured the concentrations of sugars, malic acid,
and ions in fiber sap solutions (Figure 5). Concentrations
of hexoses (D-glucose and D-fructose) were significantly
less in sap of Li; and Li, fibers compared to WT during
rapid fiber cell expansion (at 5 — 16 DPA). The level of
sucrose was low during elongation at 3 — 16 DPA in sap
of all near-isogenic lines; however, at 20 — 24 DPA the
concentration of sucrose significantly increased in Li,
and Liy, but not in WT fiber. Surprisingly, the concen-
trations of malic acid and K" were significantly (p < 0.001)
higher in sap of Li; and Li, fibers comparing to WT dur-
ing elongation (Figure 5). The concentrations of Na* were
not significantly different in saps of Li;, Li and WT. We
also measured the concentrations of Ca™ and phos-
phorus, which were significantly higher in saps of mutants
compared to WT.

Discussion

Experimental design for identification of fiber elongation
related genes

In this study we compared the transcriptomes of devel-
oping fibers of two short fiber mutants and their WT
NIL growing in the field and a greenhouse. The mutated
genes of the Li; and the Li, are yet to be discovered. A
defect in the Li; gene affected a number of traits (dwarf
deformed plants and short fiber phenotype), while the
defect in Li, gene affected only fiber length. Therefore,
the Li; and Li,, most likely, are different types of genes;
their alterations interrupt different parts of a complex
biosynthetic process, but in both cases cause a short
fiber phenotype. Both Li; and Li, mutations have an
enormous effect on the fiber transcriptomes; the largest
source of variability in the fiber transcriptome data was
due to mutations (56.4%; Figure 1B). However, altered
expression of many genes in Li; — Li, transcriptomes
can be result of chain-reactions to adverse effects of the
causative mutation, and is not necessary directly related
to fiber elongation process. Also it is known that many
fiber-related genes are environmentally regulated [26]; in
our experiment the environmental factor contributed
13.8% to the data variability (Figure 1B). Therefore, to
reduce noise in the data we selected common regulated
genes between Li;/wt and Li,/wt grown in the field and
Liy/wt grown in a greenhouse. This approach allowed
the identification of transcripts directly related to fiber
elongation process regardless of far downstream effects
of the mutations and environmental conditions.

Gene set enrichment analysis

We found a large number of differentially expressed genes
common to both mutants (Figure 2A). To gain insight into
biological processes altered by Li; — Li, mutations we used
MapMan ontology for gene set enrichment analysis. Con-
sistent with our previous microarray study, mitochondrial
electron transport functional category was over-represented
among up-regulated genes in short fiber mutants [7]. En-
richment of the cell wall functional category was expected
among down-regulated genes and described for Li; and
Liy in our previous reports [5-8]. However, strong down-
regulation of major intrinsic proteins in short fiber mutants
was not noticed before in our microarray studies, probably
due to limitations of microarray techniques. Here, we found
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Table 2 Significantly down-regulated transporters in Li; and Li, mutants regardless of growth conditions

Gene-subgenome/subcategory Li;/wt F Li/wt F Li/wt GH Description

Sugars

Gorai.009G135300_D -1.2 -13 -16 carbohydrate transmembrane transporter
Gorai.010G030700_D -15 -10 -12 sucrose transporter 4

Amino acids

Gorai.006G146500_A -2.1 -14 -39 aromatic and neutral transporter 1
Gorai.006G146500_D -20 -16 24 aromatic and neutral transporter 1
Gorai.009G453900_A -13 -1.6 -17 amino acid permease 7
Gorai.009G321600_A -10 -10 -12 proline transporter 2

Sulphate

Gorai.002G059100_A -19 =11 -25 sulfate transporter 3;4
Gorai.002G059100_D =20 -12 -20 sulfate transporter 3;4
Gorai.009G240100_A -28 -1.2 -18 STAS domain/Sulfate transporter family
Phosphate

Gorai.008G179500_A =15 =12 -3.0 EXS (ERD1/XPR1/SYGT) family protein
Gorai.010G140300_A -13 -13 -14 phosphate transporter 1,7

Metabolite transporters at the envelope membrane

Gorai.004G292400_A -1.2 -13 -12 Nucleotide-sugar transporter family protein
Gorai.008G241700_A -19 =11 -15 Nucleotide-sugar transporter family protein
Gorai.003G043000_D -17 -17 -13 uncoupling protein 5

Metal

Gorai.011G049700_D -34 -1.6 -1.8 zinc transporter 10 precursor
Gorai.003G073800_D -20 -1.2 =11 Cation efflux family protein

Peptides and oligopeptides

Gorai.007G049100_D -13 -19 -14 oligopeptide transporter 7
Gorai.007G049100_A -13 =21 -14 oligopeptide transporter 7
Gorai.009G271300_A -24 -15 -19 peptide transporter 1

Unspecified cations

Gorai.006G257200_D -39 -34 -37 sodium hydrogen exchanger 2
Gorai.002G024800_D -24 =27 -16 magnesium transporter 9

Potassium

Gorai.010G066400_A -12 -12 -1.7 K+ transporter 1

ABC transporters

Gorai.009G304900_A -1.2 -1.2 -13 pleiotropic drug resistance 6
Gorai.002G162300_A —-26 -1.9 -32 non-intrinsic ABC protein 12
Gorai.001G057400_D -16 -16 =21 pleiotropic drug resistance 12
Gorai.003G062100_D -15 -1 -36 ABC-type transporter family protein
Major intrinsic proteins

Gorai.004G001400_D -3.7 -29 -5.1 plasma membrane intrinsic protein 2;4
Gorai.002G002500_A -23 -19 =25 plasma membrane intrinsic protein 3
Gorai.002G002500_D =20 -16 =21 plasma membrane intrinsic protein 3
Gorai.002G248400_D -3.1 -26 24 plasma membrane intrinsic protein 2
Gorai.002G248400_A -19 -1.7 =21 plasma membrane intrinsic protein 2
Gorai.004G212800_A -13 -1.2 -19 plasma membrane intrinsic protein 1;4
Gorai.004G212800_D —-14 -1.1 -18 plasma membrane intrinsic protein 14
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Table 2 Significantly down-regulated transporters in Li; and Li, mutants regardless of growth conditions (Continued)

Gorai.011G098100_D =31 -19
Gorai.011G098100_A -29 -16
Gorai.013G265400_D —24 -13
Gorai.013G265400_A =21 -14
Gorai.002G245900_A =27 -24
Gorai.003G136600_A -29 -27
Gorai.007G078800_A -23 =12
Calcium

Gorai.013G196000_D -14 -13
Miscelleneous

Gorai.003G000900_D -32 -29
Gorai.003G000900_A -4.8 -39
Gorai.008G124800_D =11 -1.0
Gorai.007G212500_A =13 =23
Gorai.007G212500_D -1.7 -238
Gorai.002G230300_D -14 -18
Gorai.001G084300_D -19 -22
Gorai.003G066500_A -40 -3
Gorai.002G017400_A =21 -16
Gorai.002G017400_D =12 -13

-34 plasma membrane intrinsic protein 3
-1.7 plasma membrane intrinsic protein 3
=21 tonoplast intrinsic protein 1,3

-19 tonoplast intrinsic protein 1;3

-34 gamma tonoplast intrinsic protein

-32 tonoplast intrinsic protein 1,3

-25 NOD26-like intrinsic protein 4;2

-14 Sodium/calcium exchanger family protein
—40 Auxin efflux carrier family protein

-39 Auxin efflux carrier family protein

-14 cyclic nucleotide gated channel 1

-22 MATE efflux family protein

-18 MATE efflux family protein

-19 MATE efflux family protein

-26 MATE efflux family protein

=27 phosphoglyceride transfer family protein
=30 Secretory carrier membrane protein
-19 Secretory carrier membrane protein

Numbers represent the log base 2 ratio of mutants to wild-type expression; F, field grown plants; and GH, greenhouse grown plants.

that the major intrinsic proteins were the most down-
regulated gene family in both short fiber mutants; their role
in osmoregulation of Li; — Li, fibers is discussed below.

Osmoregulation in short fiber mutants

The rapid expansion of fiber cells requires high turgor
pressure and cell wall relaxation [4,25,27]. The force of
turgor pressure is related to the osmotic potential and to
the transport coefficient for water uptake [28]. The
maintenance of sufficient osmoticum to compensate for
dilution effects resulting from the influx of water is an
important component of sustainable cell expansion [27].
In the fiber sap of short fiber mutants we detected signifi-
cantly lower osmotic pressure than in WT. The reduced
osmotic pressure in Li; — Li, may not be sufficient to
maintain rapid and sustainable cell expansion and may
cause short fiber phenotype. Soluble sugars, K" and malic
acid are considered as major active solutes in rapidly
expanding fiber cells [4,24,25]. We detected lower concen-
trations of glucose and fructose in sap of short fiber mu-
tants than in WT that correlate with lower osmotic
pressure, suggesting sugars are the main solutes to posi-
tively impact turgor in fiber cells. Sucrose was almost un-
detectable in mutants and WT fibers during the rapid
elongation phase (3 — 16 DPA). In developing fiber cells,
sucrose is degraded into hexoses by sucrose synthase in
the cytoplasm and acid invertase in the vacuole [24,29,30].

We tested the expression levels of sugars transporters in
mutants because their regulation may cause a reduced
supply of sugars in developing fibers. However, the num-
ber of up-regulated sugars transporters in Li; — Li, was
higher than down regulated: 4 versus 2 genes, correspond-
ingly (Tables 1 and 2). Therefore, the transport of sugars is
unlikely altered in short fiber mutants. In our previous re-
port we observed significant reductions in the levels of de-
tected free sugars, sugar alcohols, sugar acids, and sugar
phosphates in the Li, metabolome; also biological processes
associated with carbohydrate biosynthesis were significant
down-regulated in the Li, transcriptome [6]. Consequently,
detection of low amount of sugars in sap of Li; — Li, fibers
might be the result of reduced de novo synthesis of sugars
in mutants.

The driving force for the transport and accumulation
of ions into the protoplast and vacuole is provided by
the plasma membrane and vacuolar H*-ATPases [27,31].
We did not detect the plasma membrane and vacuolar
H'-ATPases among common Li; — Li, up-regulated or
down-regulated pools of genes. Numbers of calcium,
potassium and other metal transporters were not signifi-
cantly different between pools of up-regulated and
down-regulated genes in short fiber mutants; except for
sulphate and phosphate transporters which were present
among down-regulated genes only (Tables 1 and 2).
Thus, ion transport in Li; — Li, is unlikely to be affected
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Figure 4 Osmotic concentration (OC) and the calculated
osmotic pressure of the sap of cotton fiber cells. Cotton fiber
cells sap was collected only from field grown plants. Error bars
represent standard deviation from 3 biological replicates.

by the mutations and proceeds normally as in wild type
plants. The higher concentrations of malic acid, K" and
other inorganic ions detected in sap of Li; — Li, can be
explained by reduced influx of water into fiber cells of
mutants (Figure 5). Since malic acid and K" (major os-
motic solutes) cannot restore the balance of water up-
take into developing Li; — Li, fibers, there is another
factor, which might be crucial for osmoregulation of cot-
ton fibers — the major intrinsic proteins (Figure 6).

The major intrinsic proteins or aquaporins were the
most overrepresented gene family among down-regulated
genes in both short fiber mutants (Table 2). The expres-
sion level of some members of PIPs and TIPs at 8 DPA of
fiber development in WT was enormous, up to 500,000
reads (Figure 3). It has been indicated in a number of
studies that the osmotic water permeability (or hydraulic
conductivity) is controlled by the activity of aquaporins.
For instance, Javot and co-authors showed that Arabidop-
sis PIP2;2 is highly expressed in several root cell types, and
that, by comparison to WT plants, the hydraulic conduct-
ivity of corresponding knock-out mutants (pip2;2) was re-
duced by 14% [32]. The hydraulic conductivity of pipI;2
mutants and pip2;1 and pip2;2 double mutants was de-
creased by 20% and 40% respectively, compared to that of
WT [33,34]. A link between aquaporins and cell growth
has also been shown in different species. Virus-induced si-
lencing of rose PIP2;1 resulted in a reduction in size of
cells and petal expansion [35]. Over-expression of a cauli-
flower TIP1-GFP fusion in tobacco suspension cells or of
ginseng TIP in Arabidopsis leaves led to an increase in cell
size [36,37]. Vacuole regeneration and cell expansion were
accelerated in protoplast prepared from BY-2 cells over-
expressing the NtTIP1;1 [38]. Knockdown of expression of
GhPIP2 genes by RNA interference in G. hirsutum mark-
edly inhibited fiber elongation [39]. Thus, the reduced
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expression of aquaporins in short fiber mutants may
reduce the influx of water into fiber cells and slow down
the elongation process (Figure 6).

Conclusions

Here, we used an RNA-seq approach to determine com-
mon fiber elongation related genes in developing fibers
of Li; and Li, mutants growing in the field and a green-
house. We found that the aquaporins were the most
down-regulated gene family in both short fiber mutants.
The osmolality and concentrations of soluble sugars were
less in saps of Li; — Li, whereas the concentrations of
malic acid, K" and other detected ions were significantly
higher in saps of mutants than in WT. These results sug-
gest that higher accumulation of ions in fiber cells, re-
duced osmotic pressure and low expression of aquaporins,
may contribute to the cessation of fiber elongation in Li;
and Li, short-fiber mutants.

Methods

Plant materials

Two mutant lines Li; and Li, in a near-isogenic state
with the WT upland cotton line DP5690 were developed
in a backcross program at Stoneville, MS as described
before [5,8]. The growing period for the greenhouse
grown Li, plants was between October, 2009 and March,
2010; planting and growth conditions were previously
described [5]. For the field grown plants, a total of 150
Lij;, 100 Li,, and 100 WT plants were grown in a field at
the USDA-ARS Southern Regional Research Center,
New Orleans, LA in the summer of 2013. All samples of
the same developmental stage were tagged and collected
on the same day. Cotton bolls were harvested at 3, 5, 8,
12, 16, 20, and 24 DPA. Bolls were randomly separated
into 3 replicates with 15-30 bolls per replicate.

RNA isolation and reverse transcription quantitative
polymerase chain reaction (RT-qPCR)

Total RNA was isolated from detached fibers [40] using the
Sigma Spectrum Plant Total RNA Kit (Sigma-Aldrich, St.
Louis, MO) with the optional on column DNasel digestion
according to the manufacturer’s protocol. The concentra-
tion of each RNA sample was determined using a Nano-
Drop 2000 spectrophotometer (NanoDrop Technologies
Inc., Wilmington, DE). The RNA quality for each sample
was determined by RNA integrity number (RIN) using an
Agilent Bioanalyzer 2100 and the RNA 6000 Nano Kit Chip
(Agilent Technologies Inc., Santa Clara, CA) with 250 ng of
total RNA per sample. RNA from each of the above men-
tioned time-points was used for RT-qPCR analysis. A de-
tailed description of reverse transcription, qPCR and
expression analysis was previously reported [9]. Sequences
of primers used for qPCR are listed in Additional file 5.
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Deep sequencing and differential gene expression

Library preparation and sequencing were performed by
Data2Bio LLC (Roy J. Carver Co-Laboratory, Ames,
Iowa). The libraries were sequenced using 101 cycles of
chemistry and imaging, resulting in paired end (PE) se-
quencing reads with length of 2 x 101 bp. For the green-
house grown Li, plants samples were sequenced in two
biological replicates (sequencing and data were described
elsewhere [9]). For the field grown Li;, Li, and WT
plants RNA samples from cotton fiber at 8 DPA were se-
quenced in three biological replicates. The 8 DPA was
chosen because it is the peak of fiber elongation phase
according to our earlier studies [5,6,8]. RNA-seq expres-
sion analysis was conducted following the PolyCat pipeline
[20]. Briefly, all reads were aligned to the JGI Gossypium
raimondii reference genome [18], then the PolyCat soft-
ware assigned each categorizable read to either the A or D
subgenome based on an index of homeoSNPs. We followed
two adjustments previously described [10], particularly: 1)
we only counted exonic reads; 2) we used the ratio of A-
assigned to D-assigned reads to proportionally divide the
total number of mapped reads for each gene which ensures
that unassigned reads contribute to the total expression of
genes. The data normalization and ANOVA process were
conducted as previously described [9]. Principal component
analysis (PCA) was conducted using JMP Genomics 7 soft-
ware (SAS Institute Inc., Cary, NC, USA). Transcript data
for each sample were used as continuous variables.

Principal variance component analysis (PVCA) reduces the
dimensionality of the data set with PCA, and then fits a
mixed linear model to each principal component to parti-
tion variability with variance components analysis (VCA).
A summary of variance components across all principal
components is constructed as a weighted average of the in-
dividual estimates, using eigenvalues as weights [41].

Osmotic concentration measurement of cotton fiber saps
Saps were collected from cotton fiber cells from the each
time point mentioned above. From short fiber ovules fi-
bers were collected by shaking ovules frozen in liquid ni-
trogen. Fibers from long fiber ovules were pulled off by
forceps. For each replicate, about 200 mg of frozen fibers
were thawed on ice. Sap was separated by centrifugation
at 5,000 g for 1 min [30]. The osmotic concentration of
cotton fiber sap was measured using a vapour pressure
osmometer, VAPRO-5600 (WESCOR INC.,, South Logan,
UT, USA) in three biological replicates as previously de-
scribed [30]. The osmotic pressure (MPa) was calculated
from the osmotic concentration using the equivalence
2.44 MPa per 1 Osmol kg™ (25°C) [42].

Measurement of sugars and malic acid concentrations in
cotton fiber saps

Concentrations of sucrose, D-fructose and D-glucose in
cotton fiber saps were measured using enzyme assay kit
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K-SUFRG (Megazyme International, Ireland) according to
the manufacturer’s instructions. Sap samples were diluted
50 times in water for sugar determination. Concentration
of L-malic acid in cotton fiber sap was measured using
enzyme assay kit K-LMALR (Megazyme International,
Ireland) according to the manufacturer’s instructions. Sap
samples were diluted 5 times in water for malic acid
determination.

Measurement of ions in cotton fiber saps

Potassium, sodium, calcium and phosphorous contents
were determined using Prodigy High Dispersion In-
ductively Coupled Plasma Optical Emission Spectrom-
eter (ICP-OES, Teledyne Leeman Labs). A series of
KNO3;, Na,CO3;, CaO and H3PO, concentrations (di-
luted in 2% nitric acid) were used as standards. The
nitric acid digestion of sap samples was conducted ac-
cording to method reported elsewhere [43]. Particu-
larly, 1 ml of pure grade 20% nitric acid was added to
200 pl of sap in an acid-washed plastic test tube. The
sealed tube containing sap acid solution was incubated
at 65°C for at least 12 hours. The digested sap solution
was diluted with 2% nitric acid and analyzed with ICP-
OES in three technical replicates.

Availability of supporting data

RNA-seq data from developing fibers (at 8 DPA) of field
grown plants from two short-fiber mutants, Li; and Li,
and their NIL G. hirsutum DP5690 are available in the
NCBI SRA archive (accession # PRINA273732).

Additional files

Additional file 1: The results of mapping reads.
Additional file 2: The ANOVA analysis of RNA-seq data.

Additional file 3: Phylogenetic analysis of G. raimondii aquaporins.
The evolutionary analysis of G. raimondii aquaporins was conducted in
MEGAG [44] using the Neighbor-Joining method [45]. The percentage
of replicate trees in which the aquaporin genes clustered together in
the bootstrap test (1000 replicates) are shown next to the branches
[46]. The tree is drawn to scale, with branch lengths in the same units
as those of the evolutionary distances used to infer the phylogenetic
tree. The evolutionary distances were computed using the Poisson
correction method [47] and are in the units of the number of amino
acid substitutions per site. The analysis involved 59 amino acid
sequences. All positions containing gaps and missing data were
eliminated. There were a total of 48 positions in the final dataset.
Sequence for the aquaporin GhPIP2;6 previously characterized G.
hirsutum can be found in GenBank database under the following
accession number: FJ646597.

Additional file 4: RNA-seq and RT-qPCR analyses of transcript level
of members of the aquaporin family which were induced in Li; in
greenhouse growth environment. Error bars indicate standard deviation
from 2 biological replicates for RNA-seq data and 3 biological replicates for
RT-gPCR. Abbreviations: F, field grown plants; GH, greenhouse grown plants;
PIP, plasma membrane intrinsic proteins; and PIP, tonoplast intrinsic
proteins.
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Additional file 5: Sequences of primers used for RT-qPCR expression
analysis.

Abbreviations

Liy: Ligon lintless-1; Li: Ligon lintless-2; DPA: Day post-anthesis; NILs:
Near-isogenic lines; WT: Wild type; PIP: Plasma membrane intrinsic protein;
TIP: Tonoplast intrinsic protein.
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