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Abstract

Background: Plant breeding has been proposed as one of the most effective and environmentally safe methods to
control fungal infection and to reduce fumonisin accumulation. However, conventional breeding can be hampered
by the complex genetic architecture of resistance to fumonisin accumulation and marker-assisted selection is
proposed as an efficient alternative. In the current study, GWAS has been performed for the first time for detecting
high-resolution QTL for resistance to fumonisin accumulation in maize kernels complementing published GWAS results
for Fusarium ear rot.

Results: Thirty-nine SNPs significantly associated with resistance to fumonisin accumulation in maize kernels were found
and clustered into 17 QTL. Novel QTLs for fumonisin content would be at bins 3.02, 5.02, 7.05 and 8.07. Genes with
annotated functions probably implicated in resistance to pathogens based on previous studies have been highlighted.

Conclusions: Breeding approaches to fix favorable functional variants for genes implicated in maize immune response
signaling may be especially useful to reduce kernel contamination with fumonisins without significantly interfering in
mycelia development and growth and, consequently, in the beneficial endophytic behavior of Fusarium verticillioides.
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Background
Maize kernels can be contaminated with many myco-
toxins produced by different fungi species, most species
belonging to the genera Aspergillus, Penicillium or Fu-
sarium. Concern about kernel contamination with fumo-
nisins is world-wide spread because these toxins are
biosynthesized by species of the Gibberella fujikuroi
complex, such as Fusarium proliferatum (Matsushima),
F. subglutinans (Wollenw. & Reinking) and F. verticil-
lioides (Sacc.) Nirenberg, which infect maize kernels all
around the world [1]. Fumonisins have proven toxicity
on animals and have been classified as possibly carcino-
genic to humans by the International Agency for Re-
search on Cancer [2]. The search for strategies to reduce
maize kernel contamination with fumonisins became a
priority in many places of the world just few years after
fumonisins were discovered [3], and plant breeding has
been proposed as one of the most effective and

environmentally safe methods to control fungal infection
and to reduce fumonisin accumulation [4, 5]. However,
conventional breeding can be hampered by the complex
genetic architecture of resistance to fumonisin accumu-
lation that appears to be controlled by many quantitative
trait loci (QTL) of small effect [1]. In an attempt to
avoid this problem, authors have tried to find markers
linked to genes involved in resistance to Fusarium ear
rot (FER) and/or fumonisin contamination to use them
in marker-assisted selection programs [6–12]. Many
studies were focused on detecting QTL for resistance to
FER; QTL were identified in all chromosomes, except in
chromosome 9. However, there are only two studies in
which QTL for resistance to fumonisin contamination in
maize kernels were located along with QTL for FER; au-
thors pointed out that many QTL detected were associ-
ated with both disease traits [8, 13]. As, in addition,
genotypic correlation coefficients reported between
fumonisin accumulation and FER were high, ranging
from 0.87 to 0.99, selection for resistance to FER has
been proposed as a simpler method to reduce indirectly
kernel contamination with fumonisins [14–17]. How-
ever, Eller and coauthors [18] performed selection for
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resistance to FER and concluded that selection for re-
duced FER could have limited effectiveness to improve
resistance to fumonisin accumulation. In view of these
results, more QTL studies to detect specific genomic re-
gions involved in resistance to maize contamination with
fumonisins are needed.
QTL mapping using linkage mapping in biparental pro-

genies is a powerful tool to uncover genomic regions in-
volved in the inheritance of a particular trait, but the QTL
resolution is low. Therefore, as the lack of tight linkage be-
tween markers and QTL could compromise the usefulness
of marker-assisted selection (MAS), fine mapping of de-
tected QTL is often addressed before conducting MAS.
Fine mapping allows breeders to significantly reduce the
confidence interval for QTL position and, at the end, to
locate the gene or genes behind the QTL; but it is expen-
sive and time-consuming. In this context, genome-wide
association study (GWAS) using inbred line panels ap-
pears as an effective alternative to this step-by-step ap-
proach for detection of genes involved in resistance to
maize kernel contamination with fumonisin. GWAS has
been extensively used for detecting associations between
molecular markers and resistance to FER or to seedling
infection [19–26]. Novel maize loci significantly associated
with improved resistance to FER were identified, each
locus explaining a small proportion of phenotypic variabil-
ity. As the alleles conferring greater disease resistance
were rare and present in higher frequencies in tropical
maize, GWAS has been proposed as a useful tool for iden-
tifying specific FER resistance allele variants in tropical
maize germplasm to introgress them into temperate dent
germplasm [19, 20]. In the current study, GWAS has been
performed for the first time for detecting high-resolution
QTL for resistance to fumonisin accumulation in maize
kernels.
Candidate genes for maize resistance to FER have been

proposed in transcriptome, proteome, and metabolome
studies deployed to study maize response to infection by
Fusarium verticillioides in genotypes with contrasting
levels of resistance to FER [27–35]. Genes with differen-
tial transcript accumulation between resistant and sus-
ceptible inbreds at control conditions as well as those
specifically induced or downregulated in resistant geno-
types after inoculation can be considered as valuable re-
sources to uncover maize resistance mechanisms to
FER, especially when they are located in genomic re-
gions containing QTLs. In the present study, this
complete information has been taken into account in
order to propose candidate genes for the high-resolution
QTL detected for fumonisin contamination.

Results
Genetic heritability for fumonisin content in the kernels
(0.42 ± 0.08), estimated on an entry mean basis, was low

but significantly different from zero. Genotype x envir-
onment interaction was also highly important for this
trait (Table 1), but the phenotypic mean across environ-
ments would finely correspond to genotype performance
because genotype x environment significant effects have
been rather attributed to heterogeneity of genotypic vari-
ances than to the lack of correlation of genotype per-
formance in different environments [14, 36]. Dispersion
of data was higher in 2011 than in 2010 (Additional file 1:
Figure S1), but Spearman correlation coefficients be-
tween the averaged fumonisin contents and those deter-
mined in 2010 and 2011 experiments were 0.834 and
0.830, respectively. BLUE values of inbreds CML158Q,
Pa875, CML218, CML228, Mo18W, GT112 and HP301
(belonging to different germplasm groups [37]) were in
both years below 10.
The phenotypic correlation between fumonisin con-

tent and FER was not significant (0.40 ± 0.32), mean-
while the genotypic correlation between both traits was
higher and significant (0.88 ± 0.11). However, no
co-localizations of QTLs for fumonisin content and FER
were observed (Data not shown). Phenotypic (− 0.18 ±
0.05) and genotypic (− 0.41 ± 0.11) correlation coeffi-
cients between fumonisin content and days to silking
were negative and significant.
The 256 inbreds were clustered into 11 groups using the

optimum compression option in TASSEL, and the back-
ground genetic effects, modeled by the kinship matrix,
accounted for the 29% of phenotypic variation for fumoni-
sin content. The “goodness of fit” of the MLM used is
shown in the Fig. 1; the outliers, as expected, were situated
on the upper part of the Q-Q plot and were scattered
across all chromosomes (Figs. 1 and 2). However, only
thirty-nine of those outliers surpassed the RMIP threshold
of 0.5 and could be considered as reliably associated with
fumonisin accumulation in the kernels (Table 2). Signifi-
cant SNPs were grouped into a unique QTL when they
were located in a genomic region in linkage disequilibrium
(r2 > 0.4), resulting in 17 QTLs for fumonisin accumula-
tion (Table 2). Significant SNPs for resistance to fumonisin
accumulation in maize kernels were found in bins 1.07,
1.09, 2.08, 3.02, 3.04, 3.05, 3.06, 3.08, 3.09, 4.02, 4.05, 5.02,
6.07, 7.05, 8.07, 9.03. In general, no LD (r2 > 0.4) was
found among SNPs associated with different QTLs, except
between SNPs in QTLs at chromosomes 3 and 4 (Fig. 3).
The supporting intervals for the QTL ranged from

thousands to millions of bp and were positioned in the
B73 genome v2 (RefGen_v2) (ftp://ftp.ensemblgenomes.
org/pub/plants/release-7/fasta/zea_mays/dna/) as well as
in the B73 genome v4 (RefGen_v4) [38] (Table 2 and
Additional file 2: Table S1). All genes located within the-
supporting interval (based on RefGen_v4) of each QTL
were considered as candidate genes for that QTL
(Additional file 2: Table S1), and genes with annotated
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functions probably implicated in resistance to pathogens
based on previous studies will be discussed. No candi-
date genes, except the SNP-containing genes, are pro-
posed for QTL located in genomic regions where
linkage disequilibrium is high and confidence interval
spans more than 2 Mbp, such as those in bins 4.05 and
9.03.

Discussion
Differences among inbreds for fumonisin content in the
kernels were significant and the genetic heritability for
fumonisin content in the kernels was low but signifi-
cantly different from zero showing that there is additive
genetic variability among inbreds for resistance to fumo-
nisin accumulation. The heritability for fumonisin con-
tent was similar to those reported by Hung and Holland
[39], but smaller than those observed in genetically
narrower populations [14–16]. Low heritability for
fumonisin contamination stresses the importance of
implementing marker-assisted selection methods based
on stable QTLs in order to increase maize resistance to
kernel contamination. In this scenario, marker-assisted
selection would be even more efficient than arduous and
expensive selection programs based on the phenotype.
The lack of significant phenotypic correlation between

fumonisin content and FER could be due to low

pathogenicity of the isolate or/and climatic conditions that
would not be favorable for disease spread since, in the
same experiments, reported FER values for the same in-
breds were moderate [19], while those conditions would
be more favorable for fumonisin accumulation because
the average mean for kernel contamination was 58.4 ppm
[one third of inbreds presented mean values above 50
ppm, meanwhile approximately 10% of inbreds presented
values below 10 ppm]. Then, conducive conditions for
fumonisin accumulation but not for disease development
could account for the lack of phenotypic correlation be-
tween both traits, contrarily to reported results [1], and no
detection of QTL for FER [19] using the same experimen-
tal trials.
In previous studies, positive correlation coefficients

between days to silking and fumonisin accumulation
were found [13, 14]; meanwhile, in the current study,
the genotypic correlation coefficient between fumonisin
content and days to silking was negative. However,
co-localization of QTLs for fumonisin content (Table 2)
and days to silking (data not shown) occurred in the
interval 5,405,928-5,466,378 of chromosome 4 and al-
leles for increased fumonisin content and days to silking
appeared to be linked in coupling phase. We hypothesize
that population structure could be responsible for the
significant and positive genotypic correlation coefficient

Table 1 Analysis of variance of a panel of 256 maize inbred lines for fumonisin content in the kernels evaluated in a two-year experiment

Covariance parameters Estimate Standard error Z value p-value

Year (Y) 0

Replication(Y) 179.15 225.60 0.79 0.2136

Block(R*Y) 523.10 365.94 1.43 0.0764

Y*Inbred 2769.75 891.88 3.11 0.0009

Residual 11,189 823.84 13.58 <.0001

Fixed effect Numerator DF Denominator DF F value p-value

Inbred 256 235 1.72 < 0.0001

Fig. 1 Quantile–quantile plots of a mixed linear model for kernel contamination with fumonisins in a panel of maize inbred lines
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observed between both traits in the current study be-
cause tropical maize inbreds are later and show higher
frequencies for resistance alleles to FER [20]. Therefore,
after removing random genetic variation (variation ex-
plained by additive relationship matrix), linked genetic
variants for increased accumulation of fumonisin and
delayed maturity can be found.
The 39 SNPs significantly associated with fumonisin ac-

cumulation in the maize kernels were grouped in 17
high-resolution QTLs and, at least, four of them would be
behind novel QTL not reported in previous studies [8,
13]. These novel QTLs for fumonisin content would be at
bins 3.02, 5.02, 7.05 and 8.07. Genomic regions signifi-
cantly associated with FER in previous GWAS did not
overlap, in general with QTL supporting intervals for ker-
nel contamination with fumonisins, excepting particular
regions in bins 3.08, 4.05, 7.05, and 9.03 [19–25]. There-
fore, These QTL could be especially useful to reduce ker-
nel contamination with fumonisins without significantly
interfering in mycelia development and growth and,
consequently, in the known beneficial endophytic behavior
of Fusarium verticillioides. Fusarium verticillioides has
already been proved as contributor to host fitness through
growth promotion and induction of defense-associated
changes such as lignin deposition in the cell wall at seed-
ling stage and growth increased in mature plants [40–43].
However, due to the polygenic nature of genetics for
maize fumonisin contamination, breeding should rather
be based on genomic selection (GS) models than on
marker-assisted approaches focused on fixing exclusively
favorable genetic variants for the QTL detected. However,
precisely mapped QTL could improve genomic prediction
accuracy using stepwise linear regression mixed model to
unify GWAS and GS in a single statistical model [44].

Candidate genes
QTL supporting interval comprises the QTL-surround-
ing region in LD (r2 > 0.4). All genes contained in the

supporting interval were considered as candidate genes
and identified and characterized by the use of the Mai-
zeGDB genome browser. However, discussion will be
mainly focused on genes with annotated functions prob-
ably implicated in resistance to pathogens.
Toxin biosynthesis seems to be coupled to

colonization of the host and some Fusarium verticil-
lioides genes with important roles in both processes
have been characterized [40, 45, 46]. For example, the
gene FUG1 plays a role in mitigating stresses associ-
ated with the host environment, being a critical com-
ponent of the genetic regulatory network underlying
maize kernel pathogenesis and fumonisin biosynthesis.
Accordingly, it is expected that some host genes in-
volved in defense against fungal disease would be also
implicated in toxin modulation.
Plants have an innate immunity system to defend them-

selves against pathogens [47]. Pattern triggered immunity
(PTI) or basal defense response is mediated by plant
pattern recognition receptors (PRRs) that recognize
pathogen-associated molecular patterns (PAMPs), but
plant pathogens can suppress this basal defense response
by effectors which contribute to pathogen virulence. How-
ever, a secondary immune response, effector-triggered im-
munity (ETI) mediated by resistance proteins (RPs) that
recognize effector-induced perturbations of host targets, al-
lows plants to stop pathogen growth. In addition, during
induction of local immune responses, systemic acquired re-
sistance (SAR) can become activated. PTI seems to play a
primary role in the resistance of maize to Fusarium verticil-
lioides, and maize resistance would be achieved somehow
through PTI-induced acquired systemic immunity where
ABA, SA, and JA hormone signaling pathways can be in-
volved [33]. Therefore, genes directly implicated in the im-
mune plant response deserve special attention as preferred
candidate genes for the significant associations found.
Zm00001d042659 (at ≈ 175 Mbp in chromosome 3 of

the RefGenB73_v4) has been annotated as a protein

Fig. 2 Manhattan plot of a mixed linear model for kernel contamination with fumonisins in a panel of maize inbred lines

Samayoa et al. BMC Plant Biology          (2019) 19:166 Page 4 of 11



Table 2 Summary of Genome-wide association study (GWAS) for kernel resistance to fumonisin contamination using a maize inbred
panel evaluated under inoculation with Fusarium verticillioides in two years

QTL Bin1 Allele+ R2 QTL SI SNP position2 p-value RMIP containing-SNP gene_v23 containing-SNP gene_v4

1 1.07 0.95 0.11 220,709,603–222,205,493 220,941,497 9.04*10−9 0.80 GRMZM2G078401 Zm00001d032372

2 1.09 0.93 0.08 256,662,974–256,798,243 256,669,820 7.85*10−7 0.56 GRMZM2G149028 Zm00001d033386

256,692,784 2.56*10−7 0.63 GRMZM2G100448 Zm00001d033388

256,692,818 2.54*10−7 0.63

256,693,243 2.56*10−7 0.63

3 2.08 0.93 0.07 213,583,622–213,815,822 213,588,927 3.84*10−7 0.51 GRMZM2G422576 Zm00001d007029

213,588,940 3.72*10−7 0.51

4 3.02 0.94 0.09 6,970,377–7,206,031 7,119,636 1.25*10− 8 0.58 GRMZM2G104176 Zm00001d039513

5 3.04 0.91 0.10 15,040,634–15,127,310 15,056,252 1.85*10−7 0.70 GRMZM2G165044 Zm00001d039769

15,057,326 5.40*10−9 0.74

15,057,331 2.59*10−8 0.64

15,057,578 2.25*10−8 0.73

6 3.05 0.93 0.09 147,969,891–148,289,200 147,971,443 4.11*10−9 0.69 GRMZM2G701801 Zm00001d042061

7 3.06 0.94 0.11 169,052,376–169,117,125 169,073,710 1.04*10−10 0.60 GRMZM2G026855 Zm00001d042555

169,073,715 1.04*10−10 0.60

169,073,720 1.05*10−10 0.60

169,078,446 4.77*10−9 0.56

8 3.06 0.93 0.08 173,006,714–173,381,106 173,283,279 5.89*10−7 0.53 GRMZM2G060255 Zm00001d042658

9 3.08 0.91 0.10 206,261,823–207,246,656 206,605,245 1.22*10−6 0.56 GRMZM2G169654 Zm00001d043782

4.68*10−8 0.62 GRMZM2G028467 Zm00001d043801

10 3.09 0.89 0.09 217,324,678–217,572,395 217,558,124 2.46*10−8 0.53 GRMZM2G042421 Zm00001d044173

11 4.02 0.93 0.08 5,405,928–5,466,378 5,406,694 2.03*10−7 0.57 GRMZM2G154414 Zm00001d048837

5,410,388 2.09*10−7 0.55

12 4.05 0.87 0.12 centromere 82,892,426 3.60*10−8 0.58

82,892,436 3.60*10−8 0.58

82,892,557 3.60*10−8 0.58 GRMZM2G111117 Zm00001d050400

83,027,805 3.60*10−8 0.58 GRMZM2G178169 Zm00001d050401

83,033,318 3.60*10−8 0.58

83,572,578 2.10*10−8 0.74 AC198937.4_FG005 Zm00001d050410

83,738,156 2.11*10−8 0.77

84,453,345 3.44*10−8 0.73 GRMZM2G123362 Zm00001d050434

88,069,675 2.54*10−8 0.56

88,098,841 2.50*10−8 0.52

96,545,683 1.17*10−7 0.54 GRMZM2G140095 Zm00001d050575

13 5.02 0.95 0.08 14,815,481–14,839,860 14,839,828 6.99*10−9 0.58 GRMZM2G066449 Zm00001d013611

14 6.07 0.90 0.10 164,365,931–164,378,580 164,369,763 3.76*10−9 0.61 GRMZM2G038183 Zm00001d038998

15 7.05 0.93 0.10 171,058,866–171,182,450 171,182,417 2.89*10−9 0.64 GRMZM2G009021 Zm00001d022400

16 8.07 0.85 0.10 167,189,708–167,286,546 167,284,361 3.19*10−9 0.54 GRMZM2G177324 Zm00001d012329

17 9.03 0.91 0.09 centromere 87,360,835 1.88*10−8 0.50 GRMZM2G159641 Zm00001d046455
1Bin in which QTLs are located; Allele+ stands up for the frequency of favorable allele; R2 for the proportion of the phenotypic variance explained by the QTL; QTL
SI for the supporting interval of the QTL on the RefGenB73_v2, region in which appreciable linkage disequilibrium is observed between SNPs (r2 > 0.4), SI could
not be visualized using LD plots from TASSEL when SNP were localized in centromeric regions where LD is extremely high
2SNP position for the position in bp of the significant SNP on the RefGenB73_v2; p-value for the association between polymorphic variation at the SNP and
phenotypic variation for fumonisin content; RMIP for resample model inclusion probability
3Filtered genes in the RefGenB73_v2 and RefGenB73_v4 versions of the B73 sequence that contain the significant SNP (or the closest filtered gene in bold)
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SRC2-like protein gene and, consequently, could be im-
plicated in recognition of PAMPs because, in pepper, a
SRC2 protein acts as a required interacting partner of a
fungal elicitor of the immune response [48]. L-type
lectin-domain containing receptor kinases have been
proposed as plant sensors of pathogen invasion and,
consequently, the gene Zm00001d043781, annotated as
an L-type lectin-domain containing receptor kinase IV.1
gene, could be a good candidate gene for the QTL at
3.08 [49].
The largest class of resistance proteins involved in ETI

response consists of nucleotide-binding-leucine rich re-
peat (NB-LRR) proteins. In Arabidopsis, the gene LOV1
encodes a typical NB-LRR but this protein is unique be-
cause it confers sensitivity to the fungal toxin victorin and
susceptibility to the fungus Cochliobolus victoriae. In the
current study, a putative inactive disease susceptibility

protein LOV1 (Zm00001d032376) gene is located within
the confidence interval of QTL at 1.07 and is proposed as
probable candidate gene for that QTL.
Similarly, genes involved in plant immune response

signaling could contribute to plant resistance. Salicylic
acid is a defense hormone required for both local and
systemic acquired resistance (SAR) in plants. Salycilic
acid is synthesized from chorismate, the end product of
the shikimate pathway, although the complete biosyn-
thetic route has yet to be established. Then, genes in-
volved in chorismate biosynthesis and in the response to
pathogen effector proteins, such as phospho-2-dehy-
dro-3-deoxyheptonate aldolase genes, are good candidate
genes for the QTL detected [50, 51]. Gene
Zm00001d013611 has been proposed as a phospho-2-de-
hydro-3-deoxyheptonate aldolase 2, chloroplastic-like
gene and could be behind the QTL at 5.02. Besides

Fig. 3 Linkage disequilibrium between SNPs significantly associated with fumonisin content
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structural genes of the chorismate pathway, genes with
proven regulatory role can be highlighted as candidate
genes. Zm00001d032368 which codifies for Protein SAR
DEFICIENT 1 (SARD1) is a good candidate for the QTL
found in 1.07 because SARD1 has been reported as a
positive regulator required for salicylic acid accumula-
tion [52]. The gene Zm00001d033389 is proposed as the
preferred candidate gene for QTL at 1.09 (contained in
the confidence interval of the QTL that spans from
261,226,685 to 261,380,422 in RefGen_v4) because codi-
fies for a VQ motif family protein. Members of the VQ
family play either positive or negative roles in SA- and/
or JA-mediated plant immune responses [53].
As auxin can interfere with plant defense circuitry

through antagonism with SA signaling [54], another set of
interesting genes for future validations comprised genes
with proven or probable functions in auxin signaling
[Zm00001d039513 (Aux/IAA-transcription factor 7 at bin
3.02), Zm00001d044172 (srph1 - SGT1 disease resistance
homolog1at bin 3.09), and Zm00001d022400 (F-box pro-
tein SKIP5 gene at bin 7.05)] [55] and auxin signal
transduction [Zm00001d048841 (probable patatin-like
phospholipase gene at bin 4.02)] [56]. The possible effect
of genes modulating auxin signaling and transport on
maize seedling resistance to Gibberella stalk rot caused by
Fusarium graminearum has already been shown [57]. In
general, modulation of plant disease resistance by auxin
and/or its signaling pathway has been proposed based on
results from many pathogen-host interactions [54]. Finally,
it has also been shown that canonical cell cycle regulators
such as cyclin-dependent kinase inhibitors form part of
signaling pathway directly involved in ETI and could also
contribute to basal resistance [58]. Therefore, Zm00
001d048837 and Zm00001d013610 annotated as likely
cyclin-dependent kinase inhibitors could be stressed as
candidate genes for QTL at 4.02 and 5.02, respectively,
and deserve especial attention.
In addition to salicylic acid, plant lipid metabolites are

important signal molecules in local and systemic defense
against pathogens [59]. More specifically, fungal and
plant oxylipins (including the well-known jasmonic
acid), produced via the oxidation of polyunsaturated
fatty acids, have a primordial role as signals in plant–
pathogen ecosystems [60]. Fungal oxylipins attempt to
reprogram PTI and, in turn, the host counteracts by pro-
ducing its own oxylipins to impede pathogen infection:
However, fungal oxylipins can also induce Effector
Triggered Susceptibility (ETS) by activating genes of the
host oxylipin pathway, such as ZmLOX3, that suppress
defense-related branches of the maize oxylipin pathway
and favor Fusarium verticillioides virulence and fumoni-
sin accumulation [60, 61]. Sphingolipids, also play an
important role in the regulation of the delicate arm race
between the microbe and the host in mammals. A

similar involvement of sphingolipids in immune plant re-
sponse signaling could be hypothesized based on scarce
studies that identify genes implicated in sphingolipid me-
tabolism as important factors in resistance to fungal infec-
tion [62, 63]. Under field conditions, it has been stablished
that oxilipin and sphingolipid metabolism in maize kernels
interferes with Fusarium verticillioides growth and fumo-
nisin production; early activation of plant lipoxygenase
genes and genes for jasmonic acid biosynthesis appear im-
portant factors for conferring resistance [35, 64, 65].
Therefore, Zm00001d039768 (Acyl-coenzyme A oxidase 4
peroxisomal gene) is proposed for the QTL at 3.04 which
contains significant SNPs S3_15,056,252, S3_15,057,326,
S3_15,057,331, and S3_15,057,578; and Zm00001d044175
(Neutral/alkaline non-lysosomal ceramidase gene) is pro-
posed for the QTL at 3.09.
Finally, another lipid component of the plant, the cu-

ticle, could also play an important role in plant defense
against attack by fungi. The plant cuticle is a protective
sheathing produced by epidermal cells of aerial plant or-
gans that provides the first barrier that fungi must over-
come in order to get into the plant tissue. However, the
cuticle also provides chemical and physical cues that are
necessary for the development of essential infection
structures for many fungal pathogens and perception of
cuticle alterations by fungi could be essential for pro-
moting plant defenses [66]. In rice, an abnormal cuticle
formation may affect the signaling of plant defense
against the hemibiotrophic fungus, Magnaporthe oryzae
[67]. Therefore, the gene myb28 (Zm00001d050400)
which is orthologous to the Atmyb16 gene that partici-
pates in the regulation of cuticle biosynthesis in Arabi-
dopsis [68] could be a good candidate for the QTL at
4.05.
There are numerous pathogenesis-related changes that

follow PAMP perception, such as rapid in fluxes of cyto-
solic Ca+2and production/accumulation of reactive oxy-
gen species (ROS). Genes involved in protection of plant
tissues against oxidative damage and ROS detoxification
could be important in maize defense against Fusarium ver-
ticillioides; the constitutive higher antioxidant content in
resistant genotypes seeming crucial in maize kernels in
preparation of pathogen attack [34]. Therefore, genes in-
volved in ROS production and ROS-scavenging and
ROS-detoxification could be also good candidates:
Zm00001d042061 (a probable NADPH: quinone oxodore-
ductase gene) was suggested as candidate gene for the QTL
at 3.05; Zm00001d042555 (a putative alcohol dehydrogen-
ase gene) for the QTL at ≈ 171 Mbp in chromosome 3 of
the RefGenB73_v4 (bin 3.06); Zm00001d043787,
Zm00001d043789, and Zm00001d043795 (glutathione
transferase genes) and Zm00001d043782 [ZmRav1, that
might improve stress tolerance through the regulation of
the expression of genes involved in ROS scavenging [69]]
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for the QTL at 3.08; and the gene Zm00001d046455 (a
gene codifying for a protein with predicted oxidoreductase
and transferase activities) for the QTL at 9.03.
Lanubille and coauthors observed that the response of a

resistant genotype to kernel infection by Fusarium verticil-
lioides was characterized by a constitutive expression, and
by a prompt and enhanced induction of some key genes
[30]. Therefore, candidate genes in the current GWAS, that
were differentially transcribed at control conditions in re-
sistant and susceptible genotypes as well as those specific-
ally modified by Fusarium verticillioides infection in the
resistant genotype in the work by Lanubile et al. [30]
(Zm00001d007025, Zm00001d007032 and Zm00001d0
43798), would deserve especial attention. The functions of
genes Zm00001d007025 and Zm00001d007032 (named
previously GRMZM2G422537 and GRMZM2G035356, re-
spectively) are unknown; while Zm00001d043798 (named
before GRMZM2G448710), a Leaf rust 10 disease-resist-
ance locus receptor-like protein kinase gene, could be in-
volved in basal defense against fungi [70].

Conclusions
Complexity of genetics of maize resistance to kernel
contamination with fumonisins has been confirmed be-
cause genotype x environment interaction had an im-
portant contribution to phenotypic variation and many
genes with small effects would contribute to genetic
variation. Thirty-nine SNPs significantly associated with
resistance to fumonisin accumulation in maize kernels
were found and clustered into 17 QTL. Novel QTLs for
fumonisin content would be at bins 3.02, 5.02, 7.05 and
8.07. The high resolution of QTLs found using GWAS
allows us to propose candidate genes for these QTLs;
many candidates being implicated in maize immune re-
sponse signaling. Functional variation for those genes
may be especially useful to reduce kernel contamination
with fumonisins without significantly interfering in my-
celia development and growth and, consequently, in the
beneficial endophytic behavior of Fusarium verticil-
lioides. Validations of the contributions of these candi-
date genes to resistance to fuminisin accumulation in
maize kernels will be the focus of future works.

Methods
Plant material and field experiments
A subset of 270 inbred lines from a maize diversity panel
(composed of 302 inbred lines) that represents much of
the diversity available in public breeding sector around
the world [71] was evaluated in 2010 and 2011 under in-
oculation with Fusarium verticillioides. Seeds were pro-
vided by the North Central Regional Plant Introduction
Station (NCRPIS) in Ames, Iowa, and NCRPIS accession
names are shown in Additional file 3 Table S2.

Evaluations were done at Pontevedra (42°24′ N, 8°38′
W, and 20m above sea level), Spain, using an 18 × 15
α-lattice design with two replications. Trials were
hand-planted and each experimental plot consisted of one
row spaced 0.8m apart from the other row with 29
two-kernel hills spaced 0.18m apart. Plots were over-
planted and thinned, obtaining a final density of ~ 70,000
plant ha− 1. In each row, between seven and 14 days after
silking date, five primary ears were inoculated with two
milliliters of a spore suspension of a local toxigenic isolate
of Fusarium verticillioides using a tested kernel inocula-
tion protocol [72]. The spore suspension contained 106

spores per milliliter and was injected into the center of the
ear using a four-needle vaccinator. Inoculated ears from
each row were collected 2 months after inoculation, dried
at 35 °C for 1 week, and shelled. From each plot, a repre-
sentative kernel sample of approximately 200 g was
ground and stored at 4 °C until performing chemical ana-
lyses. Kernels were ground through a 0.75mm screen in a
Pulverisette 14 rotor mill (Fritsch GmbH, Oberstein,
Germany).
Ground samples were sent to the Food Technology

Department of the University of Lleida, Spain, for deter-
mination of total fumonisin (fumonisins B1, B2, and B3)
content using a commercial ELISA kit (R-Biopharm
Rhône Ltd., Glasgow, Scotland, UK). This kit is a com-
petitive enzyme immunoassay for quantification of
fumonisin residues in maize. The recovery rate of the
test was approximately 60% with a mean coefficient of
variation of approximately 8%; specifities for B1, B2, and
B3 were 100%, around 40%, and almost 100%, respect-
ively, and the detection limit was 0.025 ppm (mg kg− 1).
Extraction and preparation of samples, as well as test
performance, were carried out as described in the com-
mercial kits.

Genotypic data
We used the genotypes of 256 inbred lines with pheno-
typic data in both years for a set of approximately
990,000 SNP markers (AllZeaGBSv2.7) derived from a
genotyping-by-sequencing (GBS) strategy (Elshire et al.
2011) and uplifted to AGPv3 (Glaubitz et al. 2014) [73].
SNPs in chromosome 0, as well as monomeric and mul-
tiallelic SNPs and insertion/deletion polymorphisms
(INDELs) were excluded. Then, data set was first filtered
to exclude SNPs with more than 20% missing genotype
data, and minor allele frequency (MAF) less than 5%.
After performing imputation with Beagle v4.0 (Browning
and Browning 2016), a second filtering (missing > 20%
and MAF < 5%) was done after setting heterozygous ge-
notypes as missing in the analysis. A total of 226,446 fil-
tered SNPs distributed across the maize genome were
used for GWAS analysis. After performing a linkage
disequilibrium-based pruning in software Plink v1.9 a
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subset of ~ 99 k SNPs was obtained and used to perform
a kinship matrix (K) in Tassel 5.

Statistical analyses

Heritabilities ( ĥ
2
) across environments were estimated

for fumonisin contamination on a family-mean basis as
described by Holland et al. [74]. The genetic and pheno-
typic correlations between fumonisin content and other
data previously published [75], days to silking and FER,
were computed following Holland [76]. Best linear un-
biased estimator (BLUE) was estimated for each inbred
line using the SAS mixed model procedure (PROC
MIXED) and considering inbred line as fixed effect and
replication within year, block within replication*year and
year as random effects. Line BLUEs were used to per-
form GWAS.
Genome-wide association analysis based on mixed lin-

ear model (MLM) was performed in Tassel V5.2.25 [77].
The MLM used by Tassel was

y ¼ Xβþ Zuþ e

where y is the vector of phenotypes (BLUEs), β is a vec-
tor of fixed effects, including the SNP marker tested, u
is a vector of random additive effects (inbred lines), X
and Z represents matrices, and e is a vector of random
residuals. The variance of random line effects was mod-
eled as Var(u) =K σ2a , where K is the n × n matrix of
pairwise kinship coefficient and σ2a is the estimated addi-
tive genetic variance [78]. Restricted maximum likeli-
hood estimates of variance components were obtained
by using the optimum compression level (compressed
MLM) and population parameters previously deter-
mined options (P3D) in Tassel [79].
To identify SNPs with the most robust associations

with traits, a subsampling or subagging procedure was
employed in GWAS analysis [80, 81]. Each of 100 sub-
sampled datasets generated using the R software [82]
comprised a random sample of 80% of inbred lines from
the diversity population. Only SNP markers determined
as significant at p < 1 × 10− 4 and subsequently detected
in ≥50 subsamples, i.e. resample model inclusion prob-
ability (RMIP) threshold of 0.50, were considered as sig-
nificantly associated with the trait under study. Analysis
of linkage disequilibrium (LD) among SNPs significantly
associated with fumonisin content was performed in
Tassel.

Candidate gene selection
We also examined the LD in the genomic region around
each significant SNP to stablish a supporting interval for
the significant association. That supporting interval
would comprise the surrounding region in LD (r2 > 0.4).
All genes contained in the supporting interval were

considered as candidate genes and identified and charac-
terized by the use of the MaizeGDB genome browser
[83]. Although SNP positions were referenced to the
maize B73 RefGen_v2, the genes flanking the region in
LD were positioned in the maize B73 RefGen_v4 to per-
form the search for candidate genes in the latest version
of the B73 sequence.

Additional files

Additional file 1: Figure S1. Data distribution for fumonisin content in
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Additional file 2: Table S1. Candidate Genes for each QTL. (XLSX 15
kb)

Additional file 3: Table S2. Names of the panel inbreds along with
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Introduction Station (NCRPIS). (XLS 40 kb)
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