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Abstract
Background Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing 
ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure 
and distribution dynamics of forest keystone species could help predict responses to future climate change. In this 
study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate 
the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical 
evergreen broad-leaved forest.

Results A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. 
glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum 
(LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate 
toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west 
were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 
58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, 
and the southwest region were found to have high genetic diversity.

Conclusions A significant negative correlation between habitat stability and heterozygosity might be explained by 
the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely 
related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east 
direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns 
and distribution dynamics of Q. glauca.
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Background
The geological record contains many examples of diver-
gences in species lineages and distribution changes 
caused by either climate fluctuations or geologic activity 
[1–3]. Recent climate change, meanwhile, has affected 
ecosystem function and biodiversity patterns by altering 
forest community structure and species distribution pat-
terns [4, 5]. Going forward, all evidence suggests rapid 
climate change will remain a primary threat to species 
and ecosystems, and these effects will intensify as the 
pace of change accelerates [6–8]. Since keystone species 
have outsized roles in ecosystem formation and commu-
nity distribution dynamics [9], exploring the effects of 
paleogeological events and climate change on the spatial 
genetic patterns in keystone species can not only reveal 
the ancient drivers of speciation but also help to evaluate 
the distribution dynamics of ecosystems in the context of 
future climate change [10, 11].

Subtropical East Asia has experienced complex tec-
tonic activity and climate change effects in recent 
geological records. These include the uplift of the Hima-
layan-Tibetan Plateau from about 50 Ma [12, 13], the 
aridification of Central Asia from about 22 Ma [14], and 
the formation of Asian monsoons 8–9 Ma [15]. These 
events significantly impacted East Asia’s landforms, 
topography, and climate, which profoundly affected 
genealogical differentiation, genetic diversity, and distri-
bution of organisms [16–18]. The diverse microhabitats 
in the complex topography regions will provide suitable 
habitats for species surviving during climate change [17, 
19], thus serving as refugia for many relict taxa [20, 21].

The primary ecosystem of subtropical East Asia is an 
evergreen broadleaved forest (EBLF), which stretches 
between 24–32°N and 99–123°E. EBLFs in subtropical 
East Asia comprise 2,600 genera and ca.14,600 species of 
seed plants, of which > 50% are endemic [22]. Conserva-
tion of this biodiversity in EBLFs in subtropical East Asia 
is the subject of much attention from researchers, espe-
cially in the face of ongoing rapid climate change.

The genus Quercus (oaks), which includes ca. 450 spe-
cies, is widely distributed in the Northern Hemisphere. 
Besides providing wood and food, oaks are keystone spe-
cies in different habitats [23]. Oaks can undergo frequent 
introgression events and are adaptable to short- and 
long-term environmental change [24–27]. The Quercus 
robur genome confirmed the intergenerational trans-
mission of adaptive variants, for instance [28]. Genomic 
and anatomic data analysis indicated that oaks might 
have different defense mechanisms against pathogens 
[29]. Chloroplast DNA (cp.DNA) markers from Q. acu-
tissima, Q. chenii, and Q. variabilis revealed haplotype 
sharing within section Cerris in East Asian EBLFs that 
was associated with locally stable climates and complex 
landscapes [30]. Based on SSR and phenotypic data in 

two oak species indicated that asymmetric inter-specific 
selection pressures could contribute to the asymmetric 
trait divergence where species coexist [31]. Resequencing 
data indicated that the introgression between two wide-
spread sympatric Asian oak species, Q. acutissima and Q. 
variabilis, confers environmental adaptation by altering 
the regulation of stress-related genes [32]. These factors 
justify using oaks as a model species for understanding 
the development of evolutionary patterns from ecological 
processes.

Quercus glauca Thunb, one of the most widespread 
species in the Quercus section Cyclobalanopsis, is a key-
stone species in subtropical evergreen forests. Population 
genetic patterns and local adaptation in the species have 
been investigated in previous studies. For example, geno-
typing six Q. glauca populations from East China using 
six enzymes found high genetic diversity but low genetic 
differentiation [33]. Based on three cp.DNA loci, south-
eastern Taiwan Island was suggested to be a potential 
glacial refugium for Q. glauca [34]. Genotyping 409 indi-
viduals from 42 populations from China mainland and 
Japan using three cp.DNA loci, it was found that genetic 
differentiation of Q. glauca began in the Miocene and it 
may have experienced expansion after the Last Glacial 
Maximum (LGM; approximately 22,000 years ago) [35]. 
Although the samples in Xu et al. [35] roughly cover the 
current Q. glauca distribution, they lacked representa-
tion from Taiwan Island. Furthermore, cp.DNA can only 
reveal seed gene flow but without information about pol-
len gene flow. Different markers can reveal the evolution-
ary history of species more objectively [36, 37]. Finally, 
compared with the single model (MaxEnt) previously 
used to predict the species range of Q. glauca [35], the 
ensemble species distribution model (eSDM) can inte-
grate multiple models and improve prediction accuracy 
[38, 39].

In this study, we combined nuclear microsatellites 
(nSSR), cp.DNA markers, and eSDM to investigate the 
spatial genetic patterns and distribution dynamics of Q. 
glauca. A total of 781 individuals from 77 populations 
were sampled. The samples were genotyped using seven 
nSSR and three cp.DNA loci. The eSDM was used to esti-
mate the distribution dynamics of Q. glauca under pre-
dicted past and future climate change. Our goals were 
to (i) reveal spatial genetic patterns of Q. glauca, (ii) 
estimate the effect of environmental factors on genetic 
diversity, and (iii) infer potential dispersal corridors. Our 
study provides guidelines for preserving Q. glauca germ-
plasm resources and managing the biodiversity of East 
Asia subtropical EBLFs in the context of future climate 
change.
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Results
Ecological niche modeling
Based on the filtered 238 distribution points and nine 
environmental variables (Fig. S1), nine niche mod-
els were used to predict the potential distribution of Q. 
glauca (Fig. S2). Among the nine models, RF, GLM and 
GBM have higher mean TSS and AUC values, and SRE 
has the lowest TSS and AUC values (Fig. S2 and Table 
S1). After excluding nine models from SRE, one model 
from CTA, and one model from MaxEnt with low evalu-
ation (TSS < 0.6 and AUC < 0.8), the remaining 79 mod-
els were used to construct the ensemble model based on 
the weighted TSS (Table S1). The average TSS and AUC 
values for the remaining 79 models were 0.90 and 0.99, 
respectively. The predicted potential distribution of Q. 
glauca has an extensive suitable range in East Asia (Fig. 
S3). During the LGM period, the potential suitable dis-
tribution of Q. glauca was mainly in southern China, the 
southern slope of the Himalayas, the Korean Peninsula, 
and the East China Sea continental shelf. In the present 
period, southern China, Taiwan Island, and southwestern 
Japan show high suitability. In the future, due to climate 
change, southeast China and Japan will show high distri-
bution probabilities, but the overall distribution and high 
suitability areas are predicted to diminish.

From the LGM to the present period, the suitable habi-
tat of Q. glauca has expanded. The overall suitable habitat 
increased by 41%, with an area of 78.36 × 104 km2 mainly 
concentrated in the northern portion of their distribu-
tion after a northeastern expansion (Fig. 1). In the future, 
the area will shrink by an estimated 33%, leaving habitat 
mainly concentrated in southern Korea and southwest 
China. According to the migration routes through the 
centroids, the shrinking occurs towards the northeast, 
similar to the expansion after the LGM.

Genetic diversity and structure based on microsatellites
A total of 620 individuals from 60 populations were 
genotyped by seven nSSR primers (Table 1). The genetic 
diversity indices Ho, He, and Ar were 0.38–0.79 (mean: 
0.57), 0.43–0.77 (mean: 0.60), and 2.88–5.97 (mean: 3.74), 
respectively (Table 1). The highest Ho and He were found 
in populations 76 and 30, respectively, and the lowest for 
both statistics was found in population 17. The Ar value 
of population 26 was the highest, and the lowest was 
found in population 32. The Pr(X|K) and ΔK support 
the presence of two major clusters of Q. glauca popula-
tions (Fig. S4). This result clustered 20 populations into 
a West group and 40 populations into an East group 
(Fig.  2b and c). Principal coordinate analyses (PCoA) 
also suggested the populations should be clustered into 
two similar groups. The first two PCs explained 22.9% 
and 14.3% of the genetic variation, respectively (Fig. 2a). 
The genetic structure between groups was significant 

(Gp1, p-value = 0.024; Gp2, p-value = 0.0001). The Man-
tel test showed that isolation by distance was significant 
(R2 = 0.499, P = 0.001; Fig. S5).

Genetic diversity and differentiation based on cp.DNA 
markers
Three chloroplast loci were sequenced in 534 individu-
als from 57 populations (Table  1). The concatenated 
sequence was 2,437  bp total after alignment, and the 
lengths of the psbA-trnH, trnT-trnL, and atpI-atpH 
regions were 506  bp, 780  bp, and 1,151  bp, respec-
tively. A total of 58 haplotypes with 40 variable sites 
were detected (Fig. 3a). Overall π and Hd of the popula-
tions were 1.22 × 10− 3 and 0.96, respectively. The high-
est Hd was observed in populations 50 (Hd=0.87) and 4 
(Hd=0.80), and the highest π was found in populations 
4 (π = 2.98 × 10− 3) and 6 (π = 2.39 × 10− 3; Table 1). Spatial 
genetic interpolation results showed higher Hd and π in 
the Nanling Mountains, Wuyi Mountains, and the south-
ern region (Fig. S6). Overall diversity (HT) and diversity 
within populations (HS) based on cp.DNA were 0.859 
and 0.286, respectively. The NST value (0.68) was only 
slightly higher than the GST value (0.67) and the differ-
ence was not significant (p > 0.05), suggesting the absence 
of a strong phylogeographic signal. Spatial distributions 
of haplotypes, including 18 shared and 40 private hap-
lotypes, were arranged in a star-like structure (Fig.  3b). 
Haplotype 24 was the most widely distributed, found in 
53 individuals from 10 populations. A total of 13 haplo-
types were derived from haplotype 24. The second most 
frequent was haplotype 25, found in 46 individuals from 
9 populations. Populations 50, 4, and 21 had the most 
haplotypes (N = 6, 5, 5, respectively), and 21 populations 
contained one haplotype.

Based on the species distribution model and the geo-
graphical distribution of haplotypes, the least-cost path 
method (LCP) method was used to calculate the possi-
ble migration and diffusion routes of Q. glauca from the 
LGM to the present period (Fig.  4). The results showed 
that Q. glauca migrated across the Yunnan Guizhou Pla-
teau and the Nanling Mountains from the LGM to the 
present, as east-west mountains provide the main diffu-
sion corridors. Genetic landscape shape analysis based 
on nSSR and cp.DNA data showed that genetic distances 
within the West population were higher than those 
within the East population. Notably, different patterns 
of population differentiation were detected between 
cp.DNA and nSSR markers (Fig. 5). For cp.DNA, genetic 
distance significantly declined from the West to the 
East and showed a peak in southwest China. The nSSR 
genetic distance peaked around the Nanling Mountains 
area, consistent with the higher genetic diversity indices 
observed in the regions.
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Correlation between genetic diversity and climate factors
GLM analysis indicated that the present period suitable 
habitat (EPre) was significantly correlated with Ar and 
He when other factors were controlled (Table  2). Habi-
tat stability (EStab) was significantly correlated with Ca, 
but it negatively correlated with He. The model that best 
explained Ca included EStab, longitude, and latitude, and 
the correlation with longitude was the strongest result. 
Longitude’s effect on genetic differentiation was greater 
than that of EStab. For He, EPre and EStab were included 

in the final model. Only EPre was significantly correlated 
with Ar.

Discussion
Species spatial genetic patterns
Genetic diversity is essential for a species’ survival in the 
face of environmental changes and, as a result, for main-
taining its role in ecosystem functions [40]. High genetic 
diversity (HT=0.859 and Ar=2.88–5.97 in 620 individu-
als from 60 populations) of Q. glauca detected from 
nSSR data is similar to other oaks that are distributed 

Fig. 1 The distribution dynamic of Quercus glauca under climate change is based on the ensemble model and 238 distribution points. a the LGM 
(CCSM4) to present period (1970-2000s); b present to future period (Mean of four BCC scenarios, SSP126, SSP245, SSP370, and SSP585, in the 2081-2100s). 
The blue, green, and red regions represent the areas of loss, stablility and gain in response to climate change. The yellow, black, and white dots represent 
populations for nSSR analysis only (20 populations), for cp.DNA analysis only (17 populations), and for both nSSR and cp.DNA analysis (40 populations), 
respectively. The bottom right of each figure represents the change in the centroid of the species distribution in response to climate change
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in subtropical China, such as the Q. franchetii complex 
(HT=0.982 and Ar=3.18–4.34 in 303 individuals from 33 
populations) [41], Q. delavayi (HT=0.907 and Ar=3.75–
5.24 in 493 individuals from 33 populations) [42], and Q. 
schottkyana (HT=0.828 and Ar=4.83–7.78 in 380 individ-
uals from 29 populations) [11]. For cp.DNA, the number 
of haplotypes in this study was higher than in other oaks, 
such as Q. aliena with 33 haplotypes in 52 populations 
[43], Q. fabri with 21 haplotypes in 31 populations [44], 
Q. acutissima with 19 haplotypes in 30 populations [45]. 
Different genetic patterns in nSSR and cp.DNA might be 
related to sampling variance. Although the same cp.DNA 
loci were sequenced here, the number of haplotypes was 
higher in the previous study from 409 Q. glauca individ-
uals of 42 populations [35]. The additional 125 samples 
in this study added 25 new haplotypes, mainly from the 
western region (10 haplotypes) and Taiwan Island (9 hap-
lotypes). Most of the additional haplotypes were private. 
Long-term geographical or environmental isolation could 
drive in-situ diversification and maintain private haplo-
types as species adapt to local environments [46–48].

No significant phylogeographic structure was evident 
based on cp.DNA (NST>GST, p > 0.05), a result consis-
tent with other subtropical evergreen species such as Q. 
variabilis (NST=0.855 > GST=0.852, p > 0.05) [49], Q. acu-
tissima (NST=0.689 > GST=0.630, p > 0.05) [45], and Q. che-
nii (NST=0.888 > GST=0.863, p > 0.05) [50]. In contrast, the 
genetic structure in nSSR data revealed a distinct pattern: 
60 Q. glauca populations were split between two clus-
ters representing the western and eastern portions of the 
sample area. The different genetic patterns detected in 
cp.DNA and nSSR makers are not unexpected. Because 
of their modes of inheritance, for instance, the mark-
ers have different dispersal patterns. Chloroplast DNA 
disperses through seeds and the nuclear genomes are 
transmitted via seeds and pollen. Oaks are prolific pollen 
producers and depend on wind for dispersal [51]. High 
levels of recent and ongoing gene flow should be evident 
in genetic patterns detected in nuclear markers, espe-
cially highly polymorphic SSRs [52]. To this latter point, 
more information may be available from nSSR than 
cp.DNA as the mutation rate in the former increases test-
able variation [53]. Meanwhile, the chloroplast genome is 
haploid with no recombination and has a smaller effec-
tive population size, which means it should be more sen-
sitive to genetic drift and differentiation [54]. Therefore, 
differences in heredity between the nuclear and chloro-
plast genomes account for the different phylogeographic 
structure patterns we observed in the present study.

Genetic variation and environmental heterogeneity
Species with long generation times and large effective 
population sizes, such as oaks, are likely delayed in their 
responses to environmental change [55]. Consequently, Po
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contemporary genetic patterns are often explained by 
past environmental conditions [56, 57]. In Q. glauca, 
however, habitat stability since the LGM (EStab) was nega-
tively correlated with genetic diversity (He, p < 0.05), a 
surprising result considering the expectation that more 
climatically stable regions will retain higher genetic 
diversity [58, 59]. In addition to accumulating muta-
tions over time, interspecies hybridization and admix-
ture between populations can also increase genetic 
diversity [60]. Hybridization and introgression are com-
mon in oaks [32], and since East Asia is the main distri-
bution range of the Quercus section Cyclobalanopsis, 
many closely related oaks have a sympatric distribution 
with Q. glauca [60, 61]. The distribution overlap of Q. 
glauca and closely related species affords the possibility 

of introgression. Range changes by Q. glauca since the 
LGM may have contributed to admixture among popula-
tions from different lineages. These factors could result in 
a negative correlation between genetic diversity and habi-
tat stability. Similar results were also found in other oaks, 
such as Q. kerrii [62] and Q. schottkyana [11], in which 
the migration and mixing of genetically differentiated 
populations in unstable habitat areas led to increased 
genetic diversity.

Two distinct geography-related genetic lineages, West 
and East, were detected in Q. glauca populations from 
nSSR data. Genetic differentiation among populations in 
the western region is higher than in the eastern region. 
More complex topography in the west than in the east 
could provide higher stability for longer persistence and 

Fig. 2 Structure analysis of 60 Quercus glauca populations. (a) Principal coordinates analysis (PCoA) of the 60 populations of the Quercus glauca based 
on genetic distance using nSSR data. (b) Bayesian clustering plots for 60 populations of Quercus glauca based 7 nSSR loci, K = 2 and K = 3 was presented 
(c) Geographical distribution of the genetic clusters and genetic cluster composition in each population. The color of the pie chart represents different 
groups, and the white dotted line represents the geographical obstacles based on barrier analysis
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preservation of genetic variation, which may have facili-
tated the divergence of lineages through glacial/intergla-
cial cycles [63–65]. Meanwhile, long-term environmental 
heterogeneity along altitudinal or latitudinal gradients 
also contributes to species genetic differentiation [62]. 
Distinct east-west phylogeographic differentiation has 
also been observed in other plants, such as Dysosma 
versipellis, Cephalotaxus oliveri and Liriodendron chi-
nense [66–68]. Similar genetic patterns from different 
species indicated that topography and environmental 

heterogeneity could be the main drivers for intra-species 
differentiation in East Asia.

Species distribution dynamics and dispersal route
Range shifts are a primary response by species to envi-
ronmental change [69, 70]. The fossil record reflects 
numerous examples in both pollen and fossilized remains 
of species distribution shifts [71]. Combining species dis-
tribution models with spatial genetic patterns is useful 
for reconstructing distribution dynamics and dispersal 
routes [72, 73]. Although the eSDM inferred the suitable 

Fig. 3 Distribution of the cp.DNA haplotypes detected in Quercus glauca. a geographic distribution of 58 cp.DNA haplotypes; b haplotypes of the cp.DNA 
network of Q. glauca. The haplotype network was colored according to the three regions delineated on the map (West, East, and Taiwan island). The size of 
points representing populations on maps and haplotypes in networks are proportional to the number of individuals. Numbers on the branches indicate 
the number of substitutions. Black spots indicate unsampled or extinct ancestral haplotypes
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habitat of Q. glauca has shifted northeastward since 
the LGM, the distribution centroids analysis revealed 
that this species underwent significant expansion in the 
southwestern region. This suggests a pattern of north-
ward expansion and southward retreat experienced by 
the species during the glacial/interglacial period [74]. The 
potential distribution of Q. glauca in the future under a 
broad but realistic climate scenario is predicted to shrink 
and move northeast. According to Ni [75], average tem-
perature increases in China by 0.6–6.3℃ by the end of 
the 21st century will result in northward movements by 
forests and the formation of tropical rainforest climate in 
low latitudes. These predictions are supported by stud-
ies of other oaks, such as Q. fabri [76] and Q. acutissima 
[77].

The Nanling Mountains is a latitudinally arranged 
mountain range [78] that is commonly found to be a 
main route for species dispersal during glacial periods 

[79]. This is also the case for Q. glauca, which dispersed 
between southwest and southeast China between dif-
fering climate periods. Southwest China has been pro-
posed as a potential glacial refugium and is regarded as 
the “cradle” of East Asian flora [80]. This region is also 
the biodiversity center of section Cyclobanalopsis [81], 
including through evidence from the fossil record such 
as with Q. preglauca (found in Sichuan, western China 
from the Pliocene and early Pleistocene, 4.5–2.3  Ma) 
[82] and Q. preschottkyana (found in Yunnan, southwest 
China from the late Miocene, about 11.5 Ma) [83]. There-
fore, the direction of Q. glauca expansion from the LGM 
was from southwest to southeast China. Taiwan, mean-
while, is the largest subtropical mountainous island at 
the Tropic of Cancer in the monsoonal western Pacific 
region, and it emerged during the late Miocene and 
maintained a connection to the mainland at the latest in 
the Tertiary Pliocene [84–86]. The flora of Taiwan Island 

Fig. 4 Potential dispersal corridors of the Quercus glauca during (a) the present and (b) the LGM period. Colors from blue to red represent the probability 
of species dispersal corridors from low to high
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is most similar to the Southeast China [87]. The island 
now has 181 species of angiosperms in 20 families and 
63 genera, of which 19 families, 62 genera, and 83 species 
are common to mainland China [88]. The Taiwan Strait 
(TS), which is ca. 130 km wide at its narrowest point and 
has a depth ranging between ca. 50–160 m, is the main 
migration route between Taiwan and southern China. 
The most extensive land bridges in the TS, as well as the 
East and South China Sea, would have formed during the 
LGM period when sea level was ca. 130 m lower [89]. For 
Q. glauca, the TS was the conduit for dispersal and gene 
flow between the island and mainland during the LGM. 
Moreover, phylogeographic studies on Quercus cham-
pionii [90], Dysosma versipellis-pleiantha [91], Juglans 
cathayensis [92] have revealed high genetic similarity on 
both sides of the TS.

Conclusions
This study sheds light on spatial genetic patterns and 
historical distribution dynamics of Q. glauca. The 
cp.DNA and nSSR data revealed that the Q. glauca has 
high genetic diversity and can divided into two distinct 
groups. Environmental heterogeneity contributed to the 
spatial genetic patterns observed. Interglacial warming Ta
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promoted the spread of Q. glauca from western to east-
ern China. The Nanling Mountains may been both a dis-
persal corridor and glacial refugium, and the land bridges 
between mainland China and Taiwan islands during 
glacial periods may have contributed to the expansion 
of Q. glauca from the former to the latter. These results 
provide new insights into phylogeographic patterns and 
evolutionary histories of biotas in Southern China and 
adjacent islands, but also helpful for the management of 
forest biodiversity of East Asia subtropical EBLFs in the 
face of future climate change.

Materials and methods
Ensemble species distribution model
Distribution records of Q. glauca were obtained from 
field surveys, published documents, and records in 
the Chinese Virtual Herbarium (www.cvh.org.cn/). 
To reduce the effect of sampling bias on the prediction 
results, only one point was selected in each cell (size: 
0.1°×0.1°). Nineteen bioclimatic variables with a 2.5’ 
resolution for the present (1970–2000s), LGM (Com-
munity Climate System Model version 4, CCSM4), and 
the future period (2081–2100s; Shared Socioeconomic 
Pathways, SSPs; The Beijing Climate Center Climate Sys-
tem Model, BCC-CSM2-MR) were downloaded from 
WorldClim (http://www.worldclim.org/) [93]. The pres-
ent and future bioclimatic variables were version 2.1 [94], 
and the LGM period was version 1.4 [95]. Four common 
socioeconomic pathways (SSP126, SSP245, SSP370, and 
SSP585) were averaged for future climatic time frames 
to generate an integrated scenario [96, 97]. The climate 
variables at occurrence points in the present period were 
extracted, and we tested for correlations among them 
using the R package “dismo” [98]. High correlation vari-
ables (|r|>=0.8) were removed before further analysis.

We used an ensemble forecasting approach using the 
R package “biomod2” [99] to predict Q. glauca distribu-
tion with nine model algorithms (Table S2). Each model 
runs ten times with random seeds. For each model, the 
distribution data is randomly divided into two datasets: 
75% is training data, and the remaining 25% is testing 
data. To build reliable species distribution models, 10,000 
pseudo-absence coordinates were randomly generated 
[100, 101]. The presence and absence points were set 
with equal weights. The area under the receiver operating 
curve (AUC) and the true skill statistic (TSS) were used 
to evaluate the performance of the model. Models with 
higher TSS (> 0.6) and AUC values (> 0.8) were selected 
to construct an ensemble model. The weighted value of 
each model was proportional to the TSS value when con-
structing the ensemble model [102]. Predicted habitat 
was divided into categories of marginal (0.2–0.4), moder-
ate (0.4–0.6), and highly suitable (> 0.6). To quantify the 
distribution change of Q. glauca, we also used 0.5 as the 

threshold value to convert the continuous suitable habi-
tat from different periods to a presence/absence distribu-
tion [103, 104]. The distribution centroids of Q. glauca 
in the LGM, present, and future periods were calculated 
and compared using SDMToolbox [105].

Population sampling and genotyping
A total of 781 individuals were sampled from 77 popula-
tions, which covered nearly the entire range of subtropi-
cal China (Fig.  1). Sample identification was performed 
by Xiao-Long Jiang and Min Deng, and voucher speci-
mens of each individual were preserved in the Herbarium 
of Shanghai Chenshan Botanical Garden (CSH). Fresh 
and healthy mature leaves were collected and dried with 
silica gel to preserve them until DNA extraction could be 
performed. Genomic DNA was extracted using a modi-
fied cetyltrimethylammonium bromide (CTAB) protocol 
[106]. Seven nSSR loci were genotyped in 620 individu-
als from 60 populations (Table  1). Primer sequences 
and amplification conditions for each primer set were 
described in Table S3. For the cp.DNA, a total of 534 
samples from 57 populations were sequenced (Table  1), 
including 157 individuals (18 populations) newly col-
lected and 377 samples (39 populations) used from a 
previous study [35]. Three primer pairs, psbA-trnH 
[107], trnT-trnL [108], and atpI-atpH [109], were ampli-
fied and sequenced following previous studies (Table S3) 
[35]. Successfully amplified PCR products of cp.DNA 
and nSSR markers were sequenced or genotyped by the 
Shanghai Majorbio Bio-pharm Technology Co., Ltd 
(Shanghai, China). All cp.DNA sequences were assem-
bled and manually assessed for quality in Sequencher 
v5.4.6 (Gene Codes Corp., Ann Arbor, MI, United States), 
then aligned with Bioedit v7.2.5 [110]. We determined 
nSSR genotypes using GeneMapper v4.1 [111].

Population genetic analysis based on nSSR
Variation coefficients of nSSR data for each locus and 
population were calculated by GenAlEx v6.5 [112], 
including He (expected heterozygosity) and A (number of 
alleles) for loci, He, Ho (observed heterozygosity) for each 
population. To avoid bias from unbalanced sample sizes, 
Ar (allelic richness) for each population was calculated by 
rarefaction (here, N = 10) using HP-Rare [113].

We used Bayesian clustering and PCoA to analyze the 
genetic structure of Q. glauca. For the former, we used 
STRUCTURE v2.3.4 [114] with 100,000 burn-in genera-
tions followed by 200,000 MCMC iterations. The number 
of clusters (K) varied from 1 to 10 with ten repetitions for 
each K value. The best fit K was determined by STRUC-
TURE HARVESTER [115] using both ΔK and Ln Pr(X|K) 
method [116, 117]. The ten repetitions with the optimum 
K value were aligned using CLUMPP v1.1.2 [118] based 
on a greedy algorithm. We performed the PCoA using 

http://www.cvh.org.cn/
http://www.worldclim.org/
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GenAlEx v6.5 based on the genetic distances among 
populations. The first two principal coordinates (Gp1 
and Gp2) at the population level were visualized in R. 
We used a Student’s t-test in the “dplyr” package [119] 
to test these for significance. To examine whether there 
was a significant correlation between genetic divergence 
and geographic distance (i.e., isolation-by-distance; IBD), 
we used a Mantel test in GenAlEx based on nSSR data, 
with 9,999 permutations. Genetic distance was estimated 
as FST/(1-FST) implemented on samples grouped by local-
ity. Geographic distance was log transformed to account 
for dispersal in a two-dimensional habitat [120]. The cor-
relation between geographical and genetic distance was 
plotted, and the correlation coefficient (r) and R2 were 
estimated using GenAlEx v6.5.

cp.DNA analysis
Haplotype diversity (Hd) and nucleotide diversity (π) of 
Q. glauca populations were calculated by ARLEQUIN 
v3.5 [121]. The median-joining network of haplotypes 
was constructed using NETWORK v10.2.8 [122]. Each 
indel and inversion was treated as a single mutation. 
The geographical distribution of the cp.DNA haplotypes 
was mapped with ArcGIS v10.8. Alleles in Space [123] 
was used to examine the distribution of genetic differen-
tiation across species ranges according to cp.DNA and 
nSSR data. We used the Landscape Genetics GIS Tool-
box [124] in ArcGIS v10.8 to create genetic landscape 
surfaces through interpolation based on genetic diversity 
(Hd, π, He, and Ar). The software DnaSP v6.0 [125] was 
used to calculate GST and NST. A significantly larger NST 
than GST implies the presence of a significant phylogeo-
graphic structure [126].

Habitat analyses
Climatic variation and habitat complexity have well-
defined roles in influencing species demography and 
occupancy, and both have been used to project species 
distribution dynamics under climate change [127]. To 
estimate the correlation of genetic diversity (Ar, He) and 
genetic structure (cluster A, Ca) with climate and geo-
graphic (latitude, longitude) factors, a general linear 
model (GLM) analysis was performed in R. Four vari-
ables, EPre, EStab, latitude, and longitude, were used as 
explanatory covariates. The EStab was calculated using 
the formula EStab=1−|EPre−ELGM|, considering EPre and 
ELGM as habitat suitability at the present and LGM peri-
ods, respectively. These values were obtained using the 
“Extract by Points” tool in ArcGIS v10.8 from Q. glauca 
predicted distribution layers [11]. The initial model 
included all covariates, and the most suitable mod-
els were determined based on a backward elimination 
procedure.

Combined with our projections of suitable habitat and 
the spatial distribution of haplotypes, potential dispersal 
routes of the Q. glauca populations were inferred using 
the LCP function in the SDMToolbox [128]. To calcu-
late least-cost corridors (LCCs), the LCP was weighted 
by resistance values with cutoffs for inclusion into high-, 
mid-, and low-classes set at 5%, 2%, and 1%, respectively. 
The weighted and categorized LCPs were then summed 
to create a LCCs dispersal network [129].
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