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Abstract
Background  This study aims to decipher the genetic basis governing yield components and quality attributes of 
peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and 
phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments 
allowed for the execution of a genome-wide association study (GWAS).

Results  The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability 
ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was 
a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome 
re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms 
(SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these 
pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five 
loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64–32.61% 
of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and 
oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage 
disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the 
identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between 
phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) 
marker analysis.
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Background
Cultivated peanut (Arachis hypogaea L.) is a signifi-
cant legume crop that is widely grown in over one hun-
dred countries across Asia, Africa, and North and South 
America. In 2021, the global peanut planting area was 
32.72  million hectares, and the total peanut production 
amounted to 53.93  million tons [1]. Peanuts are a vital 
source of edible vegetable oil for human consumption. 
As living standards improve and consumption habits 
become more refined, there is an expected increase in 
demand for premium vegetable oils, including peanut 
oil. In recent years, breeding new peanut varieties with 
enhanced yield and improved quality has become the 
primary strategy for expanding the global peanut busi-
ness. Unlike the pre-genomic era, peanut breeders today 
have access to a plethora of innovative technologies for 
genetic improvement. One of these methods is genome-
wide association study (GWAS), which employ linkage 
disequilibrium (LD) to detect gene loci and their allelic 
variations in natural populations, linking allelic varia-
tions with target traits to analyze gene effects [2]. Since 
its inception in plants in 2001, GWAS has been used as 
a major tool for identifying genetic loci associated with 
traits of interest. In peanuts and other crops, GWAS has 
effectively identified significant loci controlling major 
agronomic traits, not least with respect to yield compo-
nents and quality attributes that have complex genetic 
underpinnings involving the interaction of multiple 
alleles and loci that are only partially understood [3–7].

Peanut yield components, such as hundred-pod weight 
(HPW), hundred-seed weight (HSW), pod number per 
plant (PN), seed number per plant (SN), pod length (PL), 
and pod width (PW), are each regulated by their own 
genetic program while also being intricately related to 
one another [8]. In recent years, several yield trait QTLs 
have been reported for peanuts. For example, using SSR 
(simple sequence repeats) markers, multiple QTL related 
to several yield components, including HPW, PL, and 
PW, were identified in a BC2F2:3 population [9], and two 
major QTLs associated with HPW were identified in a 
different F2:3 population [10]. Based on a population com-
posed of mutants, 58 markers associated with 39 yield 
and quality traits were identified using 110 Arachis hypo-
gaea transferable element (AhTE) markers [11]. In sev-
eral recombination inbred line (RIL) populations, QTLs 
for HPW and HSW were detected in multiple growth 

environments [12–14]. More recently, with the release 
of the reference genome of cultivated peanut [15], single 
nucleotide polymorphism (SNP)-based QTLs related to 
HSW, SL (seed length), and SW (seed width) were found 
on chromosomes A02, A05, A06, and B06 [16–20].

Protein and oil, which together account for around 75% 
of the peanut kernel, are the two primary storage com-
pounds in peanuts [21]. The relative proportion of oil 
and protein determines the quality of a peanut and varies 
depending on consumer preference and intended uses. 
Seven QTLs related to protein content with phenotypic 
variation explained (PVE) ranging from 1.5 to 10.70% 
have been reported [22]. Additionally, 78 QTLs associ-
ated with oil content were found in two RIL populations 
[23], and another study identified 20 QTLs related to 
quality traits on chromosomes A02, A05, A07-A10, B01, 
B04, and B09 [24]. Yield and quality traits were analyzed 
in a RIL population using genotyping-by-sequencing, 
AhTE and SSR markers, and it was found that the QTLs 
for yield and protein traits were located on A02 and B06, 
respectively [25]. More recent research efforts have iden-
tified an oil content-related QTL (qOCA08.1) in a 0.8 Mb 
region on chromosome A08 and a crucial QTL (qAh05.1) 
that influences both oil and protein contents [26, 27]. 
These findings highlight that the loci impacting yield 
components cluster on chromosomes A02, A05, A06, 
A07, B05, and B06, while those governing quality attri-
butes were located on chromosomes A05, A07, A08, A09, 
B01, B04, B06 and B09. Using diverse population mate-
rials to identify new loci is critical for gaining a more 
nuanced knowledge of the genetic basis of peanut yield 
and quality attributes.

With the rapid development of sequencing technology, 
particularly the release of the whole genome sequence of 
cultivated peanuts [15, 28, 29], a large number of SNPs 
can be obtained using whole genome scanning technol-
ogy. This presents a promising opportunity to rapidly 
explore the genetic basis of yield and quality traits, iden-
tify key genes, and incorporate them into peanut breed-
ing programs. Previous research on important peanut 
traits mainly used artificially constructed segregation 
populations, GBS (genotyping-by-sequencing), and SNP 
chips. However, the results of such research on peanut 
yield and quality traits varied, and most of the candidate 
genes were not identified or investigated. GWAS, in con-
trast, can identify more allele variations by leveraging 

Conclusions  Overall, molecular markers were developed for genetic loci associated with yield and quality traits 
through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools 
can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-
assisted breeding.
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natural populations, abrogating the time-consuming and 
labor-intensive process of population construction. Sig-
nificant locus verification and GWAS analysis using re-
sequencing data are still in their early stages.

This study employed GWAS by utilizing 199 acces-
sions, comprising both released varieties and advanced 
breeding lines derived from the Kainong breeding pro-
gram, alongside re-sequencing and phenotypic data gath-
ered over three years in four distinct environments. The 
results not only shed more light on the genetic basis of 
yield and quality traits but also offer valuable insights for 
cloning and characterizing the underlying genes as well 
as developing molecular markers. These markers can 
facilitate the molecular breeding and genetic engineering 
of novel peanut germplasm with enhanced yield potential 
and desirable quality traits.

Materials and methods
Plant materials and growth conditions
A total of 199 Chinese peanut germplasm accessions 
were collected from various sites across China, includ-
ing the Kaifeng Academy of Agricultural and Forestry 
Sciences in Henan province, the Hebei Academy of Agri-
culture and Forestry Sciences, and the Institute of Oil 
Crops at the Chinese Academy of Agricultural Sciences 
in Hubei province. Some accessions have been registered 
by the state, while others are advanced breeding lines 
(Fig. S1; Dataset S1). The selected 199 lines were culti-
vated over three consecutive years (2019, 2020, and 2021) 
at experimental fields in Kaifeng (114°27′E, 34°77′N) and 
Xinyang (114°07′E, 32°12′N) in Henan province, China. 
Four experimental environments were designated as E1 
(Kaifeng in 2019), E2 (Xinyang in 2019), E3 (Kaifeng in 
2020), and E4 (Kaifeng in 2021). A randomized block 
design with three replicates was employed, planting 165 
seeds of each material in a 6.67 × 2 m2 plot [30]. Each row 
contained 33 plants per accession, with a 40 cm spacing 
between rows and a 20  cm spacing between individual 
plants. The experimental field featured medium soil fer-
tility, good drainage and irrigation, level topography, and 
sandy loam. After harvesting, seven yield components, 
HPW, HSW, SP, NP (total number of 500 g of pods), NS 
(total number of 250 g of seeds), PL, and PW, were mea-
sured according to the standard procedures [31]. Qual-
ity traits, including protein content (PC) and oil content 
(OC), were determined using near-infrared reflectance 
spectroscopy (DA7250; Perten Instruments, Beijing, 
China).

DNA extraction and genotype sequencing
Genomic DNA was extracted from approximately 100 mg 
of unfolded leaves collected from 3-week-old seed-
lings using a plant genomic DNA kit (Tiangen, Beijing, 
China). DNA integrity, quality, and concentration were 

assessed through gel electrophoresis, NanoDrop™2000 
(Thermo Fisher, Waltham, MA), and a Qubit fluorometer 
(Thermo Fisher). Qualified DNA samples were randomly 
fragmented with a Covaris® ultrasonic breaker (Covaris, 
Woburn, MA) before library construction. The process 
included end-repairing and phosphorylation, A-tailing, 
index adapter ligation, denaturation, and PCR amplifica-
tion. The constructed library was sequentially sequenced 
on an Illumina HiSeqTM2000 platform (Illumina, San 
Diego, CA) by Novogene (Beijing, China).

Analysis of phenotypic data
Phenotypic statistical analyses were conducted using 
mixed linear models in Genstat version 22.0 [32] using 
Kainong 69 as a control. Phenotype summary statis-
tics and correlation analysis were performed using DPS 
v20.0 and the performance analytics package of the R 
language [33]. The variance component was analyzed 
by calculating the generalized heritability of phenotypes 
using restricted maximum likelihood (REML) and the 
following formula: h2 = σ2

g/(σ2
g + σ2

ge/n + σ2
ε /nr), where 

σ2
g represents the genotypic variance, σ2

ge represents the 
interaction between 199 genotypes and the environment; 
σ2

ε represents the residual variance component; n is the 
number of environment trials; and r is the number of 
replicates in each environment trial [34].

SNP alignment and calling
Paired-end re-sequencing reads were mapped to the ref-
erence genome of A. hypogaea Kaixuan 016 (in prepara-
tion for publication) using the Burrows-Wheeler Aligner 
software version 0.7.8 [35]. After sorting, potential PCR 
duplicates were removed by ‘rmdup’. When multiple read 
pairs with identical external coordinates were found, only 
the pair with the highest mapping quality was retained 
[36]. Following alignment, population-scale SNP call-
ing was performed using SAMtools [35]. To abate SNP 
calling errors caused by incorrect mapping or insertions 
and deletions (InDels), only high-quality SNPs (cover-
age depth ≥ 3, RMS mapping quality ≥ 20, maf ≥ 0.05, 
miss ≤ 0.2) were used for subsequent analysis. The den-
sity of SNP loci was statistically analyzed using the R 
language.

Linkage disequilibrium and population genetic structure
LD decay analysis was conducted using PopLDdecay 
software [37]. Population structure was analyzed using 
Admixture 1.23 software [38]. To clarify the phylogenetic 
relationship from a genome-wide perspective, an indi-
vidual-based neighbor-joining (NJ) tree was constructed 
based on the p-distance using TreeBest 1.9.2 software 
(http://treesoft.sourceforge.net/treebest.shtml) and visu-
alized using MEGA6.0 [39]. Genetic structure was evalu-
ated by PCA using GCTA 1.24.2 software [40], and the 

http://treesoft.sourceforge.net/treebest.shtml
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significance level of the eigenvectors was determined 
using the Tracey-Widom test [41]. Heatmaps were drawn 
using kinship analysis in the TASSEL software package 
[42].

Genome-wide association analysis and candidate gene 
discovery
GWAS was conducted using GEMMA (genome-wide 
efficient mixed-model association) version 0.94.1 [43, 44]. 
The mixed linear model (MLM) analysis was performed 
using the following equation:

y = Xα + Sβ + Kµ + e.
In this equation, y corresponds to phenotype; X cor-

responds to genotype; S represents the structure matrix, 
and K represents the relative kinship matrix. Xα and Sβ 
represent fixed effects, while Kµ and e represent random 
effects. The top three principal components were used to 
construct the S matrix for population structure correc-
tion. The matrix of simple matching coefficients was used 
to build the K matrix. Annotation was performed using 
the ANOVAR package against the reference genome, 
Kaixuan 016.

High-quality SNPs were categorized based on the pri-
mary gene structure, including exonic regions, intronic 
regions, splicing sites, upstream and downstream 
regions, and intergenic regions. SNPs in coding exons 
were further dichotomized into those with synonymous 
mutations and those with nonsynonymous mutations, 
including those causing stop codons. PVE was analyzed 
using the Lm and ANOVA packages in the R language. 
Block analysis was conducted using the LDBlockShow 
1.40 software [45]. The map of significant loci was drawn 
using the VennDiagram and UpSetR packages of the R 
language [46, 47]. Boxplots were drawn by R software. 
The significance of variation was evaluated using the 
t-test. KASP primers were synthesized by Golden Maker 
Technology (Beijing, China).

Results
Phenotypic diversity and heritability
The phenotypic observations of the nine traits under 
study were all continuous and followed a normal distri-
bution. The mean values of the measured phenotypic 
traits, including HPW, HSW, SP, NP, NS, PL, PW, PC, 
and OC across four growth environments (Kaifeng in 
2019, Xinyang in 2019, Kaifeng in 2020, Kaifeng in 2021) 
were 201.54 g, 73.07 g, 65.14%, 341.25, 449.22, 37.67 cm, 
16.03 cm, 24.26%, and 50.05%, respectively (Table 1). The 
highest coefficients of variation (CV) were observed in 
NP and HPW, at 21.15% and 20.90%, respectively, while 
OC had the lowest CV at 3.97%. These results suggest 
that the environment had a greater impact on the pheno-
types of NP and HPW than on those of OC. The broad-
sense heritability (h2) of all nine traits ranged from 88.09 

to 98.08%, indicating that the phenotypes of these traits 
were primarily determined by genetic factors (Table  1). 
Analysis of variance for nine traits indicated that the 
effect of genotypes, environments, and GE interactions 
were all significant (Table S1).

Among the seven traits of yield components, signifi-
cant positive correlations were observed among HPW, 
HSW, PL, and PW, while significant negative correlations 
were found among SP, NP, and NS (Fig.  1). The highest 
positive correlation was between HPW and HSW, with 
a r value of 0.83, while the highest negative correlations 
were observed between HPW and NP, as well as between 
HSW and NS, both with a r value of -0.86. Regarding the 
quality traits, PC and OC exhibited a negative correla-
tion, with a r value of -0.86. Except SP, NP, and NS, all 
other yield component traits exhibited negative correla-
tions with PC and OC.

Genomic variations of SNPs
The re-sequencing of all 199 peanut accessions with a 
sequencing depth of 10x generated a total of 7,056,911 
Gb of raw data, with an average of 35,640,964 Mb of raw 
data per sample. The total amount of filtered, clean data 
was 7,048,906 Gb, with an average of 35,600,534 Mb per 
sample. After SNP calling and filtering, a total of 631,988 
SNPs were retained. The highest number of SNPs was 
observed on Chr03, with 48,821, followed by Chr11 with 
43,292 SNPs. In contrast, the lowest number of SNPs was 
found on Chr08, with 13,143 SNPs, followed by Chr10 
with 13,848 SNPs. The average SNP density on chromo-
somes was 251.71/M (Fig. 2).

Functional annotation analysis revealed that 89.54% 
of the SNPs were situated in intergenic regions, with the 
remaining 10.46% identified within genic regions. Within 
these genic regions, a cumulative total of 26,899 SNPs 
were discernible in introns, subsequently followed by 
untranslated regions (UTRs) and coding regions of the 
annotated genes.

Linkage disequilibrium decay
The LD decay was estimated by determining the LD 
coefficient (r2) between pairwise SNPs. Utilizing the 
parameters ‘-n -dprime-minMAF 0.05’ in PopLDdecay, 
the average r2 value was computed for pairwise mark-
ers within a 500  kb window and averaged across the 
entire genome. Following the suggestion of a previous 
study [48], the LD decay distance was defined as half of 
the maximum r2 value. Consequently, the peanut popu-
lation’s LD was estimated to be 115 kb when r2 equaled 
0.15 (Fig. S2).

Population structure analysis
To understand the genetic structure of the population, 
199 peanut accessions were categorized based on SNP 
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data, and the class distribution of k values from 1 to 8 
was calculated and simulated according to the Bayesian 
algorithm (Fig.  3A). When k equals five, the population 
can be segmented into five distinct groups. As shown 
in Fig.  3B, Group I (GI) comprised 23 accessions, all of 
which were multi-kernel types, resembling their paternal 
parent, Kainong 15. GroupII (GII) contained 14 acces-
sions with PL to PW ratios less than 1.8. Group III (GIII) 
included 12 accessions, 75% of which exhibited a PL to 
PW ratio exceeding 2.7. Group IV (GIV) was consisted of 
seven varieties, six of them were derived from the same 
maternal parent. Group V (GV) was the largest category 
encompassing 143 accessions, all derived from advanced 
lines chosen during high-yield breeding (Fig. 3B; Dataset 

S1). PCA analysis based on the first (PC1) and the sec-
ond (PC2) principal components revealed that, except 
for the first category, no distinct classification boundaries 
were evident (Fig. 3C). Similarly, the heat map generated 
using the k-matrix also displayed promiscuous boundar-
ies between the five groups (Fig. 3D).

Genome-wide association studies
In the association panel comprising 199 peanut acces-
sions, a total of 631,988 SNPs (minor allele fre-
quency ≥ 0.05; missing rate ≤ 0.2; depth ≥ 3) were used 
for the GWAS analysis. The threshold value of GWAS, 
determined by the Bonferroni test, was 7.10 [- log10 
(0.05/631,988)]. A total of 95, 161, 99, and 101 maker 

Table 1  Phenotypic variation of the nine traits in 199 accessions of four environments
Trait Env Max Min Mean Variance SD CV (%) Heritability (%)
HPW E1 332.00 102.43 194.77 1371.02 37.03 19.01 97.06

E2 351.30 123.13 213.20 1796.53 42.39 19.88
E3 303.68 109.83 196.33 1412.10 37.58 19.14
E4 355.25 105.90 200.21 1631.75 40.39 20.18

HSW E1 123.00 42.67 73.54 157.76 12.56 17.08 97.12
E2 113.13 46.50 75.43 138.51 11.77 15.60
E3 108.67 45.40 70.15 113.73 10.66 15.20
E4 119.93 39.42 71.71 148.40 12.18 16.99

SP E1 75.73 54.41 67.35 17.70 4.21 6.25 95.16
E2 74.63 46.80 63.88 35.48 5.96 9.32
E3 74.90 55.67 66.43 16.00 4.00 6.02
E4 72.37 49.24 62.27 24.83 4.98 8.00

NP E1 654.33 204.00 361.76 5004.59 70.74 19.56 96.87
E2 540.00 176.21 330.33 4348.04 65.94 19.96
E3 526.25 193.71 332.45 3986.42 63.14 18.99
E4 577.28 203.40 334.00 3895.64 62.42 18.69

NS E1 749.67 248.67 446.34 5897.11 76.79 17.20 90.54
E2 770.67 247.33 450.11 6764.22 82.24 18.27
E3 693.86 279.08 447.53 5252.76 72.48 16.19
E4 719.18 265.85 453.65 5714.52 75.59 16.66

PL E1 52.16 26.26 37.04 20.29 4.50 12.16 98.08
E2 54.83 27.28 37.17 25.08 5.01 13.47
E3 52.36 27.72 38.26 21.65 4.65 12.16
E4 56.96 27.08 38.90 27.79 5.27 13.55

PW E1 19.84 11.21 15.98 2.35 1.53 9.59 96.45
E2 20.39 11.68 16.44 2.63 1.62 9.87
E3 18.56 11.49 15.40 1.74 1.32 8.56
E4 20.79 12.06 16.13 2.54 1.60 9.89

PC E1 27.09 21.88 24.52 0.79 0.89 3.63 90.33
E2 26.60 20.69 23.59 0.79 0.89 3.77
E3 28.99 23.25 26.31 1.14 1.07 4.06
E4 26.13 20.52 22.98 1.02 1.01 4.40

OC E1 53.59 46.14 49.91 1.30 1.14 2.29 88.09
E2 54.63 48.19 51.48 1.44 1.20 2.34
E3 52.74 43.18 47.65 2.75 1.66 3.48
E4 54.18 47.16 50.49 1.46 1.21 2.39

Note: HPW, hundred-pod weight; HSW, hundred-seed weight; SP, shelling percentage; NP, total number of 500 g of pods; NS, total number of 250 g of seeds; PL, pod 
length; PW, pod width; PC, protein content; OC, oil content; SD, standard deviation; CV, coefficients of variation; h2, broad-sense heritability; E1, Kaifeng in 2019; E2, 
Xinyang in 2019; E3, Kaifeng in 2020, E4, Kaifeng in 2021
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traits associations (MATs) were identified in the envi-
ronments E1, E2, E3, and E4, respectively (Fig. 4A; Table 
S2). The number of SNPs detected for individual traits 
varied across different environments. In E3, the maxi-
mum number of SNPs detected for HPW and SP was 7 
and 14, respectively. In E2, the maximum number of 
SNPs detected for HSW, NP, PL, and PC was 11, 17, 17, 
and 39, respectively. The highest numbers of SNPs for 
NS and PW were detected in E4 and E1, respectively. No 
SNP was discernible for HPW and HSW in E4, nor for 
SP in E2. A total of 12, 14, 18, 37, 84, 23, 32, 82, and 72 
non-redundant association sites were identified for HPW, 
HSW, SP, NP, NS, PL, PW, PC, and OC, respectively 
(Fig.  4B; Table S2). The associated loci of yield compo-
nents were primarily situated on Chr08 and Chr16, with 
a lesser extent on Chr13, while those of the two quality 
traits were predominantly located on Chr08 and Chr18. 
The Manhattan plots and quantile-quantile plots of each 
trait under the four environments are shown in Fig. S3.

A total of 374 significant loci were detected for the 
nine traits, with 66 of these detected in more than two 
environments. For example, Arahy.16_142867474 for 

PL and Arahy.16_142692237 for PW were detected 
in all four environments (Fig.  4A). Forty-eight SNP 
loci were attributable to two or more traits. For 
instance, Arahy.16_142692237, Arahy.16_139632313, 
Arahy.16_142656321, and Arahy.16_138643609 were 
associated with six, five, four, and three yield compo-
nents, respectively. The repeatedly detected loci for qual-
ity traits were all located on Chr08, while those related to 
yield traits were primarily found on Chr16. Apart from 
SP, no SNP overlap was observed between quality traits 
and yield traits (Fig. 4B; Table S3).

Verification of the relationship between SNPs and 
phenotype
To verify the associated loci of the selected seven yield 
traits and two quality traits in peanuts, we extracted 
the genotypes of seven SNP loci from 199 accessions 
and chose approximately 50 extreme phenotypes for 
each trait to construct box plots using the follow-
ing criteria: HPW ≥ 220  g, HPW ≤ 160  g, HSW ≥ 80  g, 
HSW ≤ 65  g, SP ≥ 69%, SP ≤ 62%; NP ≥ 380, NP ≤ 290, 
NS ≥ 500, NS ≤ 390, PL ≥ 41 cm, PL ≤ 34 cm, PW ≥ 17 cm, 

Fig. 1  Correlation coefficient of the nine traits. HPW, hundred-pod weight; HSW, hundred-seed weight; SP, shelling percentage; NP, the total number of 
500 g of pods; NS, the total number of 250 g of seeds; PL, pod length; PW, pod width. PC, protein content; OC, oil content. The number represents the 
correlation coefficient (r) value between traits. The circles in the lower half corner are distributed around the lines. r is high when the circles are located 
near the line. The greater the correlation between the traits, the larger the number in the upper left corner. ***, significant at p < 0.1% level, **, significant 
at p < 1% level, *, significant at p < 5% level
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PW ≤ 15 cm, PC ≥ 25%, PC ≤ 23.6%, OC ≥ 50%, OC ≤ 49%. 
Significant phenotypic differences between the two base 
types for the nine traits were evident (Dataset S2). At the 
Arahy16_138643609 site, the high-yield genotypes had 
a CC base, in contrast to TT in the low yield genotypes. 
For Arahy.16_139632313 and Arahy.16_142692237, the 
high-yield genotypes had a GG base, while the low-yield 
genotypes had an AA base. In Arahy.16_142656321, the 
high-yield genotypes featured a TT base, as opposed to 
CC in the low-yield genotypes. In Arahy.16_142867474, 
the high-yield genotypes had a GG base, while the low-
yield genotypes had a CC base. At Arahy.08_38378278, 
the high-oil and low-oil genotypes had TT and CC bases, 
respectively. In Arahy.08_49538603, the high-PC/low-
OC genotypes had an AA base, in contrast to CC in the 
low-PC/high-OC genotypes (Fig. S4). The genotype pro-
portion of CC/TT, GG/AA, GG/AA, TT/CC, GG/CC, 
TT/CC and CC/AA were 168/25, 150/27, 158/28, 156/27, 
157/33, 116/41 and 136/45, respectively (Dataset S2).

Candidate genomic regions for yield and quality traits
Yield trait loci were predominantly clustered on Chr16, 
where SNP Arahy.16_138643609, Arahy.16_42656321, 
and Arahy.16_142867474 were repeatedly identi-
fied in association with four yield traits across multiple 

environments. Additionally, SNP Arahy.16_139632313 
and Arahy.16_142692237 were associated with five 
and six yield traits, respectively, in multiple environ-
ments. The highest PVE of yield component trait loci 
in different environments ranged from 17.64 to 32.61% 
(Table 2). Arahy.16_139632313, which was closely related 
to five yield traits, accounting for 26.43% of the phe-
notypic variation of HPW in E1. Arahy.16_142692237 
and Arahy.16_142867474 were consistently found 
in association with PL and PW in all four environ-
ments. Arahy.16_142692237 and Arahy.16_142867474 
accounted for 17.64% and 21.17% of the phenotypic 
variations in E3 and E2, respectively. In contrast, 
Arahy.08_38378278 and Arahy.08_49538603 were linked 
with quality traits, accounting for 12.86% and 14.06% of 
the phenotypic variation of OC in E1 and E3, respectively. 
Analysis of the 115 kb region upstream and downstream 
of these sites using the LD haplotype block diagram 
revealed that the seven significant SNP sites formed 
seven blocks, including a total of 158 SNPs (Fig.  5). 
Among these seven blocks, the peak value (- log10P) of 
yield traits ranged from 7.11 to 10.48 in different environ-
ments, and the peak value of quality traits ranged from 
5.06 to 7.06 (Table S4).

Fig. 2  The density distribution of SNPs on peanut chromosomes. The ordinate represents the 20 chromosomes of Arachis hypogaea. The abscissa repre-
sents the length of the chromosomes. The color index represents the number of SNPs in 1.0 Mb window
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Using Kaixuan 016 as the reference genome, we dis-
covered that five SNPs located in the coding regions of 
several key genes resulted in nonsynonymous variations 
(Table  3). Gene function annotation analysis revealed 

that one of the SNPs, Arahy.16_142682809, was situated 
within the coding region of gene evm.TU.ctg197.486, 
which encodes a pyruvate monooxygenase. This SNP led 
to an amino acid substitution of Lys to Asn in the fourth 

Fig. 4  The profile of the associated loci for the selected nine traits of the 199 accessions across four different environments. A: The Venn diagram depict-
ing the associated loci for the nine traits under four environments. B: The statistical column diagram representing the associations of the nine traits and 
their interactive upset plot. E1, Kaifeng in 2019; E2, Xinyang in 2019; E3, Kaifeng in 2020; E4, Kaifeng in 2021; HPW, hundred-pod weight; HSW, hundred-
seed weight; SP, shelling percentage; NP, the total number of 500 g of pods; NS, the total number of 250 g of seeds; PL, pod length; PW, pod width

 

Fig. 3  Genetic structures and phylogeny of the population. A: Population structure (k = 5). B: Phylogenetic tree. C: Principal component analysis (PCA). 
D: Heat map of pairwise relative kinship estimates

 



Page 9 of 16Guo et al. BMC Plant Biology          (2024) 24:244 

Table 2  The repeatedly detected major association loci of the nine yield components and quality traits in peanuts
SNP Ref Alt Trait (No. of environment detected the signal) Max PVE (%)
Arahy.16_138643609 C T HSW(2), NP(2), NS(2), PW(2) 19.79
Arahy.16_139632313 G A HPW(1), HSW(2), NP(2), NS(1), PW(3) 26.43
Arahy.16_142656321 C T HPW(2), NP(3), NS(1), PW(2) 32.61
Arahy.16_142692237 G A HPW(2), HSW(2), NP(2), NS(2), PL(1), PW(4) 17.64
Arahy.16_142867474 C G HPW(1), NP(1), PL(4), PW(3) 21.17
Arahy.08_38378278 C T PC(1), OC(1) 12.86
Arahy.08_49538603 A T PC(2), OC(1) 14.06
HPW, hundred-pod weight; HSW, hundred-seed weight; SP, shelling percentage; NP, total number of 500 g of pods; NS, total number of 250 g of seeds; PL, pod 
length; PW, pod width; PC, protein content; OC, oil content. PVE, phenotypic variation explained

Table 3  The non-synonymous mutation loci annotation in the genomic regions
Linkage SNP loci Gene name Gene start Gene end Gene 

length
Ref Alt Protein 

substitution
Functional annotation

Arahy.16_142682809 evm.TU.ctg197.486 142,682,800 142,685,882 3083 A C Lys-Asn Pyruvate monooxygenase
Arahy.16_142783542 evm.TU.ctg197.494 142,781,095 142,783,744 2650 G A Arg-Lys Shikimate 

O-hydroxycinnamoyltransferase
Arahy.08_38352339 evm.TU.ctg335.1373 38,351,075 38,352,916 1842 C A Tyr-Stopgain NAC transcription factor
Arahy.08_38476979 evm.TU.ctg335.1377 38,475,835 38,477,774 1940 A G Ile-Val NAC domain-containing protein
Arahy.08_49440731 evm.TU.ctg335.2426 49,439,949 49,441,823 1875 C T Thr-Ile Carbohydrate metabolic

Fig. 5  LD block surrounding the significant SNPs. The pairwise Linkage Disequilibrium (LD) between the SNP markers is indicated as D’ values, where red 
indicates a value of 1 and yellow indicates 0. Dark red represents the highest correlation and the highest LD between the two SNPs. D’ is the standardized 
linkage disequilibrium coefficient
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exon, resulting from a nucleotide substitution of A to 
C. Another SNP, Arahy.16_142783542, was identified in 
the coding region of evm.TU.ctg197.494, which encodes 
a shikimate_O-hydroxycinnamoyltransferase. The SNP 
caused an amino acid alteration from Arg to Lys. More-
over, the Arahy.08_38352339 SNP was discovered in the 
second exon of evm.TU.ctg335.1373, encoding an NAC 
transcription factor. A nucleotide change from C to A led 
to the formation of a stop codon. The Arahy.08_38476979 
SNP was found in the third exon of evm.TU.ctg335.1377, 
encoding an NAC domain-containing protein. A nucleo-
tide alteration from A to G resulted in an amino acid sub-
stitution from Ile to Val. Finally, the Arahy.08_49440731 
SNP was located in the first exon of evm.TU.ctg335.2426, 
which encodes a protein predicted to be involved in 
carbohydrate metabolism. This SNP caused a Thr-to-
Ile amino acid substitution due to a C-to-T nucleotide 
alteration.

KASP markers validation of the SNPs
The association between the five aforementioned SNPs 
and peanut yield components and quality traits was vali-
dated by analyzing re-sequencing data and evaluating 
the phenotypic performance of the population. At the 
Arahy16_142682809 site, the GG genotype was associ-
ated with high yield, whereas the TT genotype was linked 
to low yield. Similarly, the high-oil trait was associated 
with the GG genotype at the Arahy.08_38352339 site. 
For the Arahy.08_49440731 site, the GG genotype was 
associated with high-PC/low-OC, while the low-PC/
high-OC feature was associated with the AA genotype 
(Fig. S5). However, no variation was observed among the 
population at the Arahy.16_142783542 site and the SNP 

in Arahy.08_38476979 did not lead to any significant phe-
notypic variation.

Subsequently, KASP markers were designed for 
Arahy.16_142682809, Arahy.08_38352339, and 
Arahy.08_49440731 and validated in a total of 199 pea-
nut accessions (Table S5, Fig.  6). The results, illus-
trated in Figs.  7 and 8, and 9, demonstrated that these 
KASP markers can effectively differentiate the SNPs 
at Arahy.16_142682809, Arahy.08_38352339, and 
Arahy.08_49440731 with clarity and precision.

Discussion
Peanut yield and quality are crucial for the thriv-
ing peanut industry, as they directly impact its eco-
nomic value and global competitiveness. GWAS has 
emerged as a powerful tool for identifying key genes 
that influence these essential traits. By unraveling the 
genetic architecture of high-yield and superior-quality 
peanuts, GWAS enables the development of marker-
assisted breeding programs. This targeted approach 
accelerates the breeding process, ensuring the culti-
vation of high-performing peanut varieties that cater 
to consumer demand and market needs. In turn, this 
advances the industry’s sustainability and profitability, 
benefiting both producers and consumers alike.

This study analyzed 199 peanut accessions, all origi-
nating from the high-oleic acid-containing Chinese 
variety Kaixuan 016 [49, 50]. Genotyping analysis of 
this diverse population, featuring significant variation in 
yield components and quality parameters, was enabled 
by using Kaixuan 016 as a reference genome. The pres-
ence of a normal distribution of phenotypic data (Fig. 1), 
coupled with pedigree analysis and the genetic contribu-
tion of Kaixuan 016 to derived lines (as per unpublished 

Fig. 6  Kompetitive allele-specific PCR (KASP) markers for the validation of three selected SNPs, Arahy16_142682809, Arahy.08_38352339, 
Arahy.08_49440731
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data), indicated a rich genetic diversity among the 199 
accessions.

The substantial phenotypic diversity displayed across 
four distinct growth environments enhances genotyping 

efficiency and improves the resolution of GWAS analy-
ses. By monitoring the population for LD decay, we 
made accurate estimates regarding the required number 
and granularity of markers for meaningful association 

Fig. 7  Kompetitive allele-specific PCR (KASP) validation of the phenotypic variations between two base types at Arahy.16_142682809. E1, Kaifeng in 
2019; E2, Xinyang in 2019; E3, Kaifeng in 2020; E4, Kaifeng in 2021; HPW, hundred-pod weight; HSW, hundred-seed weight; SP, shelling percentage; NP, 
total number of 500 g of pods; NS, total number of 250 g of seeds; PL, pod length; PW, pod width
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analysis [51–53]. Given Kaixuan 016’s reference genome 
size of 2.53 Gb, we estimated that 22,528 SNP markers 
(genome size/LD attenuation distance) would be neces-
sary for accurate association analysis. However, 631,988 
SNPs were identified in this study, representing the most 
abundant high-quality SNP loci obtained via the 10× 
deep sequencing of peanuts to date, far exceeding the 
number used in prior studies [17, 54, 55].

It was observed that the CV values for yield traits were 
higher than those for quality traits across all four envi-
ronments, aligning with other studies that found yield 
traits to be more susceptible to environmental influ-
ence [56, 57]. Broad-sense heritability for all nine traits 
exceeded 80%, indicating that phenotypes were primar-
ily determined by genotype [58]. A quantitative trait like 
yield can have a high heritability as the experiment was 
well conducted with high appropriate replication levels, 
and this higher heritability had also been observed in 
other studies [59, 60]. Among yield traits, HPW, HSW, 
PL, and PW were positively correlated with one another, 
while SP displayed a significant negative correlation. 
Larger pods were associated with less plump kernels, 
likely due to homeostatic compensatory effects influ-
encing plant growth and development. Furthermore, a 
negative correlation was observed between PC and OC, 
consistent with the competitive metabolism and accumu-
lation of oil and proteins as major storage compounds in 
peanut seeds [27].

Investigating a population’s genetic structure can 
clarify its origin, composition, and evolution, while 
controlling false positives produced by population 
structure through PCA and structural analysis. The 
199 accessions were categorized into five groups in 
this study. Kainong 15, the paternal parent of all 23 
accessions in GI, is a red testa variety with 3–4 ker-
nels per pod. The heritability of multi-kernel pods was 
strong, with all progenies derived from Kainong 15 
being multi-kernelled. Peanut populations GII, GIII, 
and GV represent small, large, and medium-sized 
pods, respectively. This variation in pod size between 
groups enables the easier identification of significant 
linkage loci for economic traits through association 
analysis.

In this study, GWAS analysis identified 374 signifi-
cant SNP loci associated with nine traits, including 220 
for yield traits and 154 for quality traits (Fig.  4B; Table 
S2). The number of associated loci identified substan-
tially exceeded those reported in previous studies [10, 
11, 17, 25, 57, 61]. We pinpointed several candidate 
genes, such as those encoding pyruvate monooxygen-
ase, shikimate_O-hydroxycinnamoyltransferase, and the 
NAC transcription factor, which are potentially associ-
ated with yield component and quality traits. Pyruvate 
monooxygenases catalyze the conversion of pyruvate to 
acetyl-CoA, a central molecule in cellular metabolism, 
including the citric acid cycle and fatty acid biosynthesis 

Fig. 9  Kompetitive allele-specific PCR (KASP) validation of the phenotypic variation between two base types at Arahy.08_49440731. E1, Kaifeng in 2019; 
E2, Xinyang in 2019; E3, Kaifeng in 2020; E4, Kaifeng in 2021; PC, protein content; OC, oil content

 

Fig. 8  Kompetitive allele-specific PCR (KASP) validation of the phenotypic variation between two base types at Arahy.08_38352339. E1, Kaifeng in 2019; 
E2, Xinyang in 2019; E3, Kaifeng in 2020; E4, Kaifeng in 2021; OC, oil content
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[62]. Shikimate_O-hydroxycinnamoyltransferase is 
involved in the phenylpropeanoid biosynthesis pathway 
and plays a crucial role in synthesizing various second-
ary metabolites such as lignins, flavonoids, and pheno-
lic acids [63]. These compounds contribute to the seed 
coat’s structure and integrity, which are vital for protect-
ing the developing embryos and maintaining seed viabil-
ity. Although not directly associated with seed storage 
compound accumulation, its involvement in the phen-
ylpropanoid pathway can have indirect effects on these 
processes [64, 65].

NAC transcription factors are plant-specific proteins 
with essential regulatory roles in plant development 
and stress responses. In peanut kernel development, 
NAC transcription factors may regulate gene expression 
related to cell differentiation, expansion, and maturation, 
as well as the response to environmental stress factors 
impacting flower and kernel development [66]. Overex-
pression of OsNAC6 in rice leaded to growth hindrance 
and yield reduction [67]. Additionally, grape NAC26 
polymorphism had been linked to fruit size variations 
[68]. Given that these genes may play a role in provid-
ing the necessary energy and precursors for the synthesis 
of lipids, proteins, and other biomolecules during seed 
development, it is plausible to assume that the SNPs pres-
ent in these genes may affect their function and impact 
peanut kernel yield or quality in one way or another. 
Three candidate genes associated with peanut yield 
and quality traits, specifically evm.TU.ctg197.486, evm.
TU.ctg335.1373, and evm.TU.ctg335.2426 were identified 
to be arahy.6PM354, arahy.65HUV4, and arahy.QNIR3T 
respectively in Tifrunner genome (https://www.peanut-
base.org/peanut_genome). Among them, the oil content 
candidate gene arahy.65HUV4 was reported in the previ-
ous study [69]. A BLAST search within NCBI (National 
Center for Biotechnology Information) databases 
revealed that the other two genes were not reported.

Three KASP markers were developed for SNPs at 
Arahy.16_142682809 (yield component traits) and 
Arahy.08_38352339 and Arahy.08_49440731 (quality 
traits). The effectiveness of these markers was verified, 
suggesting their potential as selection markers for yield 
and quality traits. These markers could prove valuable for 
the fine mapping of candidate genes and can be directly 
applied in peanut breeding programs to enable accurate 
and effective selection of desired traits. However, further 
research is necessary to validate the function of these 
SNPs and comprehend the underlying biological mecha-
nisms involved. Acquiring this knowledge is crucial for 
optimizing the accuracy and efficiency of marker-assisted 
breeding as well as recognizing any limitations or con-
straints that may arise when implementing these markers 
in breeding programs.
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