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Abstract
Background: Protein prenylation is a common post-translational modification in metazoans, protozoans, fungi, and 
plants. This modification, which mediates protein-membrane and protein-protein interactions, is characterized by the 
covalent attachment of a fifteen-carbon farnesyl or twenty-carbon geranylgeranyl group to the cysteine residue of a 
carboxyl terminal CaaX motif. In Arabidopsis, era1 mutants lacking protein farnesyltransferase exhibit enlarged 
meristems, supernumerary floral organs, an enhanced response to abscisic acid (ABA), and drought tolerance. In 
contrast, ggb mutants lacking protein geranylgeranyltransferase type 1 exhibit subtle changes in ABA and auxin 
responsiveness, but develop normally.

Results: We have expressed recombinant Arabidopsis protein farnesyltransferase (PFT) and protein 
geranylgeranyltransferase type 1 (PGGT1) in E. coli and characterized purified enzymes with respect to kinetic constants 
and substrate specificities. Our results indicate that, whereas PFT exhibits little specificity for the terminal amino acid of 
the CaaX motif, PGGT1 exclusively prenylates CaaX proteins with a leucine in the terminal position. Moreover, we found 
that different substrates exhibit similar Km but different kcat values in the presence of PFT and PGGT1, indicating that 
substrate specificities are determined primarily by reactivity rather than binding affinity.

Conclusions: The data presented here potentially explain the relatively strong phenotype of era1 mutants and weak 
phenotype of ggb mutants. Specifically, the substrate specificities of PFT and PGGT1 suggest that PFT can compensate 
for loss of PGGT1 in ggb mutants more effectively than PGGT1 can compensate for loss of PFT in era1 mutants. 
Moreover, our results indicate that PFT and PGGT1 substrate specificities are primarily due to differences in catalysis, 
rather than differences in substrate binding.

Background
Protein farnesylation is the process by which proteins
bearing a carboxyl terminal CaaX motif (C = Cys; a = ali-
phatic; X = Ser, Cys, Met, Gln, Ala) are post-translation-
ally modified by the covalent attachment of a fifteen-
carbon farnesyl group [1-4]. This modification results in
the formation of a stable thioether bond between the
cysteine of the CaaX motif and the farnesyl moiety, with
farnesyl diphosphate serving as the farnesyl donor (Fig-
ure 1). This lipidation reaction is catalyzed by protein
farnesyltransferase (PFT), which is a cytosolic enzyme
consisting of α- and β-subunits [1-4]. In a similar process,

proteins bearing a carboxyl terminal CaaX motif with
Leu, Ile, Met, or Phe in the terminal position are modified
by the covalent attachment of a twenty-carbon gera-
nylgeranyl group to the cysteine of the CaaX motif. This
modification is catalyzed by protein geranylgeranyltrans-
ferase type I (PGGT1), which is a cytosolic enzyme con-
sisting of an α-subunit identical to that of PFT and a
distinct β-subunit [1-5]. A third enzyme, protein gera-
nylgeranyltransferase type II (PGGT II), also called RAB
geranylgeranyltransferase (RAB GGT), catalyzes the ger-
anylgeranylation of RAB proteins bound to the RAB
ESCORT PROTEIN (REP). All three enzymes have been
found in protozoans, metazoans, fungi, and plants,
including peas [6,7], tomato [8,9], and Arabidopsis [10-
14].
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In Arabidopsis, a single gene encodes the common α-
subunit of PFT and PGGT1 (PLURIPETALA, PLP,
At3g59380) [14], a second gene encodes the β-subunit of
PFT (ENHANCED RESPONSE TO ABA1, ERA1,
At5g40280) [11,13], and a third gene encodes the β-sub-
unit of PGGT1 (GERANYLGERANYLTRANSFERASE
BETA, GGB, At2g39550) [10,12]. The ERA1 gene was so
named because knockout mutations in this gene cause an
enhanced response to abscisic acid (ABA) in both seed
germination and stomatal closure assays. Consequently,
era1 mutants exhibit increased seed dormancy and sto-
matal closure in response to ABA, and are drought toler-
ant [11,13,15-17]. These observations suggest that at least
one farnesylated protein functions as a negative regulator
of ABA signaling. However, to date, a farnesylated nega-
tive regulator of ABA signaling has not been definitively
identified. era1 plants also exhibit enlarged meristems
and supernumerary floral organs, especially petals, and
this phenotype is greatly exaggerated in plp mutants lack-
ing the common α-subunit of PFT and PGGT1 [14,18-
21]. The more severe developmental phenotype of plp
mutants compared to era1 mutants suggests that PGGT1
partially compensates for loss of PFT in era1 mutants
[14]. Plants with defects in the GGB gene exhibit
increased ABA-induced stomatal closure and auxin-
induced lateral root formation [12], but without signifi-
cant developmental phenotypes. These observations sug-
gest that at least one geranylgeranylated protein functions
as a negative regulator of ABA signaling and at least one
functions as a negative regulator of auxin signaling.
Indeed, ROP2 and ROP6, which are geranylgeranylated

small GTPases [22,23], have been shown to function as
negative regulators of ABA signaling, and ROP2 and
AUX 2-11 (a geranylgeranylated member of the AUX/
IAA family) have been shown to function as negative reg-
ulators of auxin signaling [10,24]. Moreover, Arabidopsis
plants possess two genes encoding G protein γ-subunits,
both of which are geranylgeranylated, and mutants lack-
ing either of these genes exhibit an enhanced response to
auxin-induced lateral root formation [25]. Prenylated
proteins have also been implicated in a plethora of other
processes, including calcium signal transduction [26,27],
response to heat and heavy metal stress [28-30], cytoki-
nin biosynthesis [31], and regulation of the cell division
cycle [6,32,33]. Given these multiple roles, it is surprising
that, unlike other organisms, Arabidopsis plants survive
without the shared α-subunit of PFT and PGGT1 [14].

Proteins that are prenylated by either PFT or PGGT1
are further modified. First, the aaX portion of the CaaX
motif is proteolytically removed by specific CaaX pro-
teases (AtSTE24, At4g01320 and AtFACE-2, At2g36305
in Arabidopsis) [34-36] and, second, the isoprenylcysteine
at the newly formed carboxyl terminus is methylated
(Figure 1) [37-43]. Two distinct isoprenylcysteine methyl-
transferase (ICMT) enzymes, encoded by the AtSTE14A
(At5g23320) and AtSTE14B (ICMT, At5g08335) genes,
catalyze the methylation of carboxyl terminal isoprenyl-
cysteines in Arabidopsis [41,43-46]. Demethylation of
isoprenylcysteine methyl esters is catalyzed by isoprenyl-
cysteine methylesterase (ICME), which is encoded by the
ICME gene (At5g15860) [46,47].

Figure 1 Protein prenylation and processing in eukaryotes. A, prenylation and processing of farnesylated CaaX proteins. B, prenylation and pro-
cessing of geranylgeranylated CaaX proteins. C, prenylation of RAB GTPases.
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As described above, two geranylgeranylated proteins
(ROP2 and ROP6) and at least one farnesylated protein
negatively regulate ABA signaling in Arabidopsis. How-
ever, it is not clear at the present time how these proteins
function in ABA signaling. The stomata of ggb plants
were found to exhibit an enhanced response to ABA,
consistent with the known role of ROP6 in negative regu-
lation of ABA-induced stomatal closure [12,23], but the
response of ggb seeds to ABA was normal, despite a
report that ROP2 is involved in negative regulation of
ABA signaling in seeds [22]. While this may seem like a
contradiction, it is possible that PFT activity in ggb plants
is sufficient for the prenylation and function of certain
prenylated proteins, such as ROP2 (i.e., PFT compensates
for loss of PGGT1 in ggb mutants). Indeed, numerous
reports exist of prenylated proteins that are substrates of
both PFT and PGGT1 and others that are substrates of
either PFT or PGGT1 [48,49]. Given this heterogeneity in
the specificity of PFT and PGGT1 for certain CaaX pro-
teins, deconvoluting the complex roles of protein preny-
lation in negative regulation of ABA signaling, meristem
development, and other fundamental processes poses a
significant challenge. Nevertheless, to address this prob-
lem, we characterized Arabidopsis PFT and PGGT1 with
respect to substrate specificity and catalysis. These stud-
ies were aimed at answering the following questions: 1)
What distinguishes plant CaaX prenyltransferases from
animal and fungal prenyltransferases and what gives
them their unique substrate specificities? 2) Do the sub-
strate specificities of Arabidopsis PFT and PGGT1
potentially explain the phenotypes of era1 and ggb
mutants? The results reported here indicate that Arabi-
dopsis PFT exhibits less specificity for the terminal posi-
tion of the CaaX motif than PFT enzymes from
metazoans and yeast and Arabidopsis PGGT1 exhibits
greater specificity for CaaX motifs with leucine in the ter-
minal position than PGGT1 enzymes from metazoans
and yeast. These results potentially explain the pheno-
types of era1 and ggb mutants. Moreover, we show that
different CaaX substrates exhibit differences in reactivity
rather than differences in affinity in the presence of Ara-
bidopsis PFT and PGGT1.

Results
Recombinant Arabidopsis PFT is more specific for 
isoprenoid substrates than PGGT1, whereas PGGT1 is more 
specific for CaaX substrates
To functionally characterize Arabidopsis PFT and
PGGT1, we co-expressed the PLP and ERA1 coding
sequences in E. coli using the pETDuet-1 vector (PLP was
expressed with an amino terminal FLAG tag and ERA1
was expressed with an amino terminal 6 × His tag). We
also co-expressed the PLP and GGB coding sequences in
E. coli (PLP was expressed with an amino terminal FLAG

tag and GGB was expressed with an amino terminal 6 ×
His tag). IPTG-inducible PFT and PGGT1 activities were
detected in E. coli extracts and analyzed for substrate
specificity using [1-3H]FPP, [1-3H]GGPP, and 32 distinct
GFP-BD-CaaX protein substrates, which were generated
by site-directed mutagenesis of the GFP-BD-CaaX con-
structs recently reported by Gerber et al. (each protein
substrate consists of GFP fused to the carboxyl terminal
basic domain of the rice CaM61 protein and one of 32 dif-
ferent CaaX motifs) [50]. As shown in Figures 2 and 3,
recombinant Arabidopsis PFT exhibited modest selec-
tively for the terminal amino acid of the Ca1a2X motif.
GFP-BD-CaaX substrates with glutamine, methionine,
serine, cysteine, alanine, isoleucine, and even leucine (in
descending order) were appreciably farnesylated by Ara-
bidopsis PFT. As previously reported, PFT exhibited low
selectivity for the a1 position of the Ca1a2X motif, consis-
tent with the observation that the a1 position is solvent
exposed and not constrained by active site amino acids
[51-55]. In contrast, PFT exhibited high selectivity for the
a2 position, with charged amino acids (basic as well as
acidic) strongly excluded. GFP-BD-CaaX substrates that
were efficiently farnesylated were also weakly geranylger-
anylated by Arabidopsis PFT, but GFP-BD-CaaX farnesy-
lation was 50-fold greater than geranylgeranylation (i.e.,
the y-axes in the two graphs of Figure 2 are not the same).

As shown in Figures 4 and 5, recombinant Arabidopsis
PGGT1 exhibited high selectivity for the terminal amino
acid of the Ca1a2X motif. Only GFP-BD-CaaX substrates
ending in leucine were significantly prenylated by this
enzyme (not even CVII, which is a good substrate for
mammalian PGGT1, was appreciably prenylated by Ara-
bidopsis PGGT1). As with PFT, PGGT1 exhibited low
selectivity for the a1 position of the Ca1a2X motif, consis-
tent with the observation that the a1 position is solvent
exposed and not constrained by active site amino acids.
On the other hand, PGGT1 exhibited extremely high
selectivity for the a2 position, and only GFP-BD-CaaX
substrates with a hydrophobic amino acid at the a2 posi-
tion (CVIL and CVFL) were prenylated. GFP-BD-CaaX
substrates that were efficiently geranylgeranylated were
also farnesylated by PGGT1. Indeed, GFP-BD-CaaX ger-
anylgeranylation was only 4-fold greater than farnesyla-
tion in the presence of recombinant Arabidopsis PGGT1.

Purified recombinant PFT is more active than purified 
recombinant PGGT1
The next step in the characterization of Arabidopsis PFT
and PGGT1 was to examine the activity and substrate
specificity of purified recombinant enzymes. The
enzymes described above were purified by immobilized
metal affinity chromatography (IMAC) using Talon®;

Co2+-based resin. As shown in Figure 6, IMAC-purified
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enzymes (80-90% pure) were assayed and found to exhibit
the same substrate specificities as described above (PFT
exhibits low specificity for the terminal amino acid of the
Ca1a2X motif, whereas PGGT1 is highly selective for
GFP-BD-CaaX substrates ending in leucine). Comparing
purified recombinant PFT and PGGT1 allowed us to
make the following conclusion: purified recombinant
PFT is 30- to 100-fold more active than purified recombi-
nant PGGT1. This is not due to errors in the expressed
sequences, nor is it likely to be due to differential effects

of the FLAG tag on the alpha subunit or the 6 × His-tags
on the two β-subunits because the amino termini of pre-
nyltransferase α- and β-subunits are solvent exposed and
not involved in the formation or stabilization of active
heterodimers [56,57]. Moreover, plant extracts (tobacco
BY2 as well as Arabidopsis extracts) consistently exhibit
30-100 fold higher PFT activity compared with PGGT1
activity [12].

Kinetic Analysis of Recombinant Arabidopsis PFT and 
PGGT1
Purified recombinant Arabidopsis PFT and PGGT1 were
subjected to kinetic analyses under Michaelis-Menten
conditions (product formation was linear with time and
substrate conversion was less than 10%). The results of
these experiments were interpreted by Lineweaver-Burk
analysis and are shown in Figures 7 and 8. The catalytic
constants (kcat/Km) shown in Table 1 for Arabidopsis PFT
confirm the results shown in Figures 2 and 3. Both data
sets demonstrate the following substrate preferences for
Arabidopsis PFT (normalized to 1.0 for GFP-BD-CVIQ):
GFP-BD-CVIQ (1.0), GFP-BD-CVIM (0.60), GFP-BD-
CVII (0.21) and GFP-BD-CVIL (0.06). Moreover, the
results in Table 1 show that, while different CaaX sub-
strates (CVIQ, CVIM, CVII, and CVIL) have similar Km
values, they have markedly different kcat values in the
presence of Arabidopsis PFT. Thus, PFT substrate speci-
ficities reflect differences in catalytic turnover rate rather
than differences in binding affinity. The catalytic con-
stants (kcat/Km) for Arabidopsis PGGT1, which are shown
in Table 2, confirm the results shown in Figures 4 and 5.

Figure 2 Substrate specificity of recombinant Arabidopsis PFT. Quantitative filter assay data are shown for recombinant Arabidopsis PFT in the 
presence of [1-3H]FPP, [1-3H]GGPP, and 32 distinct GFP-BD-CaaX substrates. The CaaX substrates are grouped with the variable amino acid indicated 
in red. Asterisks indicate PFT-catalyzed protein geranylgeranylation detectable after 4 days by SDS-PAGE and fluorography. The red line indicates back-
ground. The standard error of the mean is shown.
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Figure 3 Radiofluorograms of prenylation assays performed in 
the presence of recombinant Arabidopsis PFT. Radiofluorograms 
corresponding to the quantitative filter assay data in Figure 2 are 
shown.
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Both data sets demonstrate the following substrate pref-
erences for Arabidopsis PGGT1 (normalized to 1.0 for
GFP-BD-CVIL): GFP-BD-CVIL (1.0), GFP-BD-CVII
(0.14), GFP-BD-CVIM (0.07) and GFP-BD-CVIQ (0.07).
Moreover, while different CaaX substrates have slightly
different Km values, they have dramatically different kcat
values. Indeed, the significantly higher kcat value for GFP-
BD-CVIL is the primary determinant of substrate speci-
ficity for Arabidopsis PGGT1. While these kcat values can

be compared, they are nevertheless low, suggesting that
only a fraction of the purified PGGT1 protein was cata-
lytically active.

Purified recombinant Arabidopsis PFT and PGGT1
were also analyzed with respect to isoprenyl diphosphate
specificity. As shown in Table 3, Km values for FPP and
GGPP are an order of magnitude lower than Km values
for CaaX substrates in the presence of recombinant Ara-
bidopsis PFT and PGGT1. However, as with CaaX sub-
strates, the different specificities of Arabidopsis PFT and
PGGT1 for isoprenyl diphosphates cannot be explained
by differences in Km. Thus, the preferences of PFT and
PGGT1 for different isoprenyl diphosphate substrates is
primarily determined by reactivity rather than binding
affinity.

Discussion
In this report, it is shown that recombinant Arabidopsis
PFT exhibits broad specificity for CaaX substrates with
Gln, Met, Ser, Cys, Ala, Ile, or Leu in the terminal 'X'
position, whereas PGGT1 exhibits strict specificity for
CaaX substrates ending in Leu. Both PFT and PGGT1
exhibit little or no specificity for the a1 position of the
Ca1a2X motif, which is consistent with previous observa-
tions using mammalian prenyltransferases that the a1
position is solvent exposed and not constrained by active
site amino acids [51-55]. In contrast, both prenyltrans-
ferases exhibit specificity for the a2 position of the Ca1a2X
motif. While the mechanism for CaaX specificity remains
unknown for Arabidopsis PFT and PGGT1, it is clear that

Figure 4 Substrate specificity of recombinant Arabidopsis PGGT I. Quantitative filter assay data are shown for recombinant Arabidopsis PGGT I 
in the presence of [1-3H]FPP, [1-3H]GGPP, and 32 distinct CaaX substrates. The CaaX substrates are grouped with the variable amino acid indicated in 
red. Asterisks indicate PGGT1-catalyzed protein farnesylation detectable after 4 days by SDS-PAGE and fluorography. The red line indicates back-
ground. The standard error of the mean is shown.
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Figure 5 Radiofluorograms of prenylation assays performed in 
the presence of recombinant Arabidopsis PGGT1. Radiofluoro-
grams corresponding to the quantitative filter assay data in Figure 4 
are shown.
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the substrate specificities of both prenyltransferases
reflect differences in catalytic turnover rates rather than
differences in Km values (Tables 1 and 2). This finding
suggests that, while binding affinities of GFP-BD-CVIQ,
GFP-BD-CVIM, GFP-BD-CVII, and GFP-BD-CVIL to
the active sites of PFT and PGGT1 are similar, the termi-
nal amino acid of the CaaX motif dramatically affects
catalysis. Moreover, the data described above provide an
explanation for era1 and ggb phenotypes. PFT prenylates
a wide range of CaaX substrates and compensates almost
fully for loss of PGGT1 in ggb plants. However, PGGT1
specifically prenylates CaaL substrates and only partially
compensates for loss of PFT in era1 plants. These bio-
chemical differences potentially account for the mild phe-
notype of ggb mutants and the dramatic phenotype of
era1 mutants.

The different isoprenoid specificities of Arabidopsis
PFT and PGGT1 cannot be explained by differences in
Km. Indeed, the Km for FPP was only slightly lower than
that for GGPP in the presence of recombinant Arabidop-

sis PFT, despite the fact that CaaX farnesylation was 50-
fold greater than geranylgeranylation in the presence of
this enzyme (Figures 2 and 3). Moreover, the Km values
for FPP and GGPP were almost identical in the presence
of recombinant Arabidopsis PGGT1, despite the fact that
PGGT1 catalyzed CaaX geranylgeranylation 4-fold more
efficiently than farnesylation. Thus, the primary determi-
nant of isoprenoid substrate specificity is reactivity rather
than binding affinity.

The results in Figure 6 raise an interesting question.
Given the higher specific activity and lower CaaX sub-
strate specificity of PFT, why are CaaX substrates with
leucine in the terminal position predominantly gera-
nylgeranylated rather than farnesylated in planta [12,50]?
The results in Figure 6 suggest that a CAIL (or CVIL)
protein should be predominantly farnesylated in planta
because farnesylation of CAIL (or CVIL) by Arabidopsis
PFT is approximately 20% as efficient as farnesylation of
CAIM (or CVIM), which greatly exceeds the efficiency of
CAIL (or CVIL) geranylgeranylation by PGGT1. We pro-

Figure 6 Activity and substrate specificity of IMAC-purified recombinant Arabidopsis PFT and PGGT I. Left Panel: E. coli extracts before Co2+-
IMAC, unbound proteins, and bound (IMAC-purified) proteins are shown. An E. coli protein at 42 kDa, which co-migrates with the PGGT I β-subunit is 
present at low levels in the purified PFT and PGGT I samples. Right Panel: quantitative activity data for purified PFT and PGGT I. The standard error of 
the mean is shown.
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Table 1: Kinetic constants for recombinant Arabidopsis PFT*

PFT
substrate

Km (μM) Specific Activity
(pmol min-1 mg-1)

kcat (hr-1) kcat/Km
(μM-1 hr-1)

n

GFP-BD-CVIM 5.4 +/- 0.6 5200 +/- 700 28.8 +/- 4.1 5.3 +/- 1.0 8

GFP-BD-CVIQ 5.5 +/- 0.9 8900 +/- 1900 49.1 +/- 10.5 8.9 +/- 2.4 8

GFP-BD-CVII 6.9 +/- 1.0 2300 +/- 700 12.8 +/- 3.7 1.9 +/- 0.6 8

GFP-BD-CVIL 7.0 +/- 1.5 670 +/- 140 3.7 +/- 0.8 0.5 +/- 0.2 8

Standard errors are given.
*PFT assays were performed in the presence of [1-3H]farnesyl diphosphate.
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pose that PFT is regulated in planta, perhaps by post-
translational modifications or protein-protein interac-
tions, to reduce recognition and farnesylation of CaaX
substrates with leucine in the terminal position. Never-
theless, it is likely that CaaX substrates with leucine in the
terminal position are, to some extent, farnesylated by
PFT and that these aberrantly farnesylated proteins
retain full or partial function. This explains why ggb

mutants, which were expected to exhibit severe meristem
and tip-growth defects due to loss of ROP function, do
not exhibit these phenotypes [12,22,23].

We propose that PGGT1 activity is higher in planta
than the purified recombinant, E. coli-expressed PGGT1
activity we have characterized. The activity observed with
purified recombinant PGGT1 was low, suggesting that
only a portion of the purified PGGT1 enzyme was active.

Table 2: Kinetic constants for recombinant Arabidopsis PGGT1*

PGGT1
substrate

Km (μM) Specific Activity
(pmol min-1 mg-1)

kcat (hr-1) kcat/Km
(μM-1 hr-1)

n

GFP-BD-CVIL 17.2 +/- 4.4 110 +/- 30 0.50 +/- 0.12 0.029 +/- 0.010 7

GFP-BD-CVII 19.0 +/-14.4 17 +/- 15 0.08 +/- 0.07 0.004 +/- 0.005 4

GFP-BD-CVIQ 3.5 +/- 0.6 1.7 +/- 0.2 0.008 +/- 0.001 0.002 +/- 0.001 8

GFP-BD-CVIM 5.8 +/- 1.0 2.6 +/- 0.3 0.012 +/- 0.001 0.002 +/- 0.001 8

Standard errors are given.
*PGGT1 assays were performed in the presence of [1-3H]geranylgeranyl diphosphate.

Figure 7 Lineweaver-Burk plots for purified PFT. A, GFP-BD-CVIM and [1-3H]FPP were used as substrates. B, GFP-BD-CVIQ and [1-3H]FPP were used 
as substrates. C, GFP-BD-CVII and [1-3H]FPP were used as substrates. D, GFP-BD-CVIL and [1-3H]FPP were used as substrates. The standard error of the 
mean is shown.
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Despite this, the relative kcat/Km values obtained for dif-
ferent CaaX substrates in the presence of PGGT1 were
consistent with the results shown in Figures 4 and 5.

Conclusions
In this report, recombinant Arabidopsis PFT is shown to
prenylate CaaX substrates with little specificity for the
terminal amino acid. In contrast, recombinant Arabidop-
sis PGGT1 is shown to exclusively prenylate CaaX sub-
strates with leucine in the terminal position. These
different substrate specificities provide a straightforward
explanation for the phenotypes of era1 and ggb mutant
plants. In addition, substrate specificities for PFT and

PGGT1 are shown to reflect differences in catalytic turn-
over rates rather than differences in substrate binding.

Methods
RNA isolation
Total RNA was isolated from wild type Arabidopsis
plants (ecotype Col-0) using TRIzol® Reagent according to
the manufacturer's instructions (Invitrogen/Life Technol-
ogies Corp., Carlsbad, CA).

PFT and PGGT1 expression constructs
The coding sequences of the PLP (At3g59380), ERA1
(At5g40280), and GGB (At2g39550) genes were amplified

Figure 8 Lineweaver-Burk plots for purified PGGT1. A, GFP-BD-CVIL and [1-3H]GGPP were used as substrates. B, GFP-BD-CVII and [1-3H]GGPP were 
used as substrates. C, GFP-BD-CVIQ and [1-3H]GGPP were used as substrates. D, GFP-BD-CVIM and [1-3H]GGPP were used as substrates. The standard 
error of the mean is shown.
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Table 3: Km values (in μM) for isoprenyl diphosphates in the presence of Arabidopsis PFT and PGGT1*

Prenyltransferase FPP GGPP n

PFT 0.2 +/- 0.1 0.7 +/- 0.3 7

PGGT1 0.6 +/- 0.5 0.8 +/- 0.1 7

Standard errors are given.
*PFT assays were performed in the presence of GFP-BD-CVIQ and PGGT1 assays were performed in the presence of GFP-BD-CVIL.
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by reverse-transcriptase-PCR using 0.5 μg of total RNA, 5
pmol of forward primer, 5 pmol of reverse primer, and the
Platinum Quantitative RT-PCR Thermoscript One-Step
System (Invitrogen/Life Technologies Corp., Carlsbad,
CA). RT-PCR conditions included a 20-min reverse tran-
scription step at 50°C, followed by a 5-min pre-soak at
95°C, and 25-35 cycles of the following PCR program:
95°C, 30 sec; 55°C, 30 sec; 72°C, 90 sec. A post-soak was
performed at 72°C for 7 min to ensure complete product
synthesis. RT-PCR products were resolved by agarose gel
electrophoresis and visualized by ethidium bromide
staining. The primers used for RT-PCR were as follows:
PLP-CDS-forward: 5'-cac gga tcc acc atg gat tac aag gat
gac gac gat aag aat ttc gac gag acc gtg cca-3'; PLP-CDS-
reverse: 5'-cac gga tcc tca aat tgc tgc cac tgt aat ctt g-3';
ERA1-CDS-forward: 5'-cac gga tcc acc atg cac cac cat cac
cat cac cca gta gta acc cgc ttg att-3'; ERA1-CDS-reverse:
5'-cac gga tcc tca tgc tgc ttt aaa gaa gaa ctc-3'; GGB-CDS-
forward: 5'-cac gga tcc acc atg cat cat cat cat cat cat tca
gag acc gcc gtg tca atc-3'; GGB-CDS-reverse: 5'-cac gga
tcc tca aat tcc cgg ggc tgc aag aa-3'. RT-PCR products
were confirmed by DNA sequence analysis and ligated
into the BamH1 (PLP) or BglII (ERA1, GGB) sites of the
pETDuet-1 vector (EMD Biosciences, Gibbstown, NJ).

GFP-BD-CaaX mutagenesis
GFP-BD-CaaX expression constructs [50] were mutagen-
ized using the QuikChange II site-directed mutagenesis
kit from Stratagene (La Jolla, CA) to generate the follow-
ing CaaX motifs: CVIM, CVIS, CVIC, CVIQ, CVIA,
CVIL, CVII, CAIM, CFIM, CTIM, CQIM, CEIM, CKIM,
CVAM, CVFM, CVTM, CVQM, CVEM, CVKM CAIL,
CFIL, CTIL, CQIL CEIL, CKIL, CVAL, CVFL, CVTL,
CVQL, CVEL, CVKL, SVIL. The following primers were
used for mutagenesis of the GFP-BD-CVIM template:
CVII-F: 5'- cgt ggc cag aag tgc gtg atc atc taa cgg gat ccc
gcc -3'; CVII-R: 5'- ggc ggg atc ccg tta gat gat cac gca ctt
ctg gcc acg -3'; CVIS-F: 5'- cgt ggc cag aag tgc gtg atc tcg
taa cgg gat ccc gcc -3'; CVIS-R: 5'- ggc ggg atc ccg tta cga
gat cac gca ctt ctg gcc acg -3'; CVIC-F: 5'- cgt ggc cag aag
tgc gtg atc tgc taa cgg gat ccc gcc -3'; CVIC-R: 5'- ggc ggg
atc ccg tta gca gat cac gca ctt ctg gcc acg -3'; CAIM-F: 5'-
cgt ggc cag aag tgc gcg atc atg taa cgg gat ccc gcc -3';
CAIM-R: 5'- ggc ggg atc ccg tta cat gat cgc gca ctt ctg gcc
acg -3'; CFIM-F: 5'- cgt ggc cag aag tgc ttt atc atg taa cgg
gat ccc gcc -3'; CFIM-R: 5'- ggc ggg atc ccg tta cat gat aaa
gca ctt ctg gcc acg -3'; CTIM-F: 5'- cgt ggc cag aag tgc acg
atc atg taa cgg gat ccc gcc -3'; CTIM-R: 5'- ggc ggg atc ccg
tta cat gat cgt gca ctt ctg gcc acg -3'; CQIM-F: 5'- cgt ggc
cag aag tgc cag atc atg taa cgg gat ccc gcc -3'; CQIM-R: 5'-
ggc ggg atc ccg tta cat gat ctg gca ctt ctg gcc acg -3';
CEIM-F: 5'- cgt ggc cag aag tgc gag atc atg taa cgg gat ccc
gcc -3'; CEIM-R: 5'- ggc ggg atc ccg tta cat gat ctc gca ctt
ctg gcc acg -3'; CKIM-F: 5'- cgt ggc cag aag tgc aag atc atg
taa cgg gat ccc gcc -3'; CKIM-R: 5'- ggc ggg atc ccg tta cat

gat ctt gca ctt ctg gcc acg -3'; CVAM-F: 5'- cgt ggc cag aag
tgc gtg gcc atg taa cgg gat ccc gcc -3'; CVAM-R: 5'- ggc
ggg atc ccg tta cat ggc cac gca ctt ctg gcc acg -3'; CVFM-F:
5'- cgt ggc cag aag tgc gtg ttc atg taa cgg gat ccc gcc -3';
CVFM-R: 5'- ggc ggg atc ccg tta cat gaa cac gca ctt ctg gcc
acg -3'; CVTM-F: 5'- cgt ggc cag aag tgc gtg acc atg taa
cgg gat ccc gcc -3'; CVTM-R: 5'- ggc ggg atc ccg tta cat ggt
cac gca ctt ctg gcc acg -3'; CVQM-F: 5'- cgt ggc cag aag
tgc gtg cag atg taa cgg gat ccc gcc -3'; CVQM-R: 5'- ggc
ggg atc ccg tta cat ctg cac gca ctt ctg gcc acg -3'; CVEM-F:
5'- cgt ggc cag aag tgc gtg gag atg taa cgg gat ccc gcc -3';
CVEM-R: 5'- ggc ggg atc ccg tta cat ctc cac gca ctt ctg gcc
acg -3'; CVKM-F: 5'- cgt ggc cag aag tgc gtg aag atg taa
cgg gat ccc gcc -3'; CVKM-R: 5'- ggc ggg atc ccg tta cat ctt
cac gca ctt ctg gcc acg -3'. The following primers were
used for mutagenesis of the GFP-BD-CVIL template:
CVIQ-F: 5'- cgt ggc cag aag tgc gtg atc cag taa cgg gat ccc
gcc -3'; CVIQ-R: 5'- ggc ggg atc ccg tta ctg gat cac gca ctt
ctg gcc acg -3'; CVIA-F: 5'- cgt ggc cag aag tgc gtg atc gcg
taa cgg gat ccc gcc -3'; CVIA-R: 5'- ggc ggg atc ccg tta cgc
gat cac gca ctt ctg gcc acg -3'; CAIL-F: 5'- cgt ggc cag aag
tgc gcg atc ctg taa cgg gat ccc gcc -3'; CAIL-R: 5'- ggc ggg
atc ccg tta cag gat cgc gca ctt ctg gcc acg -3'; CFIL-F: 5'-
cgt ggc cag aag tgc ttt atc ctg taa cgg gat ccc gcc -3'; CFIL-
R: 5'- ggc ggg atc ccg tta cag gat aaa gca ctt ctg gcc acg -3';
CTIL-F: 5'- cgt ggc cag aag tgc acg atc ctg taa cgg gat ccc
gcc -3'; CTIL-R: 5'- ggc ggg atc ccg tta cag gat cgt gca ctt
ctg gcc acg -3'; CQIL-F: 5'- cgt ggc cag aag tgc cag atc ctg
taa cgg gat ccc gcc -3'; CQIL-R: 5'- ggc ggg atc ccg tta cag
gat ctg gca ctt ctg gcc acg -3'; CEIL-F: 5'- cgt ggc cag aag
tgc gag atc ctg taa cgg gat ccc gcc -3'; CEIL-R: 5'- ggc ggg
atc ccg tta cag gat ctc gca ctt ctg gcc acg -3'; CKIL-F: 5'-
cgt ggc cag aag tgc aag atc ctg taa cgg gat ccc gcc -3';
CKIL-R: 5'- ggc ggg atc ccg tta cag gat ctt gca ctt ctg gcc
acg -3'; CVAL-F: 5'- cgt ggc cag aag tgc gtg gcc ctg taa cgg
gat ccc gcc -3'; CVAL-R: 5'- ggc ggg atc ccg tta cag ggc cac
gca ctt ctg gcc acg -3'; CVFL-F: 5'- cgt ggc cag aag tgc gtg
ttc ctg taa cgg gat ccc gcc -3'; CVFL-R: 5'- ggc ggg atc ccg
tta cag gaa cac gca ctt ctg gcc acg -3'; CVTL-F: 5'- cgt ggc
cag aag tgc gtg acc ctg taa cgg gat ccc gcc -3'; CVTL-R: 5'-
ggc ggg atc ccg tta cag ggt cac gca ctt ctg gcc acg -3';
CVQL-F: 5'- cgt ggc cag aag tgc gtg cag ctg taa cgg gat ccc
gcc -3'; CVQL-R: 5'- ggc ggg atc ccg tta cag ctg cac gca ctt
ctg gcc acg -3'; CVEL-F: 5'- cgt ggc cag aag tgc gtg gag ctg
taa cgg gat ccc gcc -3'; CVEL-R: 5'- ggc ggg atc ccg tta cag
ctc cac gca ctt ctg gcc acg -3'; CVKL-F: 5'- cgt ggc cag aag
tgc gtg aag ctg taa cgg gat ccc gcc -3'; CVKL-R: 5'- ggc ggg
atc ccg tta cag ctt cac gca ctt ctg gcc acg -3'. All GFP-BD-
CaaX constructs were confirmed by DNA sequence anal-
ysis.

Protein expression and purification
Cultures of E. coli Rosetta cells (EMD Biosciences, Gibb-
stown, NJ) containing PFT, PGGT1, or GFP-BD-CaaX
expression constructs were grown to log phase (A600 =
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0.7-0.8) in Luria Broth containing 100 μg ml-1 ampicillin.
Recombinant protein expression was then induced with 1
mM IPTG (PFT and PGGT1) or 0.1% L-arabinose (GFP-
BD-CaaX proteins) at 20°C for 16 hr. After centrifugation
at 16,000g for 2 min, cell pellets were resuspended in 1 ml
of STE buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.5, 1
mM EDTA) containing Complete Protease Inhibitors
(Roche Diagnostics, Indianapolis, IN) and cells were dis-
rupted by vigorous agitation in the presence of glass
beads. Cell extracts were cleared by centrifugation at
16,000g for 2 min at 4°C. Protein purification was accom-
plished at 4°C in three steps: 1) PD-10 gel filtration chro-
matography in 50 mM sodium phosphate, pH 7.0, 0.3 M
NaCl [to remove EDTA], 2) immobilized metal affinity
chromatography [IMAC] using Talon® Co2+-based resin
(Clontech, Mountain View, CA) according to the manu-
facturer's instructions, and 3) PD-10 gel filtration chro-
matography in 50 mM sodium phosphate, pH 7.0, 0.3 M
NaCl [to remove imidazole, which inhibits protein preny-
lation].

In vitro prenylation assays
In vitro prenylation reactions contained protein prenyl-
transferase (100 μg of E. coli extract containing recombi-
nant PFT or PGGT1, 0.005 μg of purified PFT, or 0.5 μg
of purified PGGT1), 5-40 μg of GFP-BD-CaaX protein,
and either [1-3H]farnesyl diphosphate (26.2 Ci/mmol,
Perkin Elmer, Waltham, MA) or [1-3H]geranylgeranyl
diphosphate (19.5 Ci/mmol, Perkin Elmer, Waltham,
MA) in 125 μl of 50 mM Hepes (pH 7.5), 20 mM MgCl2, 5
mM DTT, 0.1% Zwittergent, and 5 mM ZnCl2. Reactions
were incubated at 30°C for 30 min, after which two 50-μl
portions were terminated in 950 μl of 1 M ethanolic HCl.
Precipitated proteins were collected on GF/A glass fiber
filters (Whatman, Piscataway, NJ), washed with 10 ml of
95% ethanol, and quantified by liquid scintillation using
BioSafe II cocktail (RPI Corporation, Mt. Prospect, IL). A
25 μl portion of each reaction was resolved by SDS-PAGE
and prenylated proteins were visualized using Amplify
fluorographic reagent (GE Healthcare, Piscataway, NJ)
and Kodak AR5 film (Eastman Kodak, Rochester, NY).

Authors' contributions
MA performed site-directed mutagenesis on GFP-BD-CaaX proteins, protein
expression and purification (i.e., PFT, PGGT1 and GFP-BD-CaaX proteins), and
the kinetic assays described in Figures 7 and 8 and Tables 1, 2 and 3. DHH cre-
ated the PLP and PLP + GGB expression constructs. DNC designed all experi-
ments, created the PLP + ERA1 expression construct and performed the
experiments shown in Figures 2, 3, 4, 5 and 6. All authors read and approved
the final manuscript.

Acknowledgements
This work was supported by NSF grant MCB-0900962 to DNC and by NIH Grant 
P20RR16454 from the INBRE program of the National Center for Research 
Resources, which provided funds for the Molecular Research Core Facility at 

Idaho State University. The authors thank Dr. Caryn Evilia for critical reading of 
the manuscript.

Author Details
1Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, 
USA, 2Department of Biology, Indiana University-Purdue University, 
Indianapolis, IN 46202, USA and 3Dow AgroSciences LLC, Indianapolis, IN 
46268, USA

References
1. Crowell DN: Functional implications of protein isoprenylation in plants.  

Prog Lipid Res 2000, 39(5):393-408.
2. Clarke S: Protein isoprenylation and methylation at carboxyl-terminal 

cysteine residues.  Annu Rev Biochem 1992, 61:355-386.
3. Zhang FL, Casey PJ: Protein prenylation: molecular mechanisms and 

functional consequences.  Annu Rev Biochem 1996, 65:241-269.
4. Crowell DN, Huizinga DH: Protein isoprenylation: the fat of the matter.  

Trends Plant Sci 2009, 14(3):163-170.
5. Hartman HL, Hicks KA, Fierke CA: Peptide specificity of protein 

prenyltransferases is determined mainly by reactivity rather than 
binding affinity.  Biochemistry 2005, 44(46):15314-15324.

6. Qian D, Zhou D, Ju R, Cramer CL, Yang Z: Protein farnesyltransferase in 
plants: molecular characterization and involvement in cell cycle 
control.  Plant Cell 1996, 8(12):2381-2394.

7. Yang Z, Cramer CL, Watson JC: Protein farnesyltransferase in plants. 
Molecular cloning and expression of a homolog of the beta subunit 
from the garden pea.  Plant Physiol 1993, 101(2):667-674.

8. Loraine AE, Yalovsky S, Fabry S, Gruissem W: Tomato Rab1A homologs as 
molecular tools for studying rab geranylgeranyl transferase in plant 
cells.  Plant Physiol 1996, 110(4):1337-1347.

9. Yalovsky S, Loraine AE, Gruissem W: Specific prenylation of tomato Rab 
proteins by geranylgeranyl type-II transferase requires a conserved 
cysteine-cysteine motif.  Plant Physiol 1996, 110(4):1349-1359.

10. Caldelari D, Sternberg H, Rodríguez-Concepción M, Gruissem W, Yalovsky 
S: Efficient prenylation by a plant geranylgeranyltransferase-I requires 
a functional CaaL box motif and a proximal polybasic domain.  Plant 
Physiol 2001, 126(4):1416-1429.

11. Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P: A protein 
farnesyl transferase involved in abscisic acid signal transduction in 
Arabidopsis.  Science 1996, 273(5279):1239-1241.

12. Johnson CD, Chary SN, Chernoff EA, Zeng Q, Running MP, Crowell DN: 
Protein geranylgeranyltransferase I is involved in specific aspects of 
abscisic acid and auxin signaling in Arabidopsis.  Plant Physiol 2005, 
139(2):722-733.

13. Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI: Role of 
farnesyltransferase in ABA regulation of guard cell anion channels and 
plant water loss.  Science 1998, 282(5387):287-290.

14. Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, 
Yalovsky S: Enlarged meristems and delayed growth in plp mutants 
result from lack of CaaX prenyltransferases.  Proc Natl Acad Sci USA 2004, 
101(20):7815-7820.

15. Allen GJ, Murata Y, Chu SP, Nafisi M, Schroeder JI: Hypersensitivity of 
abscisic acid-induced cytosolic calcium increases in the Arabidopsis 
farnesyltransferase mutant era1-2.  Plant Cell 2002, 14(7):1649-1662.

16. Brady SM, Sarkar SF, Bonetta D, McCourt P: The ABSCISIC ACID 
INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is 
involved in auxin signaling and lateral root development in 
Arabidopsis.  Plant J 2003, 34(1):67-75.

17. Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, 
Sarvas C, Wan J, Dennis DT, et al.: Molecular tailoring of farnesylation for 
plant drought tolerance and yield protection.  Plant J 2005, 
43(3):413-424.

18. Bonetta D, Bayliss P, Sun S, Sage T, McCourt P: Farnesylation is involved in 
meristem organization in Arabidopsis.  Planta 2000, 211(2):182-190.

19. Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young CA, Gruissem W: 
Functional requirement of plant farnesyltransferase during 
development in arabidopsis.  Plant Cell 2000, 12(8):1267-1278.

Received: 16 March 2010 Accepted: 18 June 2010 
Published: 18 June 2010
This article is available from: http://www.biomedcentral.com/1471-2229/10/118© 2010 Andrews et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Plant Biology 2010, 10:118

http://www.biomedcentral.com/1471-2229/10/118
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11082505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1497315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19201644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16285735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8989889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8278509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8934628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12226265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11500541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8703061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16183844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9765153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15128936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12662310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16045476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10945212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10948248


Andrews et al. BMC Plant Biology 2010, 10:118
http://www.biomedcentral.com/1471-2229/10/118

Page 11 of 11
20. Ziegelhoffer EC, Medrano LJ, Meyerowitz EM: Cloning of the Arabidopsis 
WIGGUM gene identifies a role for farnesylation in meristem 
development.  Proc Natl Acad Sci USA 2000, 97(13):7633-7638.

21. Running MP, Fletcher JC, Meyerowitz EM: The WIGGUM gene is required 
for proper regulation of floral meristem size in Arabidopsis.  
Development 1998, 125(14):2545-2553.

22. Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z: The Rop GTPase switch controls 
multiple developmental processes in Arabidopsis.  Plant Physiol 2001, 
126(2):670-684.

23. Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH: 
Inactivation of AtRac1 by abscisic acid is essential for stomatal closure.  
Genes & Development 2001, 15(14):1808-1816.

24. Wyatt RE, Ainley WM, Nagao RT, Conner TW, Key JL: Expression of the 
Arabidopsis AtAux2-11 auxin-responsive gene in transgenic plants.  
Plant Mol Biol 1993, 22(5):731-749.

25. Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, 
Chen JG, Jones AM, Botella JR: Heterotrimeric G protein gamma 
subunits provide functional selectivity in Gbetagamma dimer 
signaling in Arabidopsis.  Plant Cell 2007, 19(4):1235-1250.

26. Rodríguez-Concepción M, Yalovsky S, Zik M, Fromm H, Gruissem W: The 
prenylation status of a novel plant calmodulin directs plasma 
membrane or nuclear localization of the protein.  EMBO J 1999, 
18(7):1996-2007.

27. Xiao C, Xin H, Dong A, Sun C, Cao K: A novel calmodulin-like protein 
gene in rice which has an unusual prolonged C-terminal sequence 
carrying a putative prenylation site.  DNA Res 1999, 6(3):179-181.

28. Dykema PE, Sipes PR, Marie A, Biermann BJ, Crowell DN, Randall SK: A new 
class of proteins capable of binding transition metals.  Plant Mol Biol 
1999, 41(1):139-150.

29. Zhu JK, Bressan RA, Hasegawa PM: Isoprenylation of the plant molecular 
chaperone ANJ1 facilitates membrane association and function at high 
temperature.  Proc Natl Acad Sci USA 1993, 90(18):8557-8561.

30. Suzuki N, Yamaguchi Y, Koizumi N, Sano H: Functional characterization 
of a heavy metal binding protein CdI19 from Arabidopsis.  Plant J 2002, 
32(2):165-173.

31. Galichet A, Hoyerova K, Kaminek M, Gruissem W: Farnesylation directs 
AtIPT3 subcellular localization and modulates cytokinin Biosynthesis in 
Arabidopsis.  Plant Physiol 2008, 146:1155-1164.

32. Hemmerlin A, Bach TJ: Effects of mevinolin on cell cycle progression and 
viability of tobacco BY-2 cells.  Plant J 1998, 14:65-74.

33. Hemmerlin A, Fischt I, Bach TJ: Differential interaction of branch-specific 
inhibitors of isoprenoid biosynthesis with cell cycle progression in 
tobacco BY-2 cells.  Physiol Plant 2000, 110:343-350.

34. Bracha K, Lavy M, Yalovsky S: The Arabidopsis AtSTE24 is a CAAX 
protease with broad substrate specificity.  J Biol Chem 2002, 
277(33):29856-29864.

35. Cadiñanos J, Varela I, Mandel DA, Schmidt WK, Díaz-Perales A, López-Otín 
C, Freije JM: AtFACE-2, a functional prenylated protein protease from 
Arabidopsis thaliana related to mammalian Ras-converting enzymes.  J 
Biol Chem 2003, 278(43):42091-42097.

36. Boyartchuk VL, Ashby MN, Rine J: Modulation of Ras and a-factor 
function by carboxyl-terminal proteolysis.[see comment].  Science 
1997, 275(5307):1796-1800.

37. Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Young SG: Targeted 
inactivation of the isoprenylcysteine carboxyl methyltransferase gene 
causes mislocalization of K-Ras in mammalian cells.  J Biol Chem 2000, 
275(23):17605-17610.

38. Hancock JF, Cadwallader K, Marshal CJ: Methylation and proteolysis are 
essential for efficient membrane binding of prenylated p21K-ras(B).  
EMBO J 1991, 10:641-646.

39. Parish CA, Rando RR: Isoprenylation/methylation of proteins enhances 
membrane association by a hydrophobic mechanism.  Biochemistry 
1996, 35(26):8473-8477.

40. Parish CA, Smrcka AV, Rando RR: The role of G protein methylation in the 
function of a geranylgeranylated beta gamma isoform.  Biochemistry 
1996, 35(23):7499-7505.

41. Rodríguez-Concepción M, Toledo-Ortiz G, Yalovsky S, Caldelari D, 
Gruissem W: Carboxyl-methylation of prenylated calmodulin CaM53 is 
required for efficient plasma membrane targeting of the protein.  Plant 
J 2000, 24(6):775-784.

42. Sapperstein S, Berkower C, Michaelis S: Nucleotide sequence of the yeast 
STE14 gene, which encodes farnesylcysteine carboxyl 

methyltransferase, and demonstration of its essential role in a-factor 
export.  Mol Cell Biol 1994, 14(2):1438-1449.

43. Crowell DN, Sen SE, Randall SK: Prenylcysteine alpha-carboxyl 
methyltransferase in suspension-cultured tobacco cells.  Plant Physiol 
1998, 118(1):115-123.

44. Chary SN, Bultema RL, Packard CE, Crowell DN: Prenylcysteine alpha-
carboxyl methyltransferase expression and function in Arabidopsis 
thaliana.  Plant J 2002, 32(5):735-747.

45. Crowell DN, Kennedy M: Identification and functional expression in 
yeast of a prenylcysteine alpha-carboxyl methyltransferase gene from 
Arabidopsis thaliana.  Plant Mol Biol 2001, 45(4):469-476.

46. Huizinga DH, Omosegbon O, Omery B, Crowell DN: Isoprenylcysteine 
methylation and demethylation regulate abscisic acid signaling in 
Arabidopsis.  Plant Cell 2008, 20(10):2714-2728.

47. Deem AK, Bultema RL, Crowell DN: Prenylcysteine methylesterase in 
Arabidopsis thaliana.  Gene 2006, 380(2):159-166.

48. Armstrong SA, Hannah VC, Goldstein JL, Brown MS: CAAX geranylgeranyl 
transferase transfers farnesyl as efficiently as geranylgeranyl to RhoB.  J 
Biol Chem 1995, 270(14):7864-7868.

49. Trueblood CE, Ohya Y, Rine J: Genetic evidence for in vivo cross-
specificity of the CaaX-box protein prenyltransferases 
farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces 
cerevisiae.  Mol Cell Biol 1993, 13(7):4260-4275.

50. Gerber E, Hemmerlin A, Hartmann M, Heintz D, Hartmann MA, Mutterer J, 
Rodríguez-Concepción M, Boronat A, Van Dorsselaer A, Rohmer M, et al.: 
The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides 
the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 
cells.  Plant Cell 2009, 21(1):285-300.

51. Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL: Sequence 
requirement for peptide recognition by rat brain p21ras protein 
farnesyltransferase.  Proc Natl Acad Sci USA 1991, 88(3):732-736.

52. Lane KT, Beese LS: Thematic review series: lipid posttranslational 
modifications. Structural biology of protein farnesyltransferase and 
geranylgeranyltransferase type I.  J Lipid Res 2006, 47(4):681-699.

53. Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS: Structure of mammalian 
protein geranylgeranyltransferase type-I.  EMBO J 2003, 
22(22):5963-5974.

54. Strickland CL, Windsor WT, Syto R, Wang L, Bond R, Wu Z, Schwartz J, Le 
HV, Beese LS, Weber PC: Crystal structure of farnesyl protein transferase 
complexed with a CaaX peptide and farnesyl diphosphate analogue.  
Biochemistry 1998, 37(47):16601-16611.

55. Long SB, Casey PJ, Beese LS: The basis for K-Ras4B binding specificity to 
protein farnesyltransferase revealed by 2 A resolution ternary complex 
structures.  Structure 2000, 8(2):209-222.

56. Long SB, Casey PJ, Beese LS: Cocrystal structure of protein 
farnesyltransferase complexed with a farnesyl diphosphate substrate.  
Biochemistry 1998, 37(27):9612-9618.

57. Park HW, Boduluri SR, Moomaw JF, Casey PJ, Beese LS: Crystal structure of 
protein farnesyltransferase at 2.25 angstrom resolution.[see 
comment][erratum appears in Science 1997 Apr 4;276(5309):21].  
Science 1997, 275(5307):1800-1804.

doi: 10.1186/1471-2229-10-118
Cite this article as: Andrews et al., The CaaX specificities of Arabidopsis pro-
tein prenyltransferases explain era1 and ggb phenotypes BMC Plant Biology 
2010, 10:118

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9636070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11402196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8358026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17468261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10202162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10470849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10561075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8378331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12383082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12039957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12928436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9065405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10747846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2001678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8679606
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8652528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11135111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8289819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9733531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12472689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11352465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18957507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16870359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7713879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8321228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19136647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1992464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16477080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14609943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10673434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9657673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9065406

	Abstract
	Background

	Results

	Conclusions


	Background
	Results
	Recombinant Arabidopsis PFT is more specific for
isoprenoid substrates than PGGT1, whereas PGGT1 is more
specific for CaaX substrates
	Purified recombinant PFT is more active than purified recombinant PGGT1
	Kinetic Analysis of Recombinant Arabidopsis PFT and PGGT1

	Discussion
	Conclusions
	Methods
	RNA isolation
	PFT and PGGT1 expression constructs
	GFP-BD-CaaX mutagenesis
	Protein expression and purification
	In vitro prenylation assays

	Authors' contributions
	Acknowledgements
	Author Details
	References

