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Abstract

species within S. japonica.

Saccharina japonica morphological forms

Background: Saccharina japonica (Areschoug) Lane, Mayes, Druehl et Saunders is an economically important and
highly morphologically variable brown alga inhabiting the northwest Pacific marine waters. On the basis of nuclear
(ITS), plastid (rbcLS) and mitochondrial (COl) DNA sequence data, we have analyzed the genetic composition of
typical Saccharina japonica (TYP) and its two common morphological varieties, known as the “longipes” (LON) and
“shallow-water” (SHA) forms seeking to clarify their taxonomical status and to evaluate the possibility of cryptic

Results: The data show that the TYP and LON forms are very similar genetically in spite of drastic differences in
morphology, life history traits, and ecological preferences. Both, however, are genetically quite different from the
SHA form. The two Saccharina lineages are distinguished by 109 fixed single nucleotide differences as well as by
seven fixed length polymorphisms (based on a 4,286 bp concatenated dataset that includes three gene regions).
The GenBank database reveals a close affinity of the TYP and LON forms to S. japonica and the SHA form to S.
cichorioides. The three gene markers used in the present work have different sensitivity for the algal species
identification. COl gene was the most discriminant gene marker. However, we have detected instances of
interspecific COI recombination reflecting putative historical hybridization events between distantly related algal
lineages. The recombinant sequences show highly contrasted level of divergence in the 5- and 3™~ regions of the
gene, leading to significantly different tree topologies depending on the gene segment (5"~ or 3™-) used for tree
reconstruction. Consequently, the 5-COIl "barcoding” region (~ 650 bp) can be misleading for identification
purposes, at least in the case of algal species that might have experienced historical hybridization events.
Conclusion: Taking into account the potential roles of phenotypic plasticity in evolution, we conclude that the TYP and
LON forms represent examples of algae phenotypic diversification that enables successful adaptation to contrasting
shallow- and deep-water marine environments, while the SHA form is very similar to S. cichorioides and should be
considered a different species. Practical applications for algal management and conservation are briefly considered.
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Background

Genetically-based approaches (especially using multi-
locus data) have resolved much phylogenetic uncertainty
in large-scale algal trees of life (e.g., [1-3]). Less obvious
progress, however, has been accomplished concerning
the species level of algal taxonomy, when there is an
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abundance of morphological variants with uncertain
taxonomic status. For instance, the genus Laminaria
(that has been recently separated into two different ge-
nera, Laminaria and Saccharina; [1]) is rich with mor-
phological types, varieties, ecotypes, and forms that have
puzzled taxonomists since the very beginning of research
on this subject [4-14]. Whether the distinct morpholo-
gies observed in many algae represent different species
or only intraspecific forms is one of the main unresolved
questions.

In this paper we focus on the most common and com-
mercially important laminarialean species, Saccharina
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japonica [4,5,15] and its morphological forms, inhabiting
contrasting depths of the northwest Pacific region. The
species is morphologically and ecologically highly variable
and some intraspecific forms have been described [10-13].
Typical S. japonica (TYP) inhabits the littoral zone at the
preferred depths of 5 — 11 m with wide distribution over
the full species area. Its full distribution pattern, however,
remains uncertain owing to the difficulty of reliable species
identification. It grows along the sea shore on rocky sub-
strate [5,6,15-17]. (See Additional file 1 for a more detailed
species description.) At present the populations of the TYP
form are depressed due to overharvesting and possibly glo-
bal climate changes [18,19].

The deep-water (or “longipes”) S. japonica form
(LON) inhabits the sublittoral zone at preferred
depths of 14 — 25 m. This endemic form has a
restricted distribution in the Sea of Japan and the Sea
of Okhotsk. It grows in compact settlements at a sig-
nificant distance (300 — 1000 m) from the seashore
[6,16,17,20,21]. The LON form thallus is 2 — 3 times
longer and 3 — 4 times heavier than the thallus of the
TYP form. Differences in morphology and preferred
ecology are detectable already among algae during the
first year of growth. Originally the LON form was
described as a deep-water variant of S. japonica [4,6];
a new nomenclatural designation, S. japonica f. long-
ipes, has been suggested recently [13]. The TYP and
LON forms have significant differences in morph-
ology, anatomy, reproductive biology, ecology, and
other important features (Additional file 1). The op-
portunity for interbreeding between the LON and
TYP forms is considered highly unlikely because the
formation, release, and appearance of the mature
gametes are separated in space and time. The zoo-
spore spreading time of S. japonica (and the close
species, S. angustata) is short (maximum 24 hours)
leading to limited free dispersal gamete range (on
average no more than 3.5 meters [19,22]). Also the dis-
tribution areas of the LON and TYP forms are separated
geographically (not less than three miles from each other)
and their reproductive periods do not overlap (Additional
file 1). The morphological differences between the TYP
and LON forms of S. japomica are stable and easily
recognizable and they are systematically reported from the
northern Primorye coast region [20,21]. The drastic differ-
ences between the TYP and LON forms have motivated
changing the taxonomical status of the LON form, so that
it would be considered a separate species [17]. However,
transplant experiments [23,24] show that zoospores of the
LON form released in the habitat of TYP form produced
algae morphologically indistinguishable from the TYP
form, which did not support the biological species status of
the LON form, but rather suggested high phenotypic plas-
ticity for the species.
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The shallow-water form of Saccharina japonica (SHA)
inhabits the supralittoral zone (0.1 — 0.5 m depth) and it is
widely distributed in the Primorye coast region, the Sea of
Japan, including Peter the Great Bay. It is commonly
accepted that the SHA form represents an intraspecific
ecotype of the TYP S. japonica form. The zoospores of the
SHA form are used to enhance the strongly overharvested
resources of the TYP form [19]. Nevertheless, the SHA
and TYP forms have clearly distinct morphological features
(Additional file 1). There are also significant differences be-
tween the forms in heat and salinity tolerance [25]. The
SHA form is more heat and desalination resistant and sur-
vives better than the TYP form under hyposalinity osmotic
stress and increasing temperature conditions. It was sug-
gested [26] that the SHA form may represent a subspecies
of Laminaria (Saccharina) angustata adapted to the supra-
littoral zone.

We analyze the genetic composition of S. japonica and
its common morphological forms, LON and SHA, seeking
to clarify the taxonomic status of the forms and to evaluate
the possibility of cryptic species within S. japonica, using
DNA nucleotide sequences of three genes from mitochon-
drial, plastid, and nuclear genomes (4,286 bp total in a con-
catenated dataset). We also test for homogeneous
phylogenetic signal within and among the marker loci
(ITS, rbcLS, and COI). We have found that the TYP and
LON morphological forms are genetically very similar;
consequently they need not be considered as different bio-
logical species. However, taking into account the potential
evolutionary roles of phenotypic plasticity, and its rele-
vance to adaptive evolution and speciation in many orga-
nisms (e.g, [27-29]) including algae (e.g., [30,31]) we
propose that the TYP and LON forms may represent an
important example of algal diversification that enables suc-
cessful adaptation to contrasting shallow- and deep-
water marine environments. The SHA form has clear
genetic differences from the TYP and LON forms
and it might represent a morphological variant of S.
cichorioides expanded to the supralittoral environ-
ment. The practical implications for mariculture are
that all three forms should be considered separate
evolutionary lineages and that restoration programs
should include genetic data to avoid confounding.

Methods

Algae samples

The specimens of S. japonica morphological forms were
collected from the Primorye coastal region, Sea of Japan.
The TYP (five specimens) and SHA (four specimens)
forms were collected near the Cape Dal'niy at depths of
6.0 m and 0.5 m, respectively. The LON form (three spe-
cimens) was collected near the Cape Zolotoi at depths of
15.0 m. We also analyzed first year individuals belonging
to the S. japonica typical form (TYPE, four specimens),
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collected near the Cape Dal'niy; unidentified Saccharina
species (CHE, four specimens; depth of 0.5 m), TYP
form growing in close proximity with unidentified Sac-
charina species (TYPA, four specimens), and a sample
of the TYP form without middle line (TYPW, a single
specimen), all collected in the Bay Chernoruch'e near
the Cape Khitrovo. The algae were identified by eye in
the field.

DNA amplification and sequences

Total genomic DNA was extracted using the DNeasy Plant
MiniKit protocol (Qiagen, Hilden, Germany). The proce-
dures for DNA amplification and sequencing have been
described previously [32-34]. Plastid sequences for the par-
tial rbcLS operon (RubisCO; 1,822 bp total) included
1,333 bp of the flanking rbcL. gene, the complete spacer
(282 bp), and 207 bp of the flanking rbcS gene. For the
rbcLS operon, primers and PCR conditions followed [1].
Mitochondrial sequences of a 1,788-bp COI fragment were
amplified using newly developed primers (annealing
temperature 52°C): 5’-cttatcaaaaggtgcatctatgg-3’ (SacCOIF;
forward) and 5’-acactctaccgctgagttacaag-3’ (SacCOIR; re-
verse) designed based on full mitochondrial genomes of 11
brown algal species [11,35-37]. Our sequences include the
full coding region (1,602 bp, 534 codons) of the COI gene
as well as 108 bp and 78 bp of the 5'- and 3'-flanking
regions, respectively. The nuclear 676-bp fragment of the
18 S-ITS1-5.8 S—ITS2 rDNA region (ITS) was amplified
using primers (annealing temperature 53°C): 5'-
aggtccgaacgaaagtggta-3®  (SacITSF;  forward) and 5'-
acaaggtttccgtaggtgaac-3’ (SacITSR; reverse). The amplified
fragment includes partial 18 S ribosomal RNA gene
(17 bp), complete ITS1 (244 bp), complete 5.8 S ribosomal
RNA gene (159 bp), and partial ITS2 (256 bp). Using all
three gene regions we constructed a 4,286-bp concatenated
alignment (with alignment gaps) of 25 algae samples. At
least two independent PCR amplifications were sequenced
for each polymorphic site in all 25 algae samples to correct
for possible PCR or sequencing errors. (See Additional file
2 for the PCR details). The COI, ITS, and rbcLS sequences
have been deposited in GenBank under accession numbers
JN873222-JN873246, IN873247-JN873271, and JN873272-
JN873296, respectively.

DNA sequence analysis

The sequences were assembled using the program SeqMan
(Lasergene, DNASTAR, Inc.). Multiple alignment was ca-
rried out manually and using the program CLUSTAL W
[38]. The computer programs DnaSP, version 5 [39] and
PROSEQ, version 2.9 [40] were used for most intraspecific
analyses. Saccharina coriacea, S.angustata, Laminaria digi-
tata, and Agarum clathratum (see Additional file 3) were
used as outgroup taxa; they were selected based on previ-
ous molecular evidence of close relationship to S. japonica
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[1,2,11,41-43] and screening of nucleotide sequences avai-
lable in GenBank.

Model-based phylogeny reconstructions were per-
formed with the rbcLS, COI, ITS, and concatenate se-
quence alignments using the neighbor-joining (NJ)
and maximum-likelihood (ML) methods in MEGA,
version 5 [44]. MEGAS5 or jModelTest [45] were used
to find the best model of substitution under the
maximum likelihood criterion. Models with the low-
est Bayesian information criterion [46] scores were
considered most appropriate to describe evolution for
each gene; the Akaike Information Criterion [47] was
also applied. Maximum likelihood bootstrap analyses
[48] consisted of 1000 replicates.

Partitioned analyses were performed with GARLI, ver-
sion 2.0 [49] and MrBayes, version 3.2 [50] that allowed
the overall rate to be different across partitions (rbcLS,
COI, and ITS). Substitution model parameters were esti-
mated separately for each gene. The most appropriate
models were Tamura 3-parameter plus gamma for rbcLS,
Hasegawa-Kishino-Yano plus I for COI, and Tamura 3-
parameter for /7.

The complete dataset was also analyzed by Bayesian
inference using MrBayes, version 3.2 [50] under a
general-time-reversible model plus gamma plus I
Proportion of invariable sites was uniformly distribu-
ted on the interval (0.00, 1.00). Gamma distribution
was approximated using 4 categories. Analyses were
performed as two independent runs, each with four
incrementally heated Metropolis-coupled Monte-
Carlo Markov Chains running for one million genera-
tions. Output trees and data were sampled every 500
generations. Likelihood values reached a plateau
within approximately 1,000 generations. A total of
4002 trees in two files were read and 3002 of them
were sampled. The numbers of unique site patterns
were 100, 175, and 107 for rbcLS, COI, and ITS, re-
spectively. It showed that COI as the most efficient
gene marker consisting with the distance-based
methods.

The average standard deviation of split frequencies
at the end of the run was 0.0068 indicating station-
ary conditions. The log likelihood values increased
from below -35292.434 to around -9652.102 in the first
five thousand generations and then to around —9547.021
after one million generations. The likelihood of best state
for “cold” chain of run 1 was —9523.80 and the likelihood
of best state for “cold” chain of run 2 was -9524.14. At the
end of run there were not any trends in a plot of gener-
ation versus the log probability of the observed data (the
log likelihood values). A convergence diagnostic, the Po-
tential Scale Reduction Factor (PSRF) [51] was between
1.00 and 1.003 indicating a good sample from the posterior
probability distribution.
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The topologies obtained with neighbor-joining and
maximum-likelihood methods as well as with Bayesian
inference were very similar. The close congruence could
be explained by the fact that 1) the dataset was relatively
straightforward and included just two main compared
groups of sequences (TYP and SHA) and four outgroup
species (S. coriacea, S. angustata, Laminaria digitata,
and Agarum clathratum); 2) the extent of sequence di-
vergence between the TYP and SHA forms for all gene
regions was less than 5.0% (0.9% for rbcLS, 1.1% for ITS,
and 4.8% for COI); and 3) the length of alignment was
long enough (4.2 kb totally). As has been shown by
many authors, the relative efficiencies of the ML and NJ
methods in obtaining the correct tree topology were very
close under these conditions [52-54]. The only difference
between the two methods in relation to our dataset con-
cerned slightly different bootstrap values. To be conser-
vative we show the lowest bootstrap values obtained
with the ML method. When different methods produced
similar or identical topologies the simplest, NJ method,
was preferable.

Results
Nucleotide diversity and divergence
We sequenced three gene regions (total 4,286-bp align-
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morphological forms of S. japonica. All three gene regions
(rbcLS, COI, and ITS) with comparable length were avail-
able in GenBank for some species related to S. japonica,
which we have included in the analysis. The lengths of the
GenBank concatenated sequences are (in parentheses): S.
japonica (3,182 bp), S. diabolica (2,894 bp), S. longipedalis
(2,896 bp), S. ochotensis (2,689 bp), S. religiosa (2,896 bp),
S. angustata (4,256 bp), S. coriacea (2,711 bp), S. latissima
(3,748 bp), and L. digitata (4,245 bp) (see Additional file 3
for GenBank accession numbers and full species names).
Figure 1 shows 114 nucleotide substitutions detected
in three gene regions (18 sites in rbcLS, 88 sites in COI,
and 8 sites in I7S) among the 25 algae samples. In
addition, there were seven length polymorphisms in the
rbcLS intergenic spacer and TS regions (Additional file
4); no length polymorphisms were found in the COI
gene. All algae samples sharply split up in two groups.
The first group includes all samples of the TYP (inclu-
ding TYPE, TYPA, and TYPW) and LON forms; the se-
cond group includes the SHA form and one unknown
species from the Chernoruch'e bay (CHE). The genetic
structure is completely congruent for all three gene
regions studied (Figure 1). The two groups (denoted as
“TYP” and “SHA” lineages) differ by 109 fixed single nu-
cleotide differences, as well as by seven fixed length

ment) in 25 algae samples representing common  polymorphisms. The lineages are differentially associated
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SHA-1 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTTCTCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.AT + GTTV2AV3TGY ft
SHA-2 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTT . TCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.At # GTTV2AV3ITGH ft
SHA-3 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTTCTCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.AT + GTTV2AV3T.% ft
SHA-4 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTT . TCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.At # GTTV2AV3TGH ft
CHE-1 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTTCTCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.At # GTTV2AV3ITGH t
CHE-2 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTTCTCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.AT + GTTV2AV3TGY ft
CHE-3 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTTCTCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.At # GTTV2AV3TGH ft
CHE-4 GGCGCAAACCTt TACTCATTTATAGGACATAGGCCTTCC.TC.AGGGCA.GATCTGATCTCTTTCTCATAGCATGTTTTAACGGTTGAATTAGTCCTACTGGTAGGAC.AT + GTTV2AV3ITGY ft
COR  ------------ TACTCATTTATAGGACGTAGGACTTCCCTC.AGTGCA . AATTTGATCTCTTTCTCATAGCATGTTTTAACGGTCGAATTAGTCCTACTGGTAGGAC . At + GTTY2AV3TG+ f
Figure 1 Nucleotide substitution sites in the rbcLS, COI, and ITS gene regions of the Saccharina japonica morphological forms. The
numbers above the top sequence represent the position of segregating sites and the start of a deletion or insertion (see also Additional file 4).
Nucleotides are numbered from the beginning of our sequence. Dots indicate the same nucleotide as the reference sequence. The hyphens
represent deleted nucleotides. A denotes a deletion; T denotes the absence of a deletion; ¥ denotes an insertion; I denotes the absence of an
insertion. The sample abbreviations are in the section "Methods". COR: S. coriacea. The underlined nucleotides in bold face show fixed differences
between COR and the other sequences.
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with indels. The TYP lineage is completely associated
with three inferred deletions (13-, 4-, and 8-bp, within
the rbcLS intergenic spacer and ITS region; Al, A2, and
A3, Figure 1) and two inferred insertions (V1 and V4)
within the ITS region. The SHA lineage is completely
associated with two inferred 1-bp insertions within the
ITS region (V2 and V3). The difference between the
TYP and SHA lineages based on the full concatenate
(including the three gene regions, rbcLS, COI, and ITYS)
is highly significant (Fs=0.9949, P<0.00001); the total
sequence divergence (D,,) between the lineages is 0.0261
(ignoring indels).

The three gene regions differed in levels of diver-
gence between the TYP and SHA lineages (Figure 2).
Total nucleotide divergence between TYP and SHA
lineages is low for rbcLS (Dyy=0.0099 +0.0025) and
ITS (Dyxy=0.0106+0.0037), but significantly higher
(more than four times) for COI (Dy,=0.0481+
0.0051). The same tendency is found for compari-
sons between all other laminarialean species pairs
(data not shown). Thus the COI gene represents the
most effective and sensitive gene marker of the three
studied here for the comparison of close Saccharina
species, which 1is in accordance with the data
obtained for red algae and kelps (e.g., [55-57]).

The estimates of nucleotide diversity for all sequences
of S. japonica and for the morphological forms or haplo-
type lineages separately are low. In the pooled sample,
the total nucleotide diversity is similar for the TYP
(m=0.00011) and SHA (1t =0.00016) lineages (based on
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the three gene regions studied); the results are in ac-
cordance with literature data on intraspecific variability
in S. japonica [58].

Figure 3 displays a maximum likelihood phylogram of
the three gene regions separately and of the concatenate
sequences obtained for the S. japonica forms in the
present study, along with other Saccharina and Lami-
naria sequences obtained from GenBank. S. ochotensis,
S. religiosa, S. longipedalis, and S. diabolica are conspe-
sific with S. japonica (data not shown), as has been
revealed previously [10,11]. All trees showed that the
sequences from the TYP and LON forms form a single
clade, with no evidence of discrete species heterogeneity
(Fs = 0.0201; P=0.6600; Ky =— 0.0099; P=0.7480); total
sequence divergence (Dy,) is 0.0001. These data suggest
that the TYP and LON morphological forms of S. japo-
nica are not distinct biological species. In contrast, the
sequences from the TYP and SHA lineages are distinct.
The difference between the lineages is highly significant
(Fst=0.9949; P <0.0001; K =0.8484; P <0.0001). The
distance between them is 2.61% (2.77% including indels),
which is in a range of the divergence between species
observed within the genus Saccharina [1,41-43] suggest-
ing that the TYP and SHA lineages would qualify as dif-
ferent species based on a phylogenetic species concept.

Species identity

Comparison of sequences obtained during this study with
those available in the GenBank database suggests that the
TYP lineage represents S. japonica, whereas the SHA
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0.04 7
0.02 7

0 tf— T —_—

0 1000 2000 3000 4000

Nucleotide position
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Figure 2 Sliding window plot of nucleotide divergence for three gene regions (rbcLS, COI, and ITS) between the TYP and SHA forms of
Saccharina japonica. Window sizes are 100 nucleotides with one-nucleotide increments. A schematic representation of the regions is displayed
at bottom. The thick black line marks the COI region investigated by McDevit and Saunders [43].




Balakirev et al. BMC Plant Biology 2012, 12:108 Page 6 of 14
http://www.biomedcentral.com/1471-2229/12/108
N
- S. japonica S. japonica S. japonica S. japonica
i) i i
TYP:3 TYP-2 TYP-2 TYP-2
rbclLS TYP-4 col gﬂi ITS H.E'fS? rbelS + COI+ITS g’:{?ﬂ
b TYP-07 TYPF-1 TYPF-3
onee TYPF-3 TYPF-2 TYPF-4
TYPE-3 TYPF-4 TYPF-3 TYPA-1
95| TyPFa 99 | TYPA-1 TYPF-4 TYPA-2
TYPA-2 TYPA-1
TYPA-1 TYPA-3
TYPA-3 TYPA-2
TYPA-2 TYPA4
TYPA-4 TYPA-3
TYPA-3 TYPW
TYPW 95| TYPA-4 LON-1
79 TYPA4 98 LON-1 TYPW §
TYPW — LON-2 LON-1 LON-2
LON-1 TYPF-1 LON-2 TYPF-1
LON-2 TYPF-Z LON-07 99 ‘ITYPF-2
99 LON-07 99 LON-(;T L TYP-4 99 LON-07
S. angustata S. angustata S. angustata TYP4
ié i i SHA-3 99 S. angustata
S. coriacea S. coriacea p 8. coriacea
SHA-1 SHA-2 S. coriacea SHA-3
SHA-2 90 | | sHA-4 SHA-1 51| SHA-1
95 | SHA-3 SHA-1 SHi2 CHE-3
SHA-4 95| sHA-3 SHA-4 CHE-4
CHE-1 CHE-1 CHE- 9| CHE-2
CHE-2 CHE-2 CHE-2 CHE-1
CHE-3 CHE-3 CHE-3 SHA-2
CHE-4 CHE-4 CHEA4 SHA-4
A. clathratum A. clathratum A. clathratum A
—_— —_ —_— —_
0.005 0.01 0.01 0.01
Figure 3 Phylogenetic trees of the rbcLS, COI, ITS, and concatenate sequences (4,286 bp total) of Saccharina japonica morphological
forms. The topology of trees obtained with Maximum likelihood and Neighbor-joining methods were congruent. Numbers at the nodes are
bootstrap percent support values based on 1,000 replications in Maximum likelihood analysis. Saccharina latissima was excluded from this analysis
due to recombination in the COI gene (see text). Other comments as in Figure 1.

lineage is closely related to a group of Saccharina species
that include S. coriacea, S. cichorioides, S. sachalinensis, and
S. yendoana (the last three species are not represented in
Figure 3 because the COI sequences are not available for
them). The distance between the SHA lineage and this
group of Saccharina species (represented by S. coriacea in
Figures 1 and 3) is low and not significant (F =0.9242;
P=0.3300; K=0.3890; P=0.3300); the rbcLS and ITS
regions are identical but the COI gene shows seven single
nucleotide differences (Figure 1). Total sequence divergence
is 0.38% (for the full 4,286-bp concatenate alignment),
which is below the species divergence level observed in
algae [1,41] and other eukaryotes [59]. Yotsukura and col-
leagues [8,9,11,12] have revealed high genetic similarity be-
tween S. coriacea, S. cichorioides, S. sachalinensis, and S.
yendoana and suggested their conspecificity, in accordance
with earlier results of Petrov [6], who treated L. coriacea
and L. sachalinensis as intraspecific forms of L. cichorioides
(the status of L. yendoana was not discussed by Petrov [6].)
Following the priority rule of the International Code of Bo-
tanical Nomenclature, Selivanova and colleagues [13] intro-
duced a new nomenclature combination: S. cichorioides
with four intraspecific forms. The conspecificity of S. coria-
cea, S. cichorioides, S. sachalinensis, and S. yendoana was
suggested on the basis of low genetic divergence detected
with ITS-1, ITS-2, RubisCO spacer, and rbcL. sequences
[8,9,11-13,60]. In the present work we have detected low di-
vergence between the SHA lineage and the group of

Saccharina species listed above using all three gene mar-
kers, including the COI gene (D, =0.0050), which is con-
siderably more informative than the rbcLS and ITS markers
(see above). Consequently, we conclude that the SHA form
belongs to the S. cichorioides group (all “species” represent-
ing the group were previously synonymized based on gen-
etic data as pointed out) and it may represent a
morphological ecotype adapted to supralittoral environ-
ments. S. cichorioides is more heat resistant than S. japonica
and its main populations are more southward in the Sea of
Japan. However, this morphologically and ecologically ver-
satile species (as it follows from our data) is capable of oc-
cupying different environments and successfully compete
with local species in the northern Primorye coast region
under hyposalinity osmotic stress and increased water
temperature (see Background).

The unknown Saccharina collected in the Bay Cher-
noruch'e (CHE) are genetically identical to the SHA
form, even though they have substantial differences in
external morphologies (T. N. Krupnova, unpublished
observations) but occupy similar depths (0.5 m). It has
been suggested that laminarialean algae from the supra-
littoral zone represent S. angustata [26]. However, this is
not the case (see Figure 3): the SHA form is close to the S.
cichorioides group (represented by S. coriacea in Figure 3)
and clearly different from S. angustata. The distance
between the SHA form and S. angustata is 2.63%
(which is consistent with interspecific divergence
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level), indicating species taxonomical range for these
two evolutionary lineages. Thus, S. angustata was
not found among 25 algal samples collected from
distant areas of the Northern Primorye region. This
species is common in the Southern Kuril Islands and
Japan islands [4,26], but it rarely occurs (if at all)
along the continental coast of the Japan Sea.

Non-uniform pattern of divergence in the COI gene

Full length of the COI coding region in laminarialean
algae is around 1.6 kb (1,602 bp in Saccharina). The 5’
part of the gene (~ 650 bp in length; 5-COI) has been
chosen as a “barcoding” region [61] and recommended
for algal species identification [41-43,61]. We have
shown above that the most pronounced differences be-
tween Saccharina species are detected within the COI
gene. However, the level of divergence is highly non-
uniform within the COI gene in the comparisons, in-
cluding S. latissima and other Saccharina species
(Figure 4A — D). The average divergence for the 5-COI
is 0.0380+0.0106 but 4.2 times more, 0.1579 +0.0034
for the 3’-COI (paired samples t-test P=0.0001; Mann—
Whitney test P =0.0090; Table 1). This difference is also
obvious for the comparisons with other laminarialean
species for which long enough COI sequences are avail-
able in GenBank [2,11]: Laminaria digitata, Alaria escu-
lenta, Ecklonia radiata, Undaria pinnatifida, and
Agarum clathratum. The average divergence for the 5'-
COI between these species is 0.1011 +0.0051 but 1.5
times more, 0.1516 +0.0030, for the 3’-COI (paired sam-
ples t-test P=0.0022; Mann—Whitney test P=0.0090
(Table 1). The pattern is the same for all species pair
comparisons: the 5-COI (~ 740 bp in length) was sig-
nificantly less diverged between S. latissima and other
laminarialean algae than the 3’-COI (~ 862 bp in length)
(Figure 4A — D; Table 1).

The difference in the level of divergence between the
S. latissima and other species for the 5-COI and 3’-COI
regions is highly pronounced (Figure 4; Table 1). The
BLAST procedure (limited by the current GenBank sub-
missions) reveals, as expected, very high identity be-
tween the 5-COI region of S. latissima and other
Saccharina species; however, the 3-COI region of S.
latissima has paradoxical similarity (but not complete
identity) to a number of species belonging to the order
Ectocarpales. Indeed, there is a noticeable decrease in
the divergence for the 3’-COI region between S. latis-
sima and the following Ectocarpales species: Leathesia
difformis, Asperococcus bullosus, Punctaria latifolia, Ela-
chista fucicola, Hincksia granulosa, Scytosiphon lomen-
taria, and Petalonia fascia. The average divergence for
the 5-COI between S. latissima and these species is
0.1642 +0.0061, but significantly less, 0.1389 + 0.0046,
for the 3’-COI (paired samples t-test P=0.0007; Mann—
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Figure 4 Sliding-window plots of divergence along the CO/
gene region between S. latissima and other laminarialean
algae: S. japonica (A), the SHA form (B), S. coriacea (C), and S.
angustata (D). Window sizes are 50 nucleotides with ten-nucleotide
increments. The thick black lines at the bottom mark the COI regions
investigated by McDevit and Saunders [43] and Silberfeld with
colleagues [2].
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Table 1 Pairwise distances (with SE) between Saccharina latissima and close species, based on different segments of CO/

5'-Col 3'-col Full col

Species pair D,y +SE D,y +SE D,y +SE

S. latissima - S. coriacea 0.0141 £0.0049 0.1488+0.0135 0.0774 +0.0081
S. latissima — SHA 0.0106 £ 0.0042 0.1508+£0.0136 0.0765 £ 0.0080
S. latissima — TYP 0.0528 £0.0091 0.1647 £0.0138 0.1054 £0.0093
S. latissima - S. japonica 0.0528 +0.0091 0.1647£0.0138 0.1054 +0.0093
S. latissima - S. angustata 0.0599+0.0100 0.1607£0.0138 0.1073 £0.0094
S. latissima — Laminaria digitata 0.0915£0.0115 0.1488+0.0143 0.1185+0.0101
S. latissima — Agarum clathratum 0.0951+0.0115 0.1607 £0.0146 0.1259+0.0101
S. latissima - Ecklonia radiata 0.1039+0.0120 0.1548+0.0140 0.1278+0.0103
S. latissima — Alaria esculenta 0.0951+0.0118 0.1508+0.0137 0.1213+0.0097
S. latissima — Undaria pinnatifida 0.1197£0.0130 0.1429+0.0142 0.1306+0.0103
S. latissima — Leathesia difformis 0.1655+0.0144 0.1290+0.0134 0.1483+0.0110
S. latissima — Asperococcus bullosus 0.1532+0.0143 0.1349+0.0138 0.1446+0.0104
S. latissima — Punctaria latifolia 0.1602+£0.0143 0.1349+£0.0138 0.1483+0.0110
S. latissima — Elachista fucicola 0.1989+0.0166 0.1627 £0.0142 0.1819+0.0115
S. latissima - Hincksia granulosa 0.1549+0.0144 0.1290+0.0131 0.1427 +£0.0109
S. latissima - Scytosiphon lomentaria 0.1637+0.0148 0.1349+0.0136 0.1502+0.0110
S. latissima — Petalonia fascia 0.1532+0.0145 0.1468+0.0137 0.1502+0.0109
S. latissima — Colpomenia peregrina 0.1495+0.0138 0.1468 £0.0144 0.1483 +£0.0107
S. latissima — Ectocarpus siliculosus 0.1373+0.0139 0.1627 +0.0143 0.1493+0.0109
S. latissima — Pylaiella littoralis 0.1585+0.0143 0.1607 £0.0144 0.1595+0.0113

5'-COI: the 658-bp fragment covering the 5-flanking region of the COI gene. The region starts 123 bp downstream of the COI start codon and ends 822 bp
upstream of the COI stop codon. This fragment has been recommended for algae “barcoding” (species identification) [41-43,61]. 3'-COI: the 597-bp fragment
covering the 3'-flanking region of the COI gene that starts 781 bp downstream of the COI start codon and ends 225 bp upstream of the COI stop codon. This
fragment was not investigated by the above authors, but has been recently used (along with the 5'-COI region) for algae phylogenetic reconstruction [2]. Full CO/:
the 1378-bp fragment covering most of the COI gene. The fragment starts 123 bp downstream of the COI start codon and ends 225 bp upstream of the COI stop
codon (the full COI region represents the largest sequence available for laminarialean algae in GenBank, excluding species for which full mtDNA sequences have

been obtained). See Additional file 3 for the GenBank accession numbers.

Whitney test P=0.0087; Table 1). Other Ectocarpales
species for which long enough COI sequences are avail-
able (Pylaiella littoralis, Ectocarpus siliculosus, and Col-
pomenia peregrina) do not show any difference in the
divergence level between 5-COI and 3’-COI regions
(Table 1).

Phylogenetically discordant signals within the COI gene

Thus, the difference in the level of divergence between
the 5’-COI and 3’-COI regions is significant and exhibits
an opposite pattern for comparisons between S. latis-
sima vs. Laminariales species and S. latissima vs. Ecto-
carpales species: the 5-COI region of S. latissima has
obvious similarity to Saccharina species, whereas the 3’-
COI regions has unexpected similarity with some Ecto-
carpales species. As a consequence, the position of S.
latissima on 5- and 3’-COI based trees are sharply dif-
ferent (Figure 5); on the 5-COI based tree, S. latissima
is within the same cluster with other Saccharina species
but not distinguishable from S. coriacea (Figure 5A). On
the 3'-COlI tree S. latissima is significantly different from

Laminariales algae and clusters with some species of the
order Ectocarpales (Figure 5B). On the full length COI
tree, S. latissima is within the order Laminariales
(Figure 5C), but significantly different from other Sac-
charina species. The high similarity of the S. latissima
3’-COlI region with Ectocarpales is surprising considering
the large evolutionary distance between the two brown
algae orders, which separated around 100 Ma [2].

Recombination in the COI gene

Based on these observations we suspected that the un-
usual patterns of the COI gene divergence in compari-
sons of S. latissima with other species might reflect
historical hybridization event(s) between representatives
of distantly related Ectocarpales and Laminariales algae,
which might have resulted in interspecific recombination
of mitochondrial DNA. We therefore analyzed the COI
alignments for evidence of recombination (and break-
points) using various recombination detection methods
implemented in the program RDP3 [62] (Table 2). The
parental and recombinant sequences were determined
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Figure 5 Phylogenetic trees based on different fragments of the COI coding region: (A) 5’-COlI, (B) 3’-COl, and (C) full COI region.
Representative sequences of the orders Laminariales (L) and Ectocarpales (E) included in these trees are marked by vertical lines. Red algae COI
sequences of Callithamnion pikeanum and Hypnea nidulans (GenBank accession numbers EU194965 and FJ694907, respectively) are used as
outgroups. Note the changed position of S. latissima (in bold) depending on the COI region used for the tree. The S. latissima COI sequence
denoted as “S" is from [2]. See Additional file 3 for GenBank accession numbers. Other comments as in Table 1 and Figure 3.

J

using the VisRD method [63], modified version of
PHYLPRO [64], and EEEP [65] also implemented in
RDP3 (default settings).

All six methods detected a single recombination event
in S. latissima within the 1,257 bp COI region
(Figure 6A), with high statistical support (Table 2). The
COI sequences from Petalonia fascia (Ectocarpales) and
the SHA form (Laminariales) were major and minor
parents, respectively. The recombination event involved
the 3’-COI region, encompassing a 542 bp-long segment,
between positions 1227 and 685.

Thus, the parental COI sequences of S. latissima come
from different algae orders, Ectocarpales and Laminar-
iales. The recombination would not have been detected
if the alignment would be limited to the 5-COI barco-
ding region. An interesting feature of algal evolution
would not have been detected. Moreover, incorrect

Table 2 Recombination assessed by six different methods
(implemented in RDP3; see [62])

Method Reference Recomb. species Average P - value
RDP [66] S. latissima 2739%107"?
C. retorta 3.167x 107"
GENECONV  [67] S. latissima 3815%10™"
C. retorta 1.179x 107"
BOOTSCAN  [68,69] S. latissima 2.170x10%
C. retorta 1416x10"3
MAXCHI [70] S. latissima 3.182x 1070
C. retorta 5361x 1078
CHIMAERA  [71] S. latissima 1459 1078
C. retorta 4560 107"
SISCAN [72] S. latissima 1071x107%
C. retorta 4285%x 102

phylogenies would be obtained for species with historical
hybridization events (see Figure 5).

To understand the uniqueness of this case of historical
hybridization revealed in S. latissima, we analyzed add-
itional, long enough COI sequences (~ 1200 bp; Additional
file 3) of brown algae obtained from GenBank. We ana-
lyzed 57 sequences (GeneBank’s plus our own sequences)
and detected one more highly significant instance of COI
recombination between representatives of brown
algae belonging to the families Sargassacea and Seiro-
coccaceae. A recombinant COI sequence was revealed
in Cystophora retorta (order Fucales, family Sargassa-
cea). The COI sequences from Phyllospora comosa
(order Fucales, family Seirococcaceae) and Bifurcaria
bifurcata (order Fucales, family Sargassacea) were
the major and minor parents, respectively. The re-
combination spanned the 5-COI region (Figure 6B)
with a beginning breakpoint at position 540 and end-
ing breakpoint position 16. This recombination event
involves representatives of two brown algae families,
Sargassacea and Seirococcaceae, which diverged
around 73 Ma [2]. Also, as in case of S. latissima,
different and misleading phylogenetic patterns would
come about depending on the COI region used in
tree reconstruction (data not shown).

The recombination analysis has confirmed that the
evolutionary histories of S. latissima and C. retorta have
been influenced by gene flow between two highly
diverged algae lineages, the orders Ectocarpales and
Laminariales (for S. latissima) and between the families
Sargassacea and Seirococcaceae (for C. retorta). The COI
gene in S. latissima and C. retorta represents historical
recombinant products between two distantly related
ancestors. The level of COI divergence is 14.3% and
14.7% between the parental sequences of C. reforta and
S. latissima, respectively, which seems very high for the
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(for C. retorta).

Figure 6 Schematic representation of recombination events in the COI gene region from Saccharina latissima (A) and Cystophora
retorta (B). The parental sequences are from Petalonia fascia and the SHA form (for S. latissima); and Bifurcaria bifurcata and Phyllospora comosa

SHA
Saccharina latissima EU681420
Petalonia fascia EU681415

Bifurcaria bifurcata EU861394
Cystophora retorta GQ368259
Phyllospora comosa EU681417

occurrence of successful recombination (see, for instance,
[73]). However, it has been shown [74] that recombination
may occur among highly divergent maternal and paternal
mtDNA sequences of the sea mussel Mytilus galloprovin-
cialis that differ by > 20%.

There are multiple evidences of mtDNA recombi-
nation in plant, fungi, and animals, including human
(reviews in [75-77]). Mitochondrial heteroplasmy (the
presence of more than one mitochondrial genome in an
individual) that could facilitate recombination has been
reported in the brown alga Fucus [78,79]. Hybrid speci-
ation is widespread in plants [80-82] and mosaic gen-
omes due to hybrid speciation are common in many
marine microorganisms, plants and animals (review in
[83]). Interspecific hybridization has been detected in
the brown algal genus Fucus [84-87] and the red algal
genus Porphyra [88]. However, instances of interspecific
mtDNA recombination were not, to our knowledge, pre-
viously known for algae; it is an infrequent phenomenon
detected in fish and primates [89,90].

The two examples of interspecific recombination come
from published work by Silberfeld with colleagues [2]. It
might be suggested that these recombinations are artifi-
cial, resulting from PCR errors. However, the architec-
ture of the recombinant sequences is not a mosaic
composition from different parts of the parental
sequences; the recombinants are similar but not identi-
cal to any other sequence used in this study. These
observations suggest that PCR errors are unlikely to ac-
count for these recombinant sequences. Nevertheless,
more sampling will be necessary in order to settle this
issue of putative hybrid speciation in algae.

Our results are relevant concerning the DNA barcod-
ing for algae and possibly other organisms. The 5-COI
“barcode” region is not representative and might be even
misleading (at least in case of S. latissima and C. retorta)
in resolving taxonomic relationships between algal spe-
cies. Although 5’-COI barcoding is practically convenient

(because 600—700 bp can readily be sequenced in a sin-
gle run); it may not be suitable.

Discussion

We have found that the TYP and LON morphological
forms of Saccharina japonica are genetically very similar
and, therefore, they might not be thought of as distinct
biological species, as suggested by Gusarova and Ivanova
[17]. The SHA form, however, exhibits distinctive gen-
etic differences from the TYP and LON forms (2.6%
total DNA divergence) and it is closely related to the S.
cichorioides species group. The SHA form might be
thought of as a morphological variety of S. cichorioides
that inhabits an ecological niche — the supralittoral zone —
new for this species. Our results are of practical conse-
quence. Zoospores of the SHA form are used to replenish
populations of the TYP form suffering from overharvesting
[19]. This practice is inappropriate because the TYP and
SHA forms represent different species. Genetic analysis
can, indeed, help to select appropriate stocks for
mariculture.

Thus, the genetic data suggest the existence of two
close Saccharina lineages inhabiting the Primorye coastal
region, S. japonica (TYP+LON) and S. cichorioides
(SHA). Significant genetic differences between the SHA
form and the TYP plus LON forms are not surprising:
these two lineages are also highly different in morph-
ology and ecological preferences. Less expected is the
nearly complete genetic identity of the TYP and LON
forms, because these forms have drastic differences in
morphology, life history traits, and ecology. Taking into
account that interbreeding between the LON and TYP
forms is highly unlikely (see Background), and also the
fact that phenotypic plasticity may have potential roles
for adaptive evolution and speciation, as it has been
shown for many species, including algae (e.g., [27-31]),
we propose that the TYP and LON forms represent im-
portant resources for algae diversification that enable
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successful adaptation to contrasting shallow- and deep-
water marine environments. The present results for Sac-
charina are in accordance with our previous results con-
cerning two morphological forms of the sea urchin
Strongylocentrotus intermedius, which are clearly differ-
ent morphologically but very similar genetically [91].

Transplant site experiments are not likely to be in-
formative concerning the taxonomical status of the Sac-
charina morphological forms since both, the LON form,
which is genetically similar to the TYP form, and the
SHA form, which is genetically quite different from the
TYP form, exhibit drastic morphological transformations
when transplanted to the TYP habitat area, so that they
become morphologically indistinguishable from the TYP
form [23,24]. Breeding experiments would not likely be
informative either to resolve the taxonomic status of the
TYP and LON forms, because even distantly related
algal species produce highly viable first generation
hybrids [88,92-95]. Indeed, the biological species concept
is not particularly helpful in kelps [92,96]. Kraan and
Guiry [92] have, for example, shown that interspecific
sequence divergence in Alaria is smaller than intraspeci-
fic sequence divergence. That is, there is more variation
within a species than between two species of the same
genus, which casts doubts on the morphological and
biological species concepts used in Alaria and on the
usefulness of hybridization studies in assessing species-
level differences [97-100]. Conflict between speciation
decisions based on morphological or molecular charac-
teristics comes about due to the drastically different
rates at which molecular and morphological changes ac-
cumulate [100]. The use of a morphological and bio-
logical species concept to separate Alaria or Saccharina
species is not satisfactory and does not fully reflect
phylogenetic relationships.

The data show that there is no consistent relationship
between morphological and genetic variation in the
algae Saccharina (present data) and Alaria [96], as well
as in sea urchins [91]. The results of Druehl and Saun-
ders [96] and Kraan and Guiry [92] demonstrate that
fertility barriers, which in most cases indicate complete
reproductive isolation, may arise without affecting gen-
etic divergence in the particular genes under investiga-
tion [101]. Our results support a relatively minor
contribution of genetic factors to the TYP and LON
morphological forms differences observed in the three
gene markers, suggesting an important phenotypic plas-
ticity basis for the variability in morphology, life history,
and ecology in S. japonica.

The relative importance of genes and phenotypic plas-
ticity in the generation of adaptive variation is a far from
resolved issue [102]. The possibility that plasticity could
play a major role, however, has recently become more
commonly considered than it was traditionally believed
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[103-105]. A body of evidence suggests that plasticity
may promote adaptive divergence in various systems,
often followed by genetic changes in the direction of the
plastic response [106] (see however, [107]). Furthermore,
phenotypic plasticity enhances the survival and repro-
ductive success of individuals by contributing to their
ability to cope with environmental changes. In this way,
it enables potential adaptation to new niches [108], and
therefore can promote important biological processes
such as adaptation, divergence, reproductive isolation,
and evolutionary innovation [28,109,110]. Environmen-
tally induced phenotypic variation has been argued to be
a more likely source of evolutionary novelty than new
mutations [103,104]. It has, indeed, been asserted that
phenotypic plasticity can accelerate adaptive evolution
by shortening the time a population needs to discover a
new genotypic network [111] even in the case of recur-
rent rapid changes in gene regulation [112].

A number of experimental studies have revealed the
mechanisms of phenotypic plasticity using an integrative
biology approach (review in [113]). The overall results
indicate that phenotypic plasticity has an important role
in adaptive evolution. This consideration, in turn, points
out the importance of characterizing diverging pheno-
types and identifying relevant evolutionary forces acting
on those phenotypes. A great number of intraspecific
morphological varieties are known for laminarialean
algae (review in [14]). Further studies of algae morpho-
logical forms are important and necessary to further
understand how biological diversity is generated and
maintained in evolution.

Conclusions

1. We have investigated the genetic make-up in three S.
japonica forms, TYP, LON, and SHA. We have found
that in spite of their drastic differences in
morphology, life history and ecology, the TYP and
LON forms are genetically indistinguishable and
clearly different from the SHA form, which has a
close genetic relationship with S. cichorioides. Taking
into account the potential evolutionary significance
of phenotypic plasticity, the TYP and LON forms
may represent an important resource for algal
evolutionary diversification and successful adaptation
to contrasting marine environments.

2. The three gene markers used in the present work
have different sensitivity for algal species
identification; the mitochondrial COI gene is the
most efficient gene marker. However, we found
that the designated 5-COI “barcoding” region is
not enough and may even be misleading for
purposes of identification, at least in comparisons
that include species with evolutionary histories
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involving gene flow between distantly related algae
lineages.

3. Populations of the TYP and LON forms are
depressed owing to overharvesting; restriction
programs are in play to enhance these populations.
But the correct foundation stocks must be used.
Zoospores of the SHA form should not be used to
seed the fields of the TYP and LON forms because
they belong to different evolutionary lineages.
Genetic determination should be used to select
correct foundation stocks in mariculture and
management programs.
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cichorioides. The COI sequences have been deposited in GenBank under
accession numbers JQ792007-JQ792010.
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