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Abstract

Background: Ecotypes of Colobanthus quitensis Kunt Bartl (Cariophyllaceae) from Andes Mountains and Maritime
Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold
acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold
acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting
recovery under cold. Therefore, the Antarctic ecotype (cold hardiest) should be less photoinhibited and have better
recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to
cold induced photoinhibitory treatment (PhT). Photoinhibition and recovery of photosystem II (PSII) was followed
by fluorescence, CO2 exchange, and immunoblotting analyses.

Results: The same reduction (25%) in maximum PSII efficiency (Fv/Fm) was observed in both cold-acclimated (CA)
and non-acclimated (NA) plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark
conditions, but CA Antarctic plants recover faster than the Andean ecotype.
Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for
Andean and Antarctic plants respectively). Cold acclimation induced the maintenance of PsaA and Cyt b6/f and
reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation
decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT.
NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher
photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions.

Conclusions: Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold
acclimation determined the kinetic and extent of recovery process under darkness in both C. quitensis ecotypes. The
greater recovery of PSII at low temperature in the Antarctic ecotype was related with its ability to maintain PsaA, Cyt b6/f
and D1 protein after photoinhibitory conditions. This is probably due to either a higher stability of these polypeptides or to
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the maintenance of their turnover upon cold acclimation. In both cases, it is associated to the maintenance of
electron drainage from the intersystem pool, which maintains QA more oxidized and may allow the synthesis of
ATP and NADPH necessaries for the regeneration of ribulose 1,5-bisphosphate in the Calvin Cycle. This could be a
key factor for C. quitensis success under the harsh conditions and the short growing period in the Maritime
Antarctic.

Keywords: Antarctic plants, Andean plants, Cold-induced-photoinhibition, Recovery, PSII restoration, D1 cycle,
Photoprotection
Background
The balance between absorbed and photochemically
converted energy for metabolism is critical in photo-
synthetic organisms [1]. The absorption of excessive en-
ergy with respect to energy used in photosynthesis may
induce photoinhibition [2]. Photoinhibition is a conse-
quence of either reversible down-regulation of PSII
through the dissipation of excess absorbed energy or the
irreversible inactivation of PSII and damage to the D1
reaction center protein [2,3]. However, D1 is also degraded
under non-photoinhibitory conditions and it is con-
tinuously replaced by newly synthesized protein. When
plants are exposed to excessive high light conditions or
when new protein synthesis is impaired by unfavorable
environmental stress conditions, the inactivation rate
exceeds the capacity for its repair. Under this condition,
the content of functional D1 protein is depleted, result-
ing in photodamage of PSII [4,5]. The actual extent of
photoinhibition “in vivo” depends on the balance be-
tween inactivation of D1 and the repair process, which
involves insertion of new D1 molecules into the thyla-
koid and their incorporation into the PSII complex [6].
Light is a requirement for PSII function restoration. Re-
covery from photoinhibition does not occur in darkness,
mainly due to impaired thylakoid protein synthesis [7].
In addition, recovery from photoinhibition is strongly

temperature dependent [8-10]. Under low temperature,
the inhibition of D1 repair process has been postulated
as the principal mechanism of photoinhibition, because
“de novo” D1 synthesis is impaired [11]. Cold acclima-
tion results in an increase in photosynthesis capacity at
suboptimal temperature [2]. Previous studies have dem-
onstrated that increased tolerance to photoinhibition in
cereals is a result of growth and development under
conditions that induce a high PSII excitation pressure,
which reflects the redox poise of the intersystem elec-
tron transport chain [12-14]. This is supported by earlier
studies that have reported correlations between toler-
ance to photoinhibition and the redox state of QA, the
first stable quinone electron acceptor of PSII [15,16].
Recovery in the photosynthesis capacity is closely re-
lated with the activation of electron sink process, which
can induce a higher relative oxidized state of QA,
reducing ROS (reactive oxygen species) induction prob-
ability [17,18].
Thermal dissipation of excess absorbed energy, at an-

tenna level, is a fast and efficient protective strategy
which prevents over-reduction of QA [19]. Thermal dissi-
pation is measured through non-photochemical quench-
ing (NPQ) [20]. NPQ has been shown to be composed of
at least two components with different relaxing time
scales. The fast relaxing component NPQf, also called qE,
is rapidly relaxed after dark. It requires thylakoid lumen
acidification, zeaxanthin synthesis in the xanthophylls
cycle and protonation PsbS protein [21-23]. Under pro-
longed light stress, qE is replaced by a sustained, slowly
reversible component NPQs or photoinhibitory compo-
nent (qI). This component is less characterized and it has
been linked to retention of zeaxanthin under dark and
photodamage of D1 [19]. The relaxation of NPQ and the
epoxidation of zeaxanthin are important to the first
phase of the recovery process [3,24,25].
Colobanthus quitensis (Kunth) Bartl. Caryophyllaceae

is one of only two angiosperm species to have naturally
overcome the geographical and environmental impedi-
ments for colonization of the Antarctic [26]. C. quitensis
extends from the Maritime Antarctic and along the
Andes Mountains to Ecuador, with one site in Mexico
[27]. In the Antarctic, C. quitensis grows as a perennial
herb which develops its vegetative and reproductive
cycle typically between December and March, with
frequent average daily air temperatures usually between
0°C and 6°C, and the minima are between −2°C and −4°C
[28,29]. The photoperiod reaches about 21/3 light/dark
hours in December in the Maritime Antarctic, with a
vast majority of cloudy days (usually 300 to 600 μmol
photons m-2 s-1). Clear days with much higher photosyn-
thetic photon flux density (PPFD) reach about 20% of
summer days [26,30,31]. C. quitensis usually grows above
2500 ma.s.l. in the Andes Mountains [32]. In the Andes
of Central Chile, its life cycle is developed from October
to April (during the snow-free period) with shorter
photoperiods than in the Antarctic. This ecotype grows
under wider diurnal temperature oscillations (usually be-
tween 0-22°C) and frequently exposed to high PPFD at
noon (about 2000 μmol photons m-2 s-1) [33,34].
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It has been recently proposed that differences in mor-
phological and leaf attributes due to acclimation to each
particular environment rely on different photoprotective
mechanisms [35]. Molecular studies of the ITS (Internal
Transcriber Spacers) of both populations of C. quitensis
demonstrated high ITS similarity among both acces-
sions. Based on morphological and physiological differ-
entiation under common garden experiments, they are
now considered ecotypes [36]. Upon 21 days at 4°C, the
Antarctic ecotype exhibited higher cold resistance cap-
acity than the Andean one, reaching a LT50 (lethal
temperature at which 50% of plants died) 4.5°C lower
than the Andean ecotype [36]. Previous studies have
reported that both ecotypes have similar optimal tem-
perature for photosynthesis ranging from 17 to 24°C de-
pending on growing conditions [30,37] However, low
temperature exposure (cold acclimation) improves the
Antarctic ecotype responses to photoinhibitory condi-
tions, such as a combination of high light intensity and
low temperature [38].
Most of the above studies on C. quitensis have consid-

ered short term exposure to photoinhibitory conditions.
However, the extent of damage, the recovery phase, and
how low temperature and dark may limit these processes
have not been studied. Therefore, the main objective of
this work is to understand how cold acclimation affects
the extent of photoinhibitory damage and recovery in
two ecotypes of C. quitensis. We hypothesized that cold
acclimation increases resistance to low-temperature-
induced photoinhibition by limiting photodamage and/
or promoting recovery under cold, especially in the cold
hardiest ecotype.

Results
Cold acclimation effect on recovery kinetics of maximum
PSII efficiency (Fv/Fm) from a cold-induced
photoinhibitory treatment (PhT)
Fv/Fm variation upon PhT and recovery depended on
ecotype, acclimation temperature, and treatment (signifi-
cant interaction P <0.05). After 5 hours of exposure to
4°C under high light, all plants experienced similar sub-
stantial photoinhibition, with a 25% decline in Fv/Fm
(Figure 1).
Fv/Fm recovery from PhT depended on the light en-

vironment. Recovery under low light (50 μmol photons
m-2 s-1) allowed a complete and faster Fv/Fm restoration
in the NA Antarctic ecotype with respect to recovery
under dark (Figure 1A, C). Significant differences in Fv/
Fm values between low light and dark recovery of NA
plants were obtained at 1, 4, and 18 hours of recovery in
the Antarctic ecotype. However, the Andean ecotype
only showed differences at 18 h of recovery. In both eco-
types of NA plants, restoration of PSII function was not
complete at 18 h of recovery under darkness.
Cold acclimation determined full Fv/Fm restoration
under darkness in both ecotypes. Cold acclimation also
increases the velocity of Fv/Fm restoration in the Ant-
arctic ecotype. Total restoration of Fv/Fm in CA Antarc-
tic plants occurred during the first hour of darkness,
reaching about 90% of the initial Fv/Fm, without signifi-
cant differences with the value reached under low light
at the same time. In contrast, Fv/Fm of Andean plants
increased linearly and slowly during the recovery period,
reaching initial Fv/Fm values at about 9 hours of dark-
ness, similar than under low light recovery.

Effect of cold acclimation on photoinhibition and dark
recovery of Chlorophyll fluorescence parameters
In order to further understand how cold acclimation
affect recovery of photoinhibited PSII in C. quitensis,
photochemical and non-photochemical fluorescence pa-
rameters were studied before PhT (Photoinhibitory treat-
ment), immediately after PhT and at 12 h of recovery
(chosen as full recovery because non-statistically signifi-
cant differences were observed between 9 and 18 hours
of dark recovery). The values of PhT and recovery were
compared with those obtained from non-photoinhibited
plants performed at 4°C (initials parameters).
Cold acclimation reduced a 41% the excitation pres-

sure of PSII (1-qL) in the Antarctic ecotype (Figure 2A),
while a slight tendency to increase 1-qL in photoinhib-
ited plants was observed in NA plants of both ecotypes.
Interestingly, CA Antarctic plants showed the lowest
average of 1-qL under PhT. This was a 30% lower re-
spect to NA and CA Andean plants (Figure 2A). During
the recovery, NA Andean plants exhibited the highest
excitation pressure, while 1-qL decreased to initial values
in NA Antarctic and CA plants of both ecotypes.
Quantum yield of PSII (ΦPSII) responses under photo-

inhibitory treatments were dependent on acclimation
temperature (P <0.05) and ecotype (P <0.05). However,
the acclimation response was similar for both ecotypes
(non-significant interaction between ecotype and accli-
mation temperature (P <0.05). ΦPSII was reduced a
50% in the Andean and a 73% in the Antarctic ecotype
under PhT in NA state. In spite the stronger ΦPSII re-
duction of the Antarctic ecotype under PhT, it was able
to recover its initial yield after dark recovery, while the
Andean ecotype was not (Figure 2B).
PhT did not induce a higher level of NPQ and

NPQf (Figure 3A, C) with respect to values of non-
photoinhibited plants. In contrast, PhT induced higher
levels of NPQs in these plants. The effects of PhT on
NPQs were dependent on temperature acclimation and
ecotype (significant interaction P <0.05). Only CA Ant-
arctic plants maintained similar NPQs values than con-
trol non-photoinhibited plants. The greatest NPQs was
observed in NA plants of the Andean ecotype, where
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NPQs achieved similar values than NPQf. After the
recovery period, NPQs tended to decrease to the initial
values in both NA and CA plants (Figure 3B). A similar
strong correlation (r2 = 0.95) between the relative changes
(respect to the initial value) in NPQs and 1-qL was
observed in NA and CA plants under PhT and recovery
(Figure 4). Therefore, it seems that cold acclimation does
not decrease PSII susceptibility to chronic photoinhibition
at a given variation of excitation pressure.

Effect of cold acclimation on chlorophyll content and
thylakoids proteins changes after photoinhibitory
treatment and dark recovery
There was a significant higher chlorophyll (Chl) a con-
tent (13%) in the Andean ecotype, while no significant
difference between ecotypes was observed in Chl b, con-
sequently, there is a higher average Chl a/b ratio in the
Andean (3.9) than in the Antarctic (2.6) ecotype
(Table 1). Chl a decreased about 30% in both CA eco-
types; while Chl b was reduced 35% upon cold acclima-
tion only in the Antarctic ecotype. As a consequence,
cold acclimation significantly reduced the Chl a/b ratio
only in the Andean ecotype. After the PhT, the Antarctic
ecotype tended to maintain its Chl levels (in both NA
and CA state), while NA Andean plants exhibited large
reductions in both Chl a and Chl b. CA Andean plants
showed a significant reduction only in Chl b. Addition-
ally, NA Andean plants were not able to reestablish their
initial Chl levels during dark recovery. Higher levels of
Lhcb1 and Lhcb2 from PSII antenna complex were
observed in Antarctic plants (Figure 5A, B). D1 protein
levels were similar in NA and CA stages of both ecotypes
(Figure 5C). After PhT, the 18 kDa degradation product
of D1 increased significantly (Figure 5D), but they were
reestablished to the initial level after recovery. In NA An-
dean plants, the 18 kDa D1 degradation product
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increased concomitantly with a 30% decrease of D1 pro-
tein (Figure 5C, D).
Lhca1 and Lhca2 levels were maintained in response

to PhT in NA and CA Andean plants. Cold acclimation
induces a 40% of reduction in the amount of these two
proteins from PSI antenna in Antarctic plants subjected
to PhT. Normal level of these proteins were not reestab-
lished after the recovery period (Figure 5E, F). In con-
trast, PsaA protein level was largely reduced (about 50%)
in NA plants during PhT, and in NA plants and CA An-
dean plants during the dark recovery, while it was main-
tained constant in CA Antarctic plants (Figure 5G).
Although, both ecotypes experienced 30% of increment
on Cyt b6/f (PetA subunit) after CA, the highest level
was observed in CA Antarctic plants (Figure 5H). In CA
and NA Andean plants the Cyt b6/f level decreased
about 50% and 20%, respectively during PhT. Antarctic
plants on the other hand, tended to maintain Cyt b6/f
levels independently of the treatment.
In order to associate the effects of PhT with carbon me-
tabolism, the first enzyme of the Calvin cycle and the
key enzyme of sucrose biosynthesis were immuno-
logically studied. NA Andean plants exhibited the highest
level of large subunit of Rubisco (ribulose bisphosphate
carboxylase/oxigenase) (Figure 5I). Rubisco remained
nearly constant after PhT, and increased a 25% during
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the recovery of both CA ecotypes. Cold acclimation
increased Sucrose phosphate synthase (SPS) levels in
the Andean ecotype, but not in Antarctic one. The
densitometric analysis showed about 20% of increment
of SPS observed after recovery in CA Antarctic plants
(Figure 5J).

Effect of photoinhibitoty treatment and recovery on net
photosynthesis
Light response curves of net photosynthesis (A) at 4°C
were studied before, immediately after PhT, and at the
end of recovery period in CA and NA plants of both
ecotypes (Figure 6). Cold acclimation did not induce
Table 1 Effect of cold acclimation on chlorophyll content of p
and a recovery period

Ch

Non-acclimated Andean Initial

PhT.

Recovery

Antarctic Initial

PhT.

Recovery

Cold-acclimated Andean Initial

PhT.

Recovery

Antarctic Initial

PhT.

Recovery

Results show mean values ± SE of two separate experiments with 3 replicates each.
treatment and ecotypes P<0.05 using three-way ANOVA.
significant differences in the maximal rate of net photo-
synthesis (Amax) measured at 4°C in both ecotypes.
The reduction in Amax after PhT was lower in CA

plants (28% for both ecotypes) than in NA plants (34%
and 51% for Andean and Antarctic plants, respectively).
After the recovery period, Amax was reestablished to ini-
tial values in NA and Andean CA plants, while CA Ant-
arctic plants exhibited a greater level respect to initial
values. Therefore, net photosynthesis recovery was
strongly dependent on the ecotype and acclimation
temperature (significant interaction P <0.05). CA in-
creased the quantum yield of CO2 uptake (ΦCO2) by
47% in Andean and 90% in Antarctic plants, respectively
lants of both ecotypes of C. quitensis subjected to PhT

l a (μg g-1 FW) Chl b (μg g-1 FW) Chl a/Chl b

767± 36(a) 208 ± 29(abc) 3.9 ± 0.7(abc)

490± 22(cd) 135 ± 15(d) 3.7 ± 0.4(abc)

527± 37(cd) 120 ± 16(d) 4.6 ± 0.9(a)

660± 25(b) 258 ± 21(a) 2.6 ± 0.3(cd)

569± 25(c) 247 ± 29(a) 2.4 ± 0.4(d)

744± 26(ab) 260 ± 31(a) 2.9 ± 0.3(bcd)

520± 23(cd) 242 ± 20(ab) 2.2 ± 0.3(d)

441± 23(de) 133 ± 12(d) 3.3 ± 0.2(bcd)

704± 46(ab) 236 ± 16(ab) 3.0 ± 0.0(bcd)

473± 27(de) 166 ± 23(cd) 3.0 ± 0.6(bcd)

393± 34(d) 180 ± 21(bcd) 2.2 ± 0.2(d)

470± 36(de) 171 ± 19(cd) 2.8 ± 0.1(bcd)

Different letters represent significant differences between acclimation,
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(Table 2, Figure 6). PhT reduced significantly the ΦCO2

on both NA and CA plants. These values were totally
recovered after 12 hours of darkness (Table 2, Figure 6).
The PhT increased the light compensation point (LCP)
in NA plants (P <0.05), while only slightly differences
were observed in CA Andean plants. Despite this, values
were reestablished after the recovery period on both NA
and CA plants. Another interesting change was observed
in dark respiration (Rd) after the recovery period. About
a 45% reduction in Rd was observed in almost all groups
of plants. Only in CA Antarctic plants Rd did not
change significantly.
Total soluble sugar (TSS) and starch in NA and CA
ecotypes of C. quitensis under cold induced
photoinhibition
Both ecotypes store similar amount of TSS and starch in
its leaves. However, Antarctic plants present three times
higher amount of TSS and twice the amount of starch in
roots than Andean plants.
Cold acclimation induced an increment of about 80%
of TSS in leaves of both ecotypes (Table 3). The amount
of starch increased 66% and 94% in leaves of Andean
and Antarctic ecotypes, respectively. In addition, cold
acclimation induced 300% increase of the starch content
in roots of Andean plants, and 100% in Antarctic plants.
Nonetheless, CA Antarctic plants reached 42% greater
starch contents than Andean plants.
PhT induced an increment of 25% of TSS in leaves of

NA Andean plants, while in NA Antarctic plants no
changes were observed. NA plants maintained its starch
amount in leaves after PhT. TSS decreased in response
to PhT and the starch levels were maintained in roots of
both NA ecotypes.
Contrasting, under PhT, cold acclimation reduced a

26% and 40% the TSS in Andean and Antarctic plants,
and about a 75% the starch levels in the leaves. Under
PhT, CA Andean plant maintained the starch amount
and reduced a 33% the TSS content, while CA Antarctic
plants reduced a 33% its starch level and maintained
the TSS.



Table 2 Effect of cold acclimation on photosynthetic parameters of plants of both ecotypes of C. quitensis subjected to
PhT and a recovery period

Photosynthetic parameters

Ecotype Treatment Rd ΦCO2 Amax LCP

Acclimation (μmol CO2 m
-2 s-1) (mol mol-1 photons) (μmol CO2 m

-2 s-1) (μmol photons m-2 s-1)

Non- acclimated Andean Initial −1.4 ± 0.2 (a) 0.034 ± 0.004 (de) 3.9 ± 0.5 (cde) 31 ± 1 (bcd)

PhT. −1.3 ± 0.3 (a) 0.021 ± 0.002 (e) 2.5 ± 0.2 (f) 68 ± 1 (a)

Recovery −0.7 ± 0.1 (de) 0.025 ± 0.003 (de) 4.3 ± 0.2 (bcde) 29 ± 5 (bcde)

Antarctic Initial −1.1 ± 0.2 (abcd) 0.040 ± 0.003 (cd) 4.7 ± 0.5 (bcd) 23 ± 3 (cdef)

PhT. −1.0 ± 0.1 (abcde) 0.020 ± 0.003 (e) 2.3 ± 0.3 (f) 42 ± 4 (b)

Recovery −0.6 ± 0.1 (e) 0.039 ± 0.002 (cd) 4.5 ± 0.4 (bcde) 20 ± 6 (def)

Cold- acclimated Andean Initial −1.3 ± 0.2 (ab) 0.050 ± 0.010 (bc) 4.5 ± 0.5 (bc) 24 ± 4 (cdef)

PhT. −0.7 ± 0.1 (de) 0.025 ± 0.006 (de) 3.2 ± 0.5 (ef) 36 ± 10 (bc)

Recovery −0.7 ± 0.1 (e) 0.051 ± 0.005 (bc) 4.7 ± 0.7 (bcd) 21 ± 8 (def)

Antarctic Initial −0.8 ± 0.3 (abc) 0.076 ± 0.003 (a) 5.3 ± 0.2 (b) 33 ± 2 (bcd)

PhT. −0.5 ± 0.2 (bcde) 0.034 ± 0.004 (de) 3.8 ± 0.1 (cde) 33 ± 6 (bcd)

Recovery −0.6 ± 0.2 (cde) 0.064 ± 0.009 (ab) 8 ± 1 (a) 15 ± 1 (f)

Rd, dark respiration rate; Φ CO2, quantum yield of CO2 uptake; Amax, maximal rate of net photosynthesis; LCP, light compensation point. These parameters were
obtained from the analysis of light response curves, performed at 4°C and 360 ppm of CO2 from the Sure 6. Results show mean values ± SE of two separate
experiments with 3 replicates each. Different letters represent significant differences between acclimation, treatment and ecotypes P<0.05 using three-way
ANOVA.
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Under recovery the initial values of TSS were not rees-
tablished, except in NA Andean plants which increased
130%, however, this value was not related with changes
in starch amount neither in leaves nor in roots.

Discussion
PhT and recovery under light v/s dark conditions
C. quitensis from the Andes and Maritime Antarctic are
two examples of extreme life under harsh conditions
[26,33,34]. While the Andean ecotype is normally
Table 3 Effect of cold acclimation on TSS (mg g-1 DW) and sta
both Andean and Antarctic ecotypes of C. quitensis exposed t

Acclimation Ecotype Treatment TSS

Non- acclimated Andean Initial 53 ±

PhT. 66 ±

Recovery 124±

Antarctic Initial 53 ±

PhT. 59 ±

Recovery 38 ±

Cold- acclimated Andean Initial 96 ±

PhT. 71 ±

Recovery 77 ±

Antarctic Initial 99 ±

PhT. 59 ±

Recovery 66 ±

Results show mean values ± SE of five different individuals. Different letters represen
using three-way ANOVA.
subjected to strong seasonal and diurnal temperature
oscillations and high PPFD, the Antarctic ecotype grows
under permanent low temperatures and occasional high
PPFD [26,30-33]. Different environmental adaptation
and cold acclimation capacity of these ecotypes has been
associated to differences in their resistance to cold-
induced photoinhibition [35,38]. Photoinhibition is the
reduction of photosynthetic efficiency caused by excess
absorbed light. It is the result of a complex interaction
between reversible down-regulation of PSII efficiency,
rch (mg g-1 DW) changes in leaves and roots of plants of
o PhT and recovery period

Leaves Roots

Starch TSS Starch

3(e) 15 ± 2(cde) 21 ± 1(de) 5 ± 2(f))

3(cd) 13 ± 2(cdef) 13 ± 1(e) 8 ± 2(ef)

1(a) 11 ± 3(efg) 18 ± 1(de) 5 ± 2(f)

2(e) 17 ± 3(cd) 68 ± 7(b) 13 ± 2(bcde)

1(de) 18 ± 2(c) 27 ± 3(d) 12 ± 3(cde)

4(f) 13 ± 2(cdef) 27 ± 4(d) 9 ± 2(def)

1(b) 25 ± 2(b) 58 ± 5(b) 19 ± 2(b)

6(cd) 7 ± 2(fg) 45 ± 1(c) 15 ± 2(bcd)

5(c) 10 ± 1(efg) 11 ± 1(e) 13 ± 2(bcde)

12(b) 33 ± 3(a) 28 ± 5(d) 27 ± 3(a)

5(de) 8 ± 2(fg) 29 ± 3(d) 18 ± 2(bc)

3(cde) 6 ± 2(g) 87 ± 7(a) 14 ± 2(bcde)

t significant differences between acclimation, treatment and ecotypes P<0.05
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damage and recovery capacity of the photosynthetic ap-
paratus [3,39]. Recovery from photoinhibition is strongly
limited by low temperatures, mainly by impairment of
degradation and “de novo” synthesis of D1 [11]. There
still lack of clarity in the literature regarding how cold
acclimation may help to deal with low temperature-
induced photoinhibition [40,41]. Some important ques-
tions remain to be addressed, such as whether cold
acclimation differentially affects the extent of photoinhi-
bitory damage and/or the recovery capacity after photoin-
hibition. These two C. quitensis ecotypes, which exhibited
contrasting freezing tolerance, are good biological models
to address the above question.
It is difficult to quantitatively compare the results

obtained with C. quitensis with those obtained with other
species, because different irradiance and temperature
have been used in the photoinhibitory treatments. How-
ever, under similar or shorter photoinhibitory treatments
NA plants of C. quitensis exhibited a greater performance
than other species. For example, NA plants of Arabidop-
sis thaliana [40], exposed by 2 hours to 600 μmol
photons m-2 s-1, exhibited a reduction of Fv/Fm of about
50%. NA plants of winter wheat [24] experienced a simi-
lar decrease in Fv/Fm after 5 hours at 1200 μmol photons
m-2 s-1 and 5°C. In our case, C. quitensis only exhibited
25% reduction in Fv/Fm under similar conditions, sug-
gesting a higher resistance to cold-induced photoinhibi-
tion in both Antarctic and Andean ecotypes.
Cold acclimation has not changed the extent of Fv/Fm

reduction by cold induced photoinhibition in C. quiten-
sis. Our results indicate that the recovery process under
low-temperature and low light intensity (50 μmol
photons m-2 s-1) was significantly improved by cold ac-
climation. Moreover, cold acclimation enhanced the re-
covery process under dark in the cold hardiest ecotype
(Antarctic one). It is remarkable, because dark recovery
under low temperature imposes significant constraints
on photochemical processes and “de novo” synthesis of
damaged proteins [7]. Full dark recovery after cold in-
duced photoinhibitory treatment in CA plants of A.
thaliana, takes about 52 hours even at normal growth
temperature (22°C) [41]. It is interesting that cold accli-
mation exhibited a contrasting effect on low light and
dark recovery kinetics of both ecotypes at least during
the first hours. Cold acclimation promotes a faster res-
toration of Fv/Fm after PhT in Antarctic than in Andean
ecotype. Effective D1 turnover has been indicated as es-
sential for the recovery process from photoinhibition
[42]. Low temperature limits the capacity of the repair
cycle by decreasing the rate of “de novo” protein synthe-
sis and through the inhibition of the proteolytic steps of
the D1 repair cycle [43]. Our immunological results
showed an 18 kDa D1 degradation product after PhT,
suggesting that D1 is being degraded. Although, the
process of photodamaged D1 repair is very important
during PhT, in C. quitensis, it seems it is not a limiting
step, because the levels of D1 remained generally con-
stant during PhT and recovery. Only NA Andean plants
experienced a decrease in D1, concomitantly with the
appearance of 18 kDa D1 degradation product, suggest-
ing a higher susceptibility of this ecotype to cold-
induced photoinhibition. This is also consistent with the
observed reduction of Cyt b6/f after PhT on these plants
(Figure 5H). It has been proposed that Cyt b6/f level is
highly correlated with the electron transport flow, which
is mainly limited by plastoquinone re-oxidation at the
cytochrome b6/f complex [44,45]. Therefore, in Andean
plants its decrease could be involved in the decrease of
ФPSII and increment of 1-qL during PhT and probably
in its poor recovery from photoinhibition.
PSII is generally considered as the major target of

photoinhibition, as it is less stable than PSI under strong
light treatments. However, several recent evidences
showed that PSI can also be affected by photoinhibition.
It can occur concomitantly with PSII photoinhibition,
especially under chilling conditions and when the linear
electron transport chain is unbalanced [46-51]. Cold ac-
climation induced a better maintenance of PsaA (from
RC of PSI) in both ecotypes after PhT. However, during
dark recovery PsaA decreased significantly in the An-
dean ecotype. It seems that PsaA is highly degraded or
slowly re-synthesized in the Andean ecotype after PhT.
The higher maintenance of PsaA in the Antarctic eco-
type could be attributed to the important decrease of an-
tenna proteins Lhca1 and Lhca2. This degradation may
cause a decrease in PSI antenna size, thus reducing light
absorption efficiency and further decreasing the prob-
ability of damage [50]. Antenna complexes are the first
target in PSI photoinhibition, similarly to D1 in PSII. It
has been proposed that LHCI acts as a safety fuse, being
degraded, while the PSI reaction center and its photo-
chemical activity is maintained [51,52].

Photochemical and non-photochemical processes
involved in Fv/Fm restoration
The 25% decreasing in Fv/Fm observed after the PhT
evidenced the loss of PSII reaction center activity in both
NA and CA plants (Figure 1). However, the data presented
clearly demonstrate that cold acclimation increased the
recovery capacity by preventing over-reduction of the
plastoquinone pool (Figure 2). In CA Antarctic plants
this may be due to the maintenance of central proteins
from both PS that promote a higher level of ΦPSII
(Figure 2) and restricting the photodamage expressed
as the slowly relaxing component of NPQ,NPQs (Figure 3).
This response could be the result of acclimation to a high
PSII excitation pressure. Therefore, several photosyn-
thetic processes have adapted to this condition
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increasing their sink capacity at low temperature. Cold-
acclimated plants, consistently, presented lower excita-
tion pressure and higher Amax and ΦCO2 at 4°C com-
pared with NA plants (Table 1, Figure 6). In fact, the
ΦCO2 at 4°C was 34% higher in CA Antarctic plants than
in Andean ones. This was more related with PsaA and
Cyt b6/f levels considering that D1 level was more stable
in both NA and CA plants. These result can be relevant
considering the lower light environment where the Ant-
arctic ecotype develops its life cycle. However, both eco-
types presented sustantained photoinhibition, since both
decreased ΦCO2 and Amax after PhT. Similar results have
been observed in another Antarctic psychrophile:
Chlamydomonas raudensis (UWO 241), which also pre-
sented an unusually rapid recovery of photosynthetic
rate at low temperature [53].
Cold acclimation produced accumulation TSS and

starch in leaves and roots of both ecotypes (Table 3).
The higher level of starch in leaves and roots was
observed in the Antarctic ecotype, reflecting its higher
photosynthetic activity with respect to the Andean eco-
type. Several lines of evidence suggest that cold-induced
sugar accumulation enhances the degree of plant freez-
ing tolerance [54]. The greater amount of TSS and
starch in CA plants could be the result of a higher activ-
ity of the enzymes involved in photosynthetic carbon
metabolism such as Rubisco, F6BP and SPS [55-57].
PhT induced TSS accumulation in NA plants which

may be involved in osmotic adjustment of leaves. Con-
trastingly, PhT in CA plants induced a decrease of TSS
and starch in leaves, which could be related with the
capability to maintain the functionality of carbon export
[58]. It is suggested that this decrease of TSS in leaves
could play a role in avoiding the photoinhibition by pro-
moting Calvin cycle enzyme activities [59]. However, this
decrease also could be responding to the prolonged time
under darkness (12 h), which increases the glycolysis by
respiration. On the other hand, the significant reduction
of Rd during the dark recovery could influence the main-
tenance of TSS in NA and CA Andean plants, suggesting
a differential metabolism activity between these plants
and CA Antarctic ones.
Regardless of the effect of PhT on photosynthesis and

photochemical processes, after the recovery period, NA
plants were also able to reestablish their initial values of
Amax and ΦCO2 in the long term (Table 2, Figure 6)
conferring an important role to the fraction of PSII reac-
tion centers that remain active after PhT [60,61]. The
surprisingly high level of Amax during recovery in CA
Antarctic ecotype (70% greater than the initial value in
non-photoinhibited plants) are consistent with the
increased proportion of open PSII reaction centers and
with the maitenance of PsaA and Cyt b6/f even under
PhT. This could determine both lineal and cyclic
electron transport rate on thylakoids membrane. Cyclic
transport induces ATP production by ATP synthase, and
lineal electron flow influence the rate of both ATP and
NADPH on PSI [62,63], which are necesary for CO2 fix-
ation. Cyclic electron transport around PSI has been
measured in Antarctic plants under low temperature
[64]. The greater cold acclimation-induced stability of
thylakoid polypeptides associated to the electron trans-
port chain, which at the end is responsible for ATP and
NADPH production, could be the key for the higher
reestablishment of photosynthesis upon recovery in Ant-
arctic plants.
NPQ is a mechanism that avoid over reduction of QA

[65]. This is a very important protective strategy for both
ecotypes under field conditions [35]. In this work, higher
values of NPQ and NPQf were experienced by NA plants
in response to chilling (grown at 15°C and measured at
4°C) (Figure 3). It was evident that under PhT, NPQ was
unable to keep the QA pool sufficiently oxidized in nei-
ther NA nor CA plants. Lower levels of NPQ after PhT
could be explained by the impairment of xanthophyll-
cycle deepoxidation at low temperature [66,67], or alter-
natively because the decrease in electron transport rate,
which is necessary to generate ΔpH for Violaxanthin
conversion and PsBS reduction [68], wich is well sup-
ported by the Cyt b6/f decrease in Andean plants. In
addition, full NPQ could be limited under darkness and
low temperature, because the conversion of Violaxanthin
to ABA could be more favored than the conversion to
Zeaxanthin [69].
NPQs has a different behavior with respect to NPQf

(Figure 2). In general, the highest values of NPQs were
measured after PhT. According to Bravo et al. [38] the
highest values of NPQ in response to 4°C were observed
in NA Andean plants (chilling effect). Consistently, in
our experiments this ecotype experienced the highest
NPQs levels after PhT (Figure 3). After PhT, NPQs values
were similar to NPQf values, indicating that NA Andean
plants have the highest sensitivity to photoinhibition.
This is also consistent with the 30% of D1 reduction
level after PhT (Figure 5). The strong correlation be-
tween NPQs and excitation pressures levels (compared
to their initial values) suggests that the extent of photo-
inhibition in C. quitensis could be regulated by the redox
states of QA (Figure 4). Cold acclimation did not change
the degree of this correlation, indicating that cold accli-
mation more than reducing the impact of higher excita-
tion pressure, increases the capacity to maintain the
electron chain in an oxidized state.
The important down regulation of NPQ observed after

PhT and during the recovery may be related with a
higher energy partition allocated toward photochemical
processes. This is important for the first phase of total
Fv/Fm restoration, which is independent of “de novo”
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synthesis protein [25]. The preferential allocation of
absorbed energy to photochemistry, together with the
D1 level maintenance could help to the accelerated re-
covery of Antarctic plants under dark conditions.
NPQ, may be suppressed by longer term adjustments,

such as the down regulation of some proteins from the
antenna complex (Figure 5). CA Antarctic plants strong-
ly reduced the amount of LHCI proteins under PhT and
recovery, however not changes on Chl a/b ratio or LCP
were observed. This may be explained, because LHCI
does not absorb a great amount of energy, such as
LHCII. In contrast, NA plants which decreased both Chl
a and b largely increased their LCP in about 50%. This
could be an important strategy to reduce the probability
of photoinhibition, decreasing the amount of absorbed
energy [14,70].

Conclusions
Cold acclimation determined full recovery of both eco-
types under darkness and low temperature conditions.
Moreover, cold acclimation influenced strongly the vel-
ocity of recovery of the Antarctic ecotype under light
and darkness. Our results indicate that fast recovery
from photoinhibition is related to acquired capacities to
maintain electron sinks and repair damage under low
temperature of this ecotype upon cold acclimation. The
higher performance of the Antarctic over the Andean
ecotype was observed in its higher capacity for maintain-
ing D1, PsaA, and Cyt b6/f which could contribute to
keep lineal electron transport, maintaining lower levels
of excitation pressure and NPQs and a higher capacity
for photosynthesis after PhT. These results also suggest
that cold-acclimation may stabilize the electron trans-
port chain polypeptides within the thylakoid membrane
or maintain their turnover, being an important process
for conferring a faster recovery from photoinhibition in
the hardiest ecotype. A higher recovery under dark and
cold conditions may be a great advantage for the Antarc-
tic ecotype which has a very short growing season. Espe-
cially the increased net photosynthesis observed upon
cold-acclimation may represent the difference between
gaining just enough carbon for vegetative growth or ad-
ditional carbon to allocate to reproductive organs af-
fecting significantly its fitness.

Methods
Plant material and laboratory growth conditions
Antarctic plants of C. quitensis were collected on
King George Island, Maritime Antarctic (sea level; 62°10’S;
58°29’ W) and transported to the laboratory. The Andean
ecotype was collected on the slopes of Cerro La Parva
(2.650 m a.s.l.; 33°19’S; 70°17’W). Both ecotypes were
reproduced vegetatively in plastic pots, using a soil: peat
mixture (3:1 v/v) and maintained at 15°C (near optimal
temperature for photosynthesis in both ecotypes) in a
growth chamber (Forma Scientific Inc.) with a PPFD of
200 μmol photons m-2 s-1 and 16 hday length. The light
was provided by a mixture of cool-white fluorescent lamps
F40CW (General Electric, Charlotte, NC, USA) and white-
LED lamps E27/High Power (Ningbo Yinzhou Union
Power Lighting Technology, Zhejiang, China) with a max-
imal peak at 600 nm. One group of each ecotype was
cold-acclimated (CA) by transferring it to a growth cham-
ber set at 4°C, for 3 weeks, while the other group was kept
at 15°C (non-acclimated, NA). Both CA and NA plants
were grown at 200 μmol photons m-2 s-1, with a 16 hday
length and fertilized with 0.12 gL-1 Phostrogen per litre
of solution (Solaris, Buckinghamshire, UK) once every
two weeks.

Cold- induced photoinhibitory treatment (PhT) and
recovery
In order to study the responses under a PhT, NA and
CA plants of both ecotypes were transferred to a home-
made photoinhibition chamber, consisting of a vertical
freezer modified with a glass upper door and, on top of
it, a 6 cm thick water filter to prevent radiant heat inside
the chamber. Plants were exposed 5 hours to low
temperature (4°C) and high PPFD (1.200 μmol photons
m-2 s-1) provided by two 450 watts metal-halide lamps
(HQI-TS, Osram, Berlin, Germany) with a emission peak
between 500 and 600 nm. The recovery from PhT was
performed under darkness at low temperature (4°C). To
observe the kinetic of the recovery, Fv/Fm was moni-
tored after 1, 4, 9 and 18 h. Chlorophyll fluorescence,
photosynthesis, and proteins were monitored in mature
leaves before, immediately after PhT, and at 12 h of the
recovery period. This recovery time was chosen because
no changes in steady state of Fv/Fm levels were observed
after it.

Chlorophyll fluorescence measurement
Chl fluorescence measurements of C. quitensis were per-
formed using a portable fluorimeter (FMS 2, Hansatech
Instruments Ltd., Norfolk, UK). Five detached leaves
were immobilized with a transparent porous tape as
described by Bravo et al. 2007 [38]. Leaves were dark-
adapted for 30 min in a humid environment prior to mea-
surements. Measurements were made in a Hansatech
LD2/3 leaf chamber (Hansatech, King’s Lynn, UK) at
both 15°C and 4°C (to observe the effect of measuring
temperature) and at 4°C in plants subjected to PhT.
Chamber temperature was controlled by a cooling water
bath and monitored continuously during measurements
with a thermocouple located just below the leaf lower
surface. A moist cloth disk inside the chamber prevents
leaf dehydration during measurements. The actinic light
used was of 900 μmol photons m-2 s-1. Fluorescence
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parameters were calculated as described in Maxwell &
Johnson [71] except for qL which was calculated as
described in Kramer et al. [72].
NPQ components (NPQs and NPQf) were calculated

from Fm’ dark relaxation kinetics after high light (900
μmoles photons m-2 s-1) and low temperature (4°C) ex-
posure for a period of 5 hours as previously described by
Bravo et al. [37].

Gas exchange measurements
CO2 uptake was measured with an IRGA (CIRAS-2 PP
systems, Hitchin, England). Photosynthetic light response
curves were recorded every 5 min at 4°C between 0 and
1600 μmol photons m-2 s-1 at 360 ppm CO2. Dark respir-
ation rate (Rd), quantum yield of CO2 uptake (ΦCO2),
maximal rate of net photosynthesis (Amax), and light
compensation point (LCP) were obtained from the ana-
lysis of light response curves.

Western blot analysis of thylakoid proteins
Leaves of C. quitensis were ground at 4°C in 20 mM Tri-
cine (pH 7.6) containing 0.4 M sorbitol and 10 mM
NaCl, 5 mM EGTA, and 5 mM EDTA with a mortar
and pestle. To obtain thylakoids, the leaf brei was fil-
tered through one layer of Miracloth and the filtrate was
subsequently centrifuged at 3000 g for 5 min. The pellet
was washed in 50 mM Tricine (pH 7.8) 10 mM NaCl,
5 mM MgCl2 and centrifuged. Then, thylakoid mem-
branes were resuspended and solubilized in 60 mM Tris
(pH 7.8) containing 12% sucrose w/v, 1 mM EDTA, 1%
DTT, and 2% SDS. Chlorophyll concentrations were
measured according to Arnon [73].
Thylakoid proteins were separated in a SDS-PAGE gel

that consisted of a 4% (w/v) stacking gel and a 12% (w/v)
solving gel containing 8 M urea. The protein profiles
resolved by SDS-PAGE were transferred onto nitrocellu-
lose and immunolabelled with the different antibodies
(AgriSera, Vännäs, Sweden). The anti-D1 antibody was
raised against the C-termini of the D1 protein; it also
allows detection of degradation products of D1. Immuno-
detected proteins were developed by enhanced chemilu-
minescence (ECL) (Pierce, Rockford, USA) on X-ray film
(Fuji, Tokyo, Japan). Densitometric measurements of the
chemiluminescent bands produced on the X-ray films
were quantified with the program ImageJ (NIH, USA).
Apparent molecular weights of each protein are showed
in the Figure 5.

Total soluble sugar (TSS) and starch determination
The samples were homogenized and extracted overnight
with ethanol (86%). Soluble sugars were measured in the
supernadant, while starch was quantificated in the insol-
uble fraction of ethanolic extractions of soluble sugars,
previous acid hydrolysis with perchloric acid 52% v/v.
Soluble sugars and starch content was determined
spectrophotometrically by the Resorcinol method [74]
at 520 nm, using sucrose and starch as respective
standards.

Statistical analysis
Three-way ANOVA (level of significance P <0.05) was
applied to observe statistically differences due to the fol-
lowing factors: ecotype, acclimation temperature and
photoinhibitory-recovery treatment. The response vari-
ables were chlorophyll fluorescence parameters, pro-
teins, and light response of gas exchange. Fisher tests
were used to identify those means with significant dif-
ferences. Differences on the kinetic of recovery were
determined by one-way ANOVA analysis (P <0.05).
Statistical analyses were performed using the STATIS-
TICA 6.0 software.
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