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Abstract

Background: Understanding carbon partitioning in cereal seeds is of critical importance to develop cereal crops
with enhanced starch yields for food security and for producing specified end-products high in amylose, β-glucan,
or fructan, such as functional foods or oils for biofuel applications. Waxy mutants of cereals have a high content of
amylopectin and have been well characterized. However, the allocation of carbon to other components, such as
β-glucan and oils, and the regulation of the altered carbon distribution to amylopectin in a waxy mutant are poorly
understood. In this study, we used a rice mutant, GM077, with a low content of amylose to gain molecular insight
into how a deficiency of amylose affects carbon allocation to other end products and to amylopectin. We used
carbohydrate analysis, subtractive cDNA libraries, and qPCR to identify candidate genes potentially responsible for
the changes in carbon allocation in GM077 seeds.

Results: Carbohydrate analysis indicated that the content of amylose in GM077 seeds was significantly reduced,
while that of amylopectin significantly rose as compared to the wild type BP034. The content of glucose, sucrose,
total starch, cell-wall polysaccharides and oil were only slightly affected in the mutant as compared to the wild
type. Suppression subtractive hybridization (SSH) experiments generated 116 unigenes in the mutant on the
wild-type background. Among the 116 unigenes, three, AGP, ISA1 and SUSIBA2-like, were found to be directly
involved in amylopectin synthesis, indicating their possible roles in redirecting carbon flux from amylose to
amylopectin. A bioinformatics analysis of the putative SUSIBA2-like binding elements in the promoter regions of the
upregulated genes indicated that the SUSIBA2-like transcription factor may be instrumental in promoting the
carbon reallocation from amylose to amylopectin.

Conclusion: Analyses of carbohydrate and oil fractions and gene expression profiling on a global scale in the rice
waxy mutant GM077 revealed several candidate genes implicated in the carbon reallocation response to an
amylose deficiency, including genes encoding AGPase and SUSIBA2-like. We believe that AGP and SUSIBA2 are two
promising targets for classical breeding and/or transgenic plant improvement to control the carbon flux between
starch and other components in cereal seeds.
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Background
Cereal crops are of critical importance in agriculture.
The top three cereals in global production (2009) are
maize, wheat, and rice, with 819, 686 and 685 M tonnes,
respectively (http://faostat.fao.org). Cereal crops consti-
tute our largest primary food source and are also highly
used in food and non-food industrial applications. Con-
tributing factors to the importance of cereals are that
they can be bred to be very high yielding, that cereal
grains lend themselves to long-term storage, and that
the grain can accumulate different types of carbohy-
drates and lipids. Major carbohydrates in cereal caryop-
ses are the starch components amylose and amylopectin,
cell wall components, such as different types of arabi-
noxylan, mixed-linkage β-glucan and cellulose, fructoo-
ligosaccharides, fructan, and sucrose [1,2]. Interestingly
significant amounts of oil can also be stored in the en-
dosperm, especially in oats [3]. The composition of the
cereal grain dictates the end use of the crop. For exam-
ple, the cereal endosperm is the most important source
of starch worldwide [4,5] and is therefore of tremendous
value for food security. There is an ongoing search for
genotypes with high content of amylose, β-glucan and/
or fructan for different applications within the functional
food sector [6-8]. At the other end of the spectrum are
efforts to develop cereals that redirect carbon flux from
carbohydrates to oils for production of high-density bio-
fuels [9-13]. A thorough understanding of the mechan-
isms for the partitioning of photosynthates in cereals is
crucial for our ability to boost starch yield, to develop
specialty crops for the functional food industry, such as
barley with enhanced ß-glucan levels, and to tailor cereal
production for the non-food industry.
Carbon partitioning in higher plants has been studied

at the whole-plant level [14,15], for certain types of plant
tissues [16-18], and for plant cells [19]. However, many
questions remain unanswered. For example, we need to
identify and map the actions of key elements that deter-
mine carbon allocation between source and sink tissues
and that govern carbon flux along pathways for synthe-
sis of different carbohydrate and oil sinks. It is also
imperative that we gain insight into how environmen-
tal factors influence carbon partitioning [4,20]. Several
proteins have been implicated as important players in
carbon partitioning in plants. They include proteins
involved in sugar transport and metabolism, such as
sucrose transporters [21], sucrose invertases [22] and
sucrose synthases [23,24], and in hexose metabolism
and transport, such as hexose kinases [25] and monosac-
charide transporters [26]. Other examples include proteins
controlling the flux in polysaccharide biosynthesis, such as
ADP-glucose pyrophosphorylase [27], and UDP-glucose
pyrophosphorylase [28,29], and regulatory proteins, such
as sucrose non-fermenting-1-related protein kinase [30],
trehalose-6-phosphate synthase [31], and transcription
factors [12,32-35].
We are interested in identifying molecular switches in

cereals that direct carbon flux to different tissues and into
the specific end products. We are particularly concerned
with carbon partitioning between amylose, amylopectin,
oil, β-glucan and fructan in cereal seeds. For the present
study, we chose a rice waxy mutant, GM077, which is de-
ficient in amylose biosynthesis. We examined carbon
partitioning between amylose, amylopectin, oil, β-glucan,
fructan and other dietary fibers in the GM077 back-
ground, a nearly isogenic waxy line. We constructed a
suppression subtractive hybridization (SSH) cDNA library
between the mutant and the corresponding wild type to
identify potential candidates involved in carbon partitio-
ning. We used qPCR to verify results from the SSH ex-
periments and to study how gene regulation controls
carbon allocation in the absence of amylose biosynthesis.

Results
The GM077 rice is a waxy mutant
Waxy rice has been drawing much attention in rice
breeding in China as it has many applications in trad-
itional Chinese food and brewing. This has resulted in a
large collection of waxy rice in the Chinese rice germ-
plasm repositories and also in a number of breeding
programs on the different qualities of waxy rice [36-38].
We selected one waxy rice cultivar, GM077 (code No.
GM077; Bao et al. unpublished), mainly based on the
following factors: i) It is a stable mutant with a nearly
isogenic background; ii) It has a relatively low amylose
content (see also below) compared to other waxy mu-
tants; iii) With the exception of its waxy grain character,
GM077 is phenotypically similar to its wild-type co-
unterpart BP034 (code No. BP034), an elite variety of
Indica rice (also cultivated under the name Guangluai
No. 4 in Southern China) [38,Bao et al. unpublished]
(Figure 1A-C; Additional file 1). When the grains of
GM077 were cut transversely and stained with an iodine
solution, a typical reddish color of waxy starch was re-
vealed in the endosperm [39,40]. We have further cha-
racterized the grain starch of GM077 by recording the
light absorbance of the starch-iodine complex between
200 nm and 1100 nm with a scanning spectrophoto-
meter. We included internal standards of starch with
known contents of amylose. As seen in Additional file 2,
the absorbance value around 595 nm for the amylose-
iodine complex was reduced proportionally with the
amylose content in the starch samples, including those
from the wild type (BP034) and mutant (GM077). Based
on the absorbance, the estimated amylose content of
BP034 and GM077 is between standards 4 (26.5%) and 3
(16.2%), and standards 2 (10.4%) and 1 (1.5%), respec-
tively. The estimations were confirmed with chemical

http://faostat.fao.org


Figure 1 Demonstration of GM077 as a waxy mutant using the corresponding wild type BP034 as a control. (A) Phenotypic traits of
BP034 and GM077 grains. The grains, with and without hull (a and b, respectively), are visualized. Transverse sections of the grains without and
with iodine-staining were photographed (c and d, respectively). Scale bars (=1.5 mm) are indicated. (B) Content of total starch and amylose was
determined as Sun et al. [35]. 1No significant difference of total starch content between BP034 and GM077 (P = 0.425). 2Significant difference of
total amylose content between BP034 and GM077 (P = 0.0001). (C) qPCR analysis of expression levels for GBSSI and GBSSII. DW (dry weight), GBSS
(granule-bound starch synthase). The statistical difference between BP034 and GM077 is presented as “significantly decreased” (**P < 0.01) and
“increased” (*P < 0.05), respectively.
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analyses revealing a significant difference (P = 0.0001) in
amylose content of 23.0% and 6.9% in kernels of BP034
and GMO077, respectively. The starch content was
around 67% in both types of rice grains (P > 0.05)
(Figure 1B).
It is generally accepted that amylose synthesis is car-

ried out by granule-bound starch synthases (GBSS). Cer-
eals have two forms of GBSS, GBSSI and GBSSII [41,42].
GBSSI is responsible for amylose synthesis in storage tis-
sues, such as endosperm, whereas GBSSII is present in
green tissues, including the pericarp of seeds. We used
qPCR to analyze gene expression for both GBSS genes
in rice seeds with the ubiquitin gene, UBQ5, as an in-
ternal standard. The qPCR results showed that, in GM077
seeds, gene expression of GBSSI was significantly redu-
ced (Figure 1C) and the expression of UBQ5 is about
the same as in the control BP034. Expression of GBSSII
was significantly increased in GM077 as compared
with BP034.
We have shown that the GM077 rice is a waxy mutant

caused by down-regulation of GBSSI. Yield, kernel weight
and starch content were similar between the waxy mutant
and the corresponding wild type (Figure 1B; Additional
file 1).To gain insight into the redistribution of carbon in
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the GM077 seed, we subjected the mutant and wild-type
lines to carbohydrate and oil analyses.

The major carbon from amylose is redistributed to
amylopectin in the waxy mutant
Carbohydrate analyses revealed that both GM077 and
the parental BP034 lines contained about 3% dietary fi-
ber with similar compositions (Table 1; Additional file 3).
Arabinoxylan and cellulose were major dietary fiber com-
ponents (about 1% of dry caryopsis each) while mixed-
linkage β-glucan and fructan were minor components.
Consequently, no extra carbon was distributed into the
cell walls or to the β-glucan or fructan sink in the
GMO77 mutant. The starch content was slightly reduced
in the waxy mutant (67.5% of dry caryopsis) compared to
the wild type (69.3% of dry caryopsis) (P < 0.05). The
amylose content was normal in the wild type (24% of the
starch) but highly reduced in the waxy mutant (3.9% of
the starch) (P < 0.01). Thus the amylose content in the
seed was reduced from 17% of the caryopsis in the wild
type to 2.6% in the waxy mutant (P < 0.01). The reduced
content of amylose was mainly compensated for by an
increased content of amylopectin in the waxy caryopsis,
65% in the waxy mutant compared to 53% in the wild
type. The content of sucrose and crude oils were the same
in the two rice lines (P > 0.05). The glucose content in the
GM077 mutant (0.2%) was somewhat higher than the wild
type (0.1%) (P < 0.05), but was low in both lines.
Table 1 Content of carbohydrates, Klason lignin and oil in BP

Component Composition BP

Rhamnose** n.

Fucose** n.

Arabinose** 0.4

Xylose** 0.5

Mannose** 0.2

Galactose** 0.1

Glucose** 1.0

Uronic acids** 0.2

Klason lignin 0.6

Fructan and fructooligosaccharides <0

Total dietary fiber 3.

β-Glucan <0

Amylose 16

Amylose 24

Amylopectin 52

Total starch 69

Oil 1.

Free Glc 0.

Free Suc 0.

*Mean value from three independent analytic experiments using randomly selected
The carbohydrate analysis thus indicated that a major
fraction of carbon in the waxy mutant GM077 was real-
located from amylose to amylopectin synthesis. This re-
sult prompted us to try to identify the genes in GM077
responsible for this reallocation. To this end, we em-
ployed the SSH strategy (see below).

Suppression subtractive hybridization identified 116
unigenes in the waxy mutant
We used GM077 as the tester and BP034 as the driver
to construct a cDNA library after PCR amplification and
SSH of cDNAs from total RNA isolated from plants at
12 days after flowering (daf ). The resulting SSH library
of “GM077 vs BP034” contained 471 clones with an ave-
rage length of around 500 bp. All positive clones were
applied to sequencing, which returned the identification
of 116 unigenes. These 116 unigenes were used for the
clusters of orthologous groups (COG) functional annota-
tion analysis [43] after BLASTX and TBLASTX against
the NCBI protein databases. Among the 116 unigenes,
90 exhibited high similarity (E-value < 10-5) to known
protein sequences, and 26 showed no similarity to any
reported sequence. Within the 90 protein sequences,
26 lacked functional annotation. The rest of sequences
were categorized in four functional groups: “information
storage and processing”, “cellular processes and signa-
ling”, “metabolism”, and “poorly characterized” (Figure 2;
Additional file 4). These four functional groups have 12,
034 and GM077

034 (% of seed DW, n = 3*) GM077 (% of seed DW, n = 3*)

d. (not detected) n.d.

d. n.d.

5 ± 0.08 0.43 ± 0.04

2 ± 0.04 0.49 ± 0.07

3 ± 0.03 0.20 ± 0.04

3 ± 0.02 0.13 ± 0.03

3 ± 0.13 0.92 ± 0.05

6 ± 0.01 0.27 ± 0.01

0 ± 0.50 0.56 ± 0.44

.10 <0.10

2 ± 0.50 3.0 ± 0.32

.05 <0.05

.8 ± 0.70 (% of seed DW) 2.6 ± 0.17 (% of seed DW)

.2 (% of starch) 3.9 (% of starch)

.5 (% of seed DW) 64.9 (% of seed DW)

.3 ± 0.75 67.5 ± 0.59

5 ± 0.21 1.5 ± 0.21

1 ± 0.00 0.2 ± 0.00

7 ± 0.15 0.9 ± 0.15

caryopses from a pool of six plants (see table S3). **Sugar residue.



Figure 2 Functional classification of the 116 unigenes from the subtractive libray of GM077 vs BP034. The classification was based on
BLASTX and TBLASTX results (E-value < 10-5) using the expressed sequence tags (ESTs) of the unigenes. Genes are categorized using the NCBI
KOGnitor COG classification [43]. The number of unigenes in each group is indicated and their percentage in the total number of unigenes is denoted.
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21, 23 and 8 unigenes, corresponding to 10.4%, 18.1%,
19.8% and 6.9% of the total unigenes, respectively
(Figure 2). The details of the unigenes and their putative
functions are shown in Table 2. Interestingly, two uni-
genes (clone ID No. A74 and ID No. 2B03), similar to the
genes for ADP-glucose pyrophosphorylase small subunit
(AGPS; GenBank accession No. ACJ86329.1 of the Indica
group and GenBank accession No. AK103906 of the
Japonica group) and isoamylase (ISA; GenBank accession
No. BAC75533.1 of the Japonica group), respectively,
were found in the carbohydrate transport and meta-
bolism group. Notably, one clone (ID No. D25) in the
group of no related COGs showed a high similarity to
WRKY transcription factor 34 (GenBank accession No.
NP_001060116.1 of the Japonica group). Further se-
quence analysis of the genes for isoamylase and WRKY
transcription factor 34 revealed that they are rice ortho-
logs to barley ISA1 and SUSIBA2, respectively, previously
described by Sun et al. [34,42].

Validation of the SHH results by semi-quantitative PCR
To verify the conclusions from the SHH experiment, we
selected two housekeeping genes, the gene for the eukar-
yotic elongation factor-1 α subunit (eEF-1 α) and UBQ5,
to follow the SSH experiment by semi-quantitative PCR.
When we used the same batch of RNA as in the SHH ex-
periment, or RNA isolated from other stages of seed de-
velopment, or from other tissues, we found expression
levels of the two housekeeping genes to be more or less
the same in GM077 and BP034. Furthermore, expres-
sion levels were constant throughout seed develop-
ment and in different tissues of mutant and wild-type
rice (Figure 3A, B). Importantly, we observed that the
cDNA for eEF-1 α could be detected in the tester
(GM077) and driver (BP034) samples prior to SSH,
but not in the sample after subtraction hybridization
(Figure 3C), lending support to the validity of the SSH ap-
proach. We also chose some additional genes, related to
starch biosynthesis and carbon portioning (Materials and
Methods) to further verify the reliability of the SHH ex-
periment and to obtain detailed quantitative data on gene
expression in the two rice lines. Results from those ana-
lyses are presented below.

Gene expression profiling in the waxy mutant
To further validate the results from the SHH experiment
and to quantify expression of genes involved in starch
biosynthesis and/or carbon portioning, we chose 19
genes as representatives for gene expression analysis by
qPCR, including two reference genes, eEF-1 α and UBQ5
(Additional file 5). According to the results obtained by
qPCR, we divided the genes into five groups (Figure 4;
Table 3). The classification was based on qPCR quantifica-
tion of the differential gene expression in GM077; “signifi-
cantly decreased” (P < 0.01), “not changed” (P > 0.05),
“increased” (P < 0.05), “significantly increased” (P < 0.01)
and “not detected”. Intriguingly, among the four signifi-
cantly increased genes, AGPS, SBEI, ISA1 and SUSIBA2-



Table 2 Functional categories (putative functions) of proteins deduced from the obtained cDNAs (116 unigenes) after subtraction of waxy rice (GM077) with
its wild-type (BP034)

Clone ID Number
of clones

Top-matched molecule
in Genbank on Blastx
(accession number)

Top-matched molecule in
Genbank on Blastx (species)

Protein name and/or putative function e-Value COGs

INFORMATION STORAGE AND PROCESSING (13)

[J] Translation, ribosomal structure and biogenesis (3)

D06 1 P49608.1 Cucurbita maxima Aconitate hydratase, cytoplasmic 7.00E-52 KOG0452

C46 6 ACM79935.1 Populus deltoides Eukaryotic translation, initiation factor 5A 7.00E-14 KOG3271

2B05 1 NP_001148134.1 Zea mays Arginyl-tRNA synthetase 7.00E-62 KOG4426

[A] RNA processing and modification (NONE)

[K] Transcription (5)

B34 6 ACG28870.1 Zea mays Transcription factor BTF3 3.00E-40 KOG2240

E14 2 BAD08114.1 Oryza sativa Putative SET domain protein SDG117 1.00E-34 KOG1082

A62 8 NP_001054968.1 Oryza sativa RNA polymerase I-associated factor PAF67 1.00E-39 KOG3677

C11 1 NP_001060344.1 Oryza sativa Myb-related protein B (B-Myb) 7.00E-86 KOG0048

B30 1 EEE62186.1 Oryza sativa Hypothetical protein OsJ_16973 7.00E-50 KOG1878

A47 2 EEE62186.1 Oryza sativa Hypothetical protein OsJ_16973 1.00E-59 KOG1878

[L] Replication, recombination and repair (1)

C54 5 EEE66658.1 Oryza sativa Hypothetical protein OsJ_23285 3.00E-50 KOG4585

[B] Chromatin structure and dynamics (3)

C41 3 NP_569031.1 Arabidopsis thaliana Transducin family protein / WD-40 repeat family protein 1.00E-59 KOG1446

B86 2 NP_001047885.1 Oryza sativa Nuclear protein SET domain containing protein 7.00E-
121

KOG1082

A76 1 CAL54140.1 Ostreococcus tauri Histones H3 and H4 (ISS) 3.00E-15 KOG1745

CELLULAR PROCESSES AND SIGNALING (21)

[D] Cell cycle control, cell division, chromosome partitioning (2)

D22 1 ABG65960.1 Oryza sativa PAP/25A associated domain containing protein,
expressed (Nucleotidyltransferase domain)

7.00E-17 KOG2277

D27 1 AAY23369.1 Oryza sativa Retinoblastoma-related protein 2 4.00E-35 KOG1010

[Y] Nuclear structure (NONE)

[V] Defense mechanisms (NONE)

[T] Signal transduction mechanisms (3)

B00 2 NP_194324.2 Arabidopsis thaliana Epsin N-terminal homology (ENTH) domain-containing
protein

1.00E-08 KOG0251

D66 1 NP_001056986.1 Oryza sativa Hypothetical protein(Two-component response
regulator ARR14)

5.00E-35 COG0745
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Table 2 Functional categories (putative functions) of proteins deduced from the obtained cDNAs (116 unigenes) after subtraction of waxy rice (GM077) with
its wild-type (BP034) (Continued)

E43 31 NP_001148041.1 Zea mays CBL-interacting serine/threonine-protein kinase 15 1.00E-82 KOG0583

[M] Cell wall/membrane/envelope biogenesis (3)

F70 1 AAO72599.1 Oryza sativa Putative 2-dehydro-3-deoxyphosphooctonate aldolase 9.00E-66 COG2877

E73 1 AAT80327.1 Hordeum vulgare UDP-D-glucuronate decarboxylase 2.00E-36 KOG1429

A21 5 AAT80327.1 Hordeum vulgare UDP-D-glucuronate decarboxylase 3.00E-17 KOG1429

[N] Cell motility (NONE)

[Z] Cytoskeleton (2)

B38 6 NP_563908.1 Arabidopsis thaliana ARK3(ARMADILLO REPEAT KINESIN 3); ATP binding/
binding/microtubule motor

1.00E-18 KOG0240

C80 11 NP_171697.3 Arabidopsis thaliana Armadillo/ß-catenin repeat family protein/kinesin
motor family protein

3.00E-86 KOG0240

[W] Extracellular structures (NONE)

[U] Intracellular trafficking, secretion, and vesicular transport (4)

F48 1 ABA95598.1 Oryza sativa Clathrin heavy chain, putative, expressed 5.00E-08 KOG0985

D80 1 ABF95668.1 Oryza sativa Serologically defined breastcancer antigen NY-BR-84,
putative, expressed

2.00E-69 KOG2667

F23 1 ACG31280.1 Zea mays ADP-ribosylation factor 1 9.00E-18 KOG0070

E39 1 NP_001150650.1 Zea mays Serologically defined breast cancer antigen NY-BR-84 6.00E-32 KOG2667

[O] Posttranslational modification, protein turnover, chaperones (7)

B28 1 AAK51086.1 Avicennia marina Mitochondrial processing peptidase 2.00E-50 KOG0960

A32 1 BAB78487.1 Oryza sativa 26S proteasome regulatory particle non-ATPase subunit8 1.00E-21 KOG1556

C67 2 BAF00213.1 Arabidopsis thaliana Polyubiquitin 4 UBQ4 5.00E-31 KOG0001

B58 1 NP_001054802.1 Oryza sativa Zn-finger, RING domain containing protein 5.00E-57 KOG0800

04C04 1 ACG31834.1 Zea mays Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 7.00E-38 KOG3258

D56 3 NP_001147507.1 Zea mays ATP-dependent Clp protease ATP-binding subunit clpX 8.00E-08 KOG0745

D60 1 NP_001149461.1 Zea mays Pyrrolidone carboxyl peptidase 9.00E-44 KOG4755

METABOLISM (23)

[C] Energy production and conversion (5)

D01 10 AF162665_1 Oryza sativa Aldehyde dehydrogenase 5.00E-61 KOG2450

E05 3 BAB44155.1 Bruguiera, gymnorhiza Hydroxypyruvate reductase 8.00E-29 KOG0069

C01 1 NP_176968.1 Arabidopsis, thaliana HPR; glycerate dehydrogenase/poly(U) binding 2.00E-29 KOG0069

D14 25 ABB47885.1 Oryza sativa Electron transfer flavoprotein- ubiquinone oxidoreductase,
mitochondrial precursor, putative, expressed

7.00E-95 KOG2415

D33 2 NP_001149476.1 Zea mays Vacuolar ATP synthase subunit F 2.00E-25 KOG3432
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Table 2 Functional categories (putative functions) of proteins deduced from the obtained cDNAs (116 unigenes) after subtraction of waxy rice (GM077) with
its wild-type (BP034) (Continued)

[G] Carbohydrate transport and metabolism (8)

F66 1 AAA82047.1 Oryza sativa Glyceraldehyde-3-phosphate dehydrogenase 2.00E-48 KOG0657

A15 1 AAO27794.1 Gossypium hirsutum Glycosyl hydrolase (sugar binding domain) 6.00E-30 KOG2230

E47 22 ABG22500.1 Oryza sativa Glycosyl hydrolases family 38 protein, expressed 5.00E-48 KOG1959

A64 1 ACG45298.1 Zea mays Nucleotide-sugar transporter/ sugar porter 2.00E-52 KOG2234

A74 1 ACJ86329.1 Oryza sativa ADP-glucose pyrophosphorylase small subunit 0.00E+00 COG0448

E73 1 AAT80327.1 Hordeum vulgare UDP-D-glucuronate decarboxylase 2.00E-36 KOG1429

A21 5 AAT80327.1 Hordeum vulgare UDP-D-glucuronate decarboxylase 3.00E-17 KOG1429

2B03 1 BAC75533.1 Oryza sativa Isoamylase 7.00E-66 GKOG0470

[E] Amino acid transport and metabolism
(3)

E28 1 P37833.1 Oryza sativa Aspartate aminotransferase, cytoplasmic 4.00E-23 KOG1411

E42 5 ACG39804.1 Zea mays Histidinol-phosphate aminotransferase 2.00E-76 KOG0633

F16 1 NP_001147070.1 Zea mays Nicalin 4.00E-16 KOG2526

[F] Nucleotide transport and metabolism (NONE)

[H] Coenzyme transport and metabolism (1)

F89 1 ACG34051.1 Zea mays Farnesyl pyrophosphate synthetase 5.00E-07 KOG0711

[I] Lipid transport and metabolism (NONE)

[P] Inorganic ion transport and metabolism (2)

F76 1 AAP31024.1 Oryza sativa Zinc transporter 7.00E-31 KOG1482

04F04 1 NP_001149686.1 Zea mays Carbonic anhydrase 3.00E-13 KOG1578

[Q] Secondary metabolites biosynthesis, transport and catabolism (4)

D58 56 AAB19117.1 Oryza sativa Class III ADH enzyme 2.00E-98 KOG0022

A41 1 NP_176471.1 Arabidopsis thaliana LDL1 (LSD1-LIKE1); amine oxidase/ electron carrier/
oxidoreductase

1.00E-38 KOG0029

E72 9 ACM17649.1 Oryza rufipogon Alcohol dehydrogenase family-2 3.00E-25 KOG0022

C77 4 BAE00046.1 Oryza sativa Alcohol dehydrogenase 4.00E-
140

KOG0022

POORLY CHARACTERIZED (9)

[R] General function prediction only (6)

C74 1 BAB69445.1 Oryza sativa Hypothetical protein 4.00E-19 KOG1901

A46 2 BAD82577.1 Oryza sativa PHD finger protein-like 8.00E-13 KOG1246

D20 1 BAD11341.1 Oryza sativa BRI1-KD interacting protein 113 (RNA recognition motif) 1.00E-51 KOG0118

F31 1 ABC94598.1 Oryza sativa NBS-LRR type R protein, Nbs2-Pi2 1.00E-80 KOG0619
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Table 2 Functional categories (putative functions) of proteins deduced from the obtained cDNAs (116 unigenes) after subtraction of waxy rice (GM077) with
its wild-type (BP034) (Continued)

C50 8 NP_001043287.1 Oryza sativa Zn-finger-like, PHD finger domain containing protein 4.00E-79 KOG1246

D53 1 EEE55043.1 Oryza sativa Hypothetical protein OsJ_02730 1.00E-
114

KOG0431

D42 3 EEE55043.1 Oryza sativa Hypothetical protein 8.00E-93 KOG0431

[S] Function unknown (2)

F54 1 NP_568713.1 Arabidopsis thaliana Emb1879 (embryo defective 1879) 3.00E-47 KOG4249

C18 1 NP_001147117.1 Zea mays Nucleotide binding protein (WD40 domain) 8.00E-32 KOG0772

NO RELATED COG (3 BeTs) (26)

A44 11 BAD11344.1 Oryza sativa BRI1-KD interacting protein 116 3.00E-36 NO
RELATED

C21 2 ACN85167.1 Oryza nivara MYB-CC type transfactor 5.00E-66

C27 1 ABA95230.1 Oryza sativa Retrotransposon protein, putative 9.00E-17

F81 1 Q01881.2 Oryza sativa Seed allergenic protein RA5 3.00E-08

F15 1 AAP54389.2 Oryza sativa Ulp1 protease family, C-terminal catalytic domain
containing protein

7.00E-14

F32 1 NP_001052330.1 Oryza sativa Hypothetical protein 7.00E-10

A07 2 NP_001054936.1 Oryza sativa Hypothetical protein 1.00E-07

F39 1 NP_001058150.1 Oryza sativa Hypothetical protein 1.00E-41

A43 1 NP_001066171.1 Oryza sativa Conserved hypothetical protein 4.00E-07

E29 21 EAZ06308.1 Oryza sativa Hypothetical protein OsI_28542 8.00E-81

C62 3 ABR25963.1 Oryza sativa DnaJ heat shock protein 1.00E-12

C35 9 ACA04850.1 Picea abies Senescence-associated protein 8.00E-37

B45 1 EEC77808.1 Oryza sativa Hypothetical protein OsI_16996 5.00E-04

C48 1 EEC81525.1 Oryza sativa Hypothetical protein OsI_24919 1.00E-09

D54 2 EEE68920.1 Oryza sativa Hypothetical protein OsJ_27784 2.00E-
100

D79 1 NP_001149805.1 Zea mays CUE domain containing protein 4.00E-06

D25 1 NP_001060116.1 Oryza sativa WRKY transcription factor 34 2.00E-72

04C03 2 BAH91806.1 Oryza sativa Conserved hypothetical protein 1.00E-04

2B02 1 EAZ06308.1 Oryza sativa Hypothetical protein OsI_28542 5.00E-54

E36 2 CAA59142.1 Oryza sativa Prolamin 4.00E-31

B11 10 AAK13589.1 Oryza sativa rRNA intron-encoded homing endonuclease 4.00E-27

C25 1 CAA38212.1 Oryza sativa Glutelin 7.00E-49

A55 1 AAM92796.1 Oryza sativa Gypothetical protein 8.00E-37
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Table 2 Functional categories (putative functions) of proteins deduced from the obtained cDNAs (116 unigenes) after subtraction of waxy rice (GM077) with
its wild-type (BP034) (Continued)

B53 2 NP_001055525.1 Oryza sativa Ubiquitin-associated domain containing protein 9.00E-54

F77 1 EEE63701.1 Oryza sativa Hypothetical protein OsJ_18519
(Ubiquitin Associated domain)

4.00E-65

D23 1 BAD38184.1 Oryza sativa C2 domain-containing protein-like 3.00E-86

NO SIMILARITY FOUND (BLAST) (26)
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Figure 3 Validation of the suppression subtractive hybridization (SSH) results by semi-quantitative RT-PCR. (A) Semi-quantitative RT-PCR
analysis of eEF-1α on the same RNA samples from BP034 and GM077 as used in the SHH experiment, i.e., RNA from seeds of 12 day after
flowering (Se12), and samples from the same time point for leaves (L12), roots (R12), and stems (St12). (B) Semi-quantitative RT-PCR analysis of
UBQ5 on RNA samples as in the SHH experiment (Se12), and for seeds from 3, 6, 18 and 24 day after flowering, and for leaves (L12), roots (R12),
and Stems (St12), respectively. (C) Semi-quantitative RT-PCR analysis of cDNA levels of eEF-1α before and after subtractive hybridization.
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like, all except SBEI were found in the SHH library. We
noted that the expression level for the upregulated genes
in GM077 correlated well with the expression level for the
SUSIBA2-like transcription factor gene (Figure 4).

Gene expression correlation of SUSIBA2-like and ISA1 in
the mutant and wild type
Sun et al. [33,34] have demonstrated that ISA1 and
SBEIIb in barley were upregulated by the activity of the
SUSIBA2 transcription factor and a good correlation in
gene expression levels has been demonstrated between
SUSIBA2 and its target genes, such as ISA1 and SBEIIb
[33,34,44]. To learn if this correlation holds true in rice
also, and in an effort to find SUSIBA2-like-controlled
genes in rice, we selected rice ISA1 as a representative to
study the correlation in expression between SUSIBA2-
like and its target genes in rice. For this study, we chose
different tissues and different time points in both the
mutant GM077 and the wild type BP034. As displayed
in Figure 5A and B, there was an excellent correlation
between expression levels for the two genes in the ana-
lyzed samples. The statistical analysis (Figure 5C) indi-
cated that the relative levels of the spatial and temporal
expression for the two genes in both rice lines shared a
Pearson correlation coefficient (r) of 0.90 (P < 0.01).

Discussion
Although waxy mutants of higher plants and the respon-
sible gene (GBSSI) have been studied to a large extent, and
the high content of amylopectin in the mutant is known
[39,45-53], little information about carbon partitioning to
other carbohydrates and oil fractions in waxy mutants has
been reported. Moreover, gene regulation of carbon reallo-
cation to amylopectin in the mutant is poorly understood.
We are interested in the partitioning of photosynthates
between starch and other storage compounds in cereal



Figure 4 qPCR analytic results of gene expression levels for 13 detectable genes potentially involved in carbon portioning between
starch and other carbohydrates. Biological triplets (seeds of 12 days after flowering from three different plants) and technical triplets were
performed. The difference between BP034 and GM077 was analyzed statistically by the ANOVA test and presented as “increased” (*P < 0.05) and
“significantly increased” (**P < 0.01) between the two rice cultivars. Error bars are as indicated. AGP (gene for ADP-glucose pyrophosphorylase),
UGP (gene for UDP-glucose pyrophosphorylase), SS (gene for starch synthase), SUS (gene for sucrose synthase), BE (gene for branching enzyme),
ISA (gene for isoamylase), SUSIBA2-like (gene for sugar signaling in barley 2 - like).
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seeds. In this study, we selected one of the rice waxy
mutants to follow carbon partitioning between starch and
other carbohydrates when amylose biosynthesis is im-
peded. Our carbohydrate analysis indicated that when
the amylose content is reduced, the vast majority of
the assimilated carbon is reallocated to amylopectin, ra-
ther than to other carbohydrates or lipids. Interestingly,
such a reallocation did not change seed weight but, rather,
shifted carbon from one compound (amylose) to another
(amylopectin) within the starch biosynthesis machinery.



Table 3 Category of 19 genes with different expression
levels detected by qPCR in waxy rice (GM077) and wild
type (BP034)

Gene expression level
(waxy/wt, or GM077/BP034)

Gene
name

GenBank
Accession No.

Significantly decreased (P < 0.01) GBSSI X62134

No change (P > 0.05) BEIIa AB023498

SUS1 OsJNBa0090P23.3

SUS2 NM_001063582.1

SUS3 L03366.1

SUS6 OJ1149_C12-2

UBQ5 AK061988

eEF-1α AK061464

Increased (P < 0.05) GBSSII AY069940

SSI D16202

BEIIb D16201

SUS4 NM_001056599.1

UGP1 DQ395328.1

Significantly increased (P < 0.01) AGPS AK103906

BEI D11082

ISA1 AB015615

SUSIBA2-like AK121838

Not detected UGP2 AF249880.1

SUS5/7 OsJNBa0033H08.16/
OsJNBb0026I12.4

Figure 5 qPCR analysis of correlation between ISA1 and
SUSIBA2-like in gene expression in BP034 and GM077. (A) Spatial
and temporal expression levels of ISA1 and SUSIBA2-like in the BP034
rice. (B) Spatial and temporal expression levels of ISA1 and SUSIBA2-
like in the GM077 rice. (C) Plots of corresponding expression levels of
ISA1 and SUSIBA2-like in both BP034 and GM077. Statistical analysis
indicated the correlation to be extremely significant (P < 0.01)
between both ISA1 and SUSIBA2-like with 0.90 of Pearson correlation
coefficient (r). daf (days after flowering).
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To understand the molecular mechanisms controlling
the increase in amylopectin biosynthesis, we set out to
identify genes that were upregulated in the waxy mutant.
From the SHH experiments we found three candidates
that have previously been shown to be directly involved
in starch synthesis and/or its regulation, AGP [54], ISA1
[55], and SUSIBA2-like [34]. The functions and regu-
lation of AGPase and isoamylase have been reviewed
and well documented previously [27,45,56-59]. In cereal
endosperm cells, there are two forms of AGPase, one
cytosolic and one plastidic. The major fraction of ADP-
glucose in cereal endosperm is believed to be produced
in the cytosol and then transported to the amyloplast for
subsequent starch biosynthesis. Isoamylase is suggested
to play an important role in amylopectin biosynthesis
and starch granule formation [45,56-58]. Both AGPase
(cytosolic form) and ISA1 have been demonstrated as
important players in amylopectin synthesis and starch
granule formation in rice [55]. Our qPCR results indi-
cate that AGPase S (cytosolic form) [60] and ISA1 are
instrumental for the accumulation of additional amylo-
pectin in the amylose–reduced mutant GM077. In the
SHH experiment, we could not confirm that the identi-
fied AGPS corresponded to the cytosolic enzyme as the
unigene sequence did not cover the transit peptide
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sequence region. However, our qPCR analysis of both cy-
tosolic (Figure 4) and plastidic (not shown) forms accor-
ding to Ohdan et al. [60] indicated that clone ID No. 74
should be the cytosolic form.
The mechanism behind the elevated expression of

AGP and ISA1 in the rice mutant remains unclear. One
possibility for the enhanced AGP activity could be that
the total amount of AGPase needs to be increased to
provide ample supply of ADP-glucose when more plasti-
dic AGPase is being recruited to multienzyme com-
plexes for the regulation of carbon partitioning [61].
Another possibility is that the extra AGPase is required
in GM077 to convert Glc1-P to ADP-glucose in the
cytosol (see also below). Since ISA1 is generally accep-
ted as an important player in amylopectin synthesis
and granule formation [45,56-58], it is not surpri-
sing that the ISA1 expression in GM077 significantly
increased when extra amylopectin was produced in
the endosperm.
We also observed that the genes for sucrose synthase

4 and UDPase 1 were upregulated in GM077. Since ac-
cumulation of other carbohydrates synthesized from the
UDP-glucose precursor, such as cellulose and β-glucan,
were unaffected in the mutant, we suggest that the
increased expression of the genes for sucrose synthase 4
and UDPase 1 may be also associated with amylopectin
synthesis. Sucrose synthase 4 is suggested to be cytosolic
[23] and may produce UDP-glucose, which is converted
by UDPase 1 to the hexose-phosphate used for amylo-
pectin synthesis [16]. Indeed, sucrose synthases 2 and 3
in Arabidopsis, which belong to the same group as rice
sucrose synthase 4 [23], have been recently reported to
direct carbon to starch synthesis [62]. In our experiment,
the elevated expression of cytosolic AGP supports that
notion. Enhanced levels of AGPase may be needed to
convert the Glc 1-P produced by sucrose synthase 4 and
UDPase 1 to ADP-glucose for additional amylopectin
synthesis. For other forms of sucrose synthases and for
UDPase 2, we did not find any significant shifts in gene
expression between GM077 and BP034.
This study is centered on carbon partitioning and gene

regulation in seeds of a waxy rice mutant. Our results
provide no information about how carbon partitioning is
regulated at the level of enzyme activity. Lü et al. [46]
used transgenic rice with antisense inhibition of GBSSI
to examine the activities of major starch synthesis en-
zymes. Some of the phenotypic traits observed by Lü
et al. in the GMO rice were similar to what we found for
the GM077 mutant, such as no changes in seed weight
and only small changes in total starch content. In ac-
cordance with our gene expression analysis, they also
noticed an increase in isoamylase activities. However,
they did not observe any changes in activities for AGPase
or SBEs, which seems to disagree with our results at the
gene activity level. We do not yet know the reason for
this disparity between gene expression and enzyme ac-
tivity but it should be noted that the levels of trans-
cripts and proteins in a cell are determined by several
factors, like the rate of transcription initiation, mRNA
stability, efficiency of translation, and protein stability
and modifications.
Our knowledge about gene regulation and the involve-

ment of putative transcription factors in carbon par-
titioning is poor. Sun et al. [34,35] reported that the
barley SUSIBA2 transcription factor participates in sugar
signaling in barley and that it upregulates target genes
by binding to the SURE-element (with an A/T rich re-
gion and a putative AAAA core) within the promoter re-
gion [34,63]. They suggested that the SURE-element(s)
in promoter regions of sugar-inducible genes may play
an important role in SUSIBA2-controlled gene expres-
sion. Interestingly, when we searched the promoter re-
gion of the nine upregulated genes in GM077, including
the rice SUSIBA2-like, we found a number of putative
SURE elements in all of the genes (Additional file 6). A
very good correlation at the gene expression level was
found for SUSIBA2-like and ISA1. We suggest that upre-
gulation of ISA1 and other genes in the GM077 mutant
is mediated by the SUSIBA2-like transcription factor.
This notion is further corroborated by recent transgenic
studies in rice (Hu et al. unpublished). Interestingly, when
we performed a bioinformatic analysis on the gene expres-
sion patterns of the three selected genes (SUSIBA2-like,
ISA1 and AGPS) from the SSH experiment in this
study using the publicly available rice and Arabidopsis
microarray data, we found some correlations between
SUSIBA2-like and the other genes (Additional file 7).
However, ISA1 is expressed in Arabidopsis leaves but not
in rice leaves and the expression level of SUSIBA2-like is
generally low in both species for reasons we do not know.
Since SUSIBA2-like is a transcription factor, its gene ex-
pression level should be low. What caused the differential
expression of ISA1 in the two species is unclear. In vitro
and in vivo protein-DNA interaction studies are under
way to further determine the involvement of SUSIBA2-
like and SURE elements in the regulation of starch biosyn-
thesis in the rice endosperm.
In addition to their high value as starch crops, there is

an increasing interest in using cereals for the production
of non-starch compounds, such as β-glucan and fruc-
tan for functional foods, and oil for biofuel applications
[9,10,17]. Our experimental data implicate three genes
of importance for amylopectin synthesis in the rice en-
dosperm, AGP, ISA1, and SUSIBA2-like. Since AGPS and
SUSIBA2-like likely control the entire metabolic path-
way for starch synthesis in cereals, we believe they are
good targets for redirecting carbon flux from starch
biosynthesis to alternative products. In fact, approaches
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to downregulate AGPS in Arabidopsis to enhance oil
production at the expense of starch biosynthesis met
with success [18]. It will be interesting to explore the
potential for modulating SUSIBA2 activity as a strategy
for rerouting photosynthate from starch biosynthesis to
other anabolic pathways in cereal seeds.

Conclusion
Understanding of carbon allocation in cereal seeds is of
great importance in plant biology. In this study we used
a rice waxy mutant to gain molecular insights into how
amylose deficiency affects carbon allocation in cereal
seeds. Analysis of carbohydrate and oil fractions in the
waxy mutant showed that when amylose is deficient,
carbon is mainly allocated to amylopectin rather than to
other carbon end products, such as β-glucan or oil.
Gene expression profiling identified several candidate
genes implicated in the carbon reallocation response.
These genes included AGP and SUSIBA2-like. We sug-
gest that these two genes are promising targets in efforts
to redirect carbon flux in cereal seeds from starch bio-
synthesis to alternative carbon end products. To our
knowledge, this study is the first comparative analysis of
carbon fractions and gene expression profiling on a glo-
bal scale in a waxy mutant.

Methods
Plant materials and growth
Rice seeds of the BP034 and GM077 cultivars were
obtained from the waxy rice-breeding program at the
Institute of Nuclear Agricultural Sciences, Zhejiang Uni-
versity, China. The GM077 mutant was originally gene-
rated by γ-irradiation in the waxy rice-breeding program
[36-38, Bao et al. unpublished]. It has been developed
to a nearly isogenic background through many years of
breeding. The rice plants were field-grown on the cam-
pus farm at Zhejiang University. Individual tillers were
labeled at flowering. Seed samples were harvested on
day 3, 6, 12, 18 and 24 after flowering, respectively. At
least 6 panicles from different individuals of BP034 or
GM077 were sampled at each time point. At the same
time points (day 3, 6, 12, 18 and 24 after flowering), the
leaves, stems and roots of the corresponding rice plants
were harvested. The harvested tissues were immediately
frozen in liquid nitrogen and kept at -80°C until use.

Carbohydrate analyses
Mature and dry seeds were prepared as described previ-
ously [44,64,65]. Iodine staining and spectrophotometer
scanning were performed as described by Sun et al. [35].
Total starch and amylose contents were pre-analyzed as
described by Sun et al. [35]. Dietary fiber components
were analyzed with the Uppsala method [66] and fructan
(including fructooligosaccharides) as described by Rakha
et al. [67]. Total dietary fiber was calculated as the sum
of fiber components analyzed with the Uppsala method
and fructan. The mixed-linkage β-glucan content was
analyzed as described by McCleary and Codd [64], the
starch content as described by Santacruz et al. [68] and
the amylose content as described by Chrastil [69]. The
arabinoxylan content was calculated as the sum of ara-
binose and xylose residues determined by the Uppsala
method, the cellulose content as the difference between
glucose residues determined by the Uppsala method and
the mixed-linkage β-glucan content, and the amylopec-
tin content as the difference between the starch and amy-
lose contents. Free Glc and Suc were analyzed according
to Bergmeyer et al. [70] and Bernt and Bergmeyer [71],
respectively. The crude oil content was determined ac-
cording to the European standard method [72].

Oligonucleotides
Oligonucleotides used in the experiments for qPCR,
semi-quantitative PCR, and SHH are listed in Additional
file 5. Nineteen representative genes were selected in-
cluding the two reference genes eEF-1α and UBQ5.
The oligonucleotides were purchased from Invitrogen
(Carlsbad, CA, USA).

RNA isolation
Total RNA was isolated according to the protocol des-
cribed previously [34,35].

Quantitative PCR (qPCR) and semi-quantitative PCR
qPCR and semi-quantitative PCR were performed as
described previously [34,73]. The SYBR Green Master
Mix and cDNA synthesis kit were purchased from Toyobo
(Osaka, Japan) and Promega (Madison, WI, USA), res-
pectively. A real-time PCR machine, iQ5 from Bio-Rad
(Hercules, CA, USA), was used for qPCR and a PCR
thermo cycler, MJ Research PTC-200 (GMI, Ramsey, MN,
USA), was used for semi-quantitative PCR. The rice genes
of eEF-1α and UBQ5 were used as endogenous references
for data normalization [74] in qPCR. The relative trans-
cript level was calculated by the method of 2-ΔCt [74].

Construction of a cDNA subtractive library of GM077 vs
BP034.
The cDNA subtractive library of GM077 vs BP034 was
constructed using the SSH technique [75]. Total RNA of
GM077 from seeds at 12 daf was used as the tester and
the corresponding sample of BP034 as the driver. The
protocol in Dai et al. [76] was followed with the fol-
lowing modifications: i) Transcripts were enriched by
in vitro transcription; and ii) Duplex-specific nuclease
(DSN)-mediated normalization and subtraction were used.
The procedure is outlined in Additional file 8, and all lin-
kers, adapters and PCR primers are listed in Additional
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file 5. PCR products generated by SHH were digested by
SalI and cloned in the pUC19 vector. Recombinant
plasmids were used to transform Escherichia coli DH5α.
Transformed bacteria were applied to LB plates contai-
ning 50 μg ml-1 ampicillin for selection and 40 μg ml-1

X-gal for detection of α-complementation [77]. White
and positive colonies were picked for colony PCR scree-
ning to check inserts. Positive colonies with inserts were
propagated. Plasmids were isolated and sequenced at
Beijing Genomics Institute (BGI, Beijing, China) using the
M13 forward and reverse primers. The eEF-1α gene was
used to monitor efficiency of the suppression subtractive
hybridization by semi-quantitative PCR.

Bioinformatics and statistical analysis
The obtained sequences were edited by the DNAstarW

software (Madison, WI, USA). Unigene sequences were
used for BLASTX and TBLASTX searches against the
protein database (http://blast.ncbi.nlm.nih.gov/). The
retrieved proteins with high sequence similarities
(E-value < 10-5) were categorized using the NCBI KOG-
nitor COG classification (http://www.ncbi.nlm.nih.gov/
COG) based on the method of Tatusov et al. [43]. The
cis-element analysis of gene promoters was performed
using the BioEdit software (Carlsbad, CA, US). The sig-
nificance of differences in obtained data was tested by
ANOVA (analysis of variance) with a threshold P-value
of 0.05 (http://www.ats.ucla.edu/stat/). Publicly available
microarray data for rice (http://ricexpro.dna.affrc.go.jp) and for
Arabidopsis (http://www.weigelworld.org/resources/micro-
array/AtGenExpress) were used for bioinformatics analyses
of gene expression patterns of SUSIBA2-like, ISA1 and
AGPS.

Additional files

Additional file 1: Phenotypic traits of BP034 and GM077.

Additional file 2: Absorbance spectra of the iodine-stained starch
samples from BP034 and GM077. Starch standard samples with known
amylose contents are included in the spectra. ST (standard), AC (amylose
content). The iodine-staining was performed as described previously [35].

Additional file 3: Content of carbohydrates, Klason lignin and oil in
BP034 and GM077.

Additional file 4: Functional categories in Clusters of Orthologous
Groups (COGs) for proteins deduced from the obtained cDNAs after
subtraction of GM077 (tester) with BP034 (driver).

Additional file 5: Oligonucleotides.

Additional file 6: Putative SURE-elements in promoter regions of
the upregulated genes indentified in GM077. GenBank accession
number for each gene is listed in Table 3. The putative SURE-element
sequence (in green) was based on Sun et al. [34] & Grierson et al. [63].
The nucleotide position is relative to translation initiate site (the ATG
codon). GBSS (gene for granule-bound starch synthase), AGP (gene for
ADP-glucose pyrophosphorylase), SS (gene for starch synthase),
BE (gene for branching enzyme), ISA (gene for isoamylase), SUSIBA2-like
(gene for sugar signaling in barley 2-like), UGP (gene for UDP-glucose
pyrophosphorylase), SUS (gene for sucrose synthase).
Additional file 7: Gene expression profiling of three selected genes
(SUSIBA2-like, ISA1 and AGPS) from the SSH experiment during
plant development of rice and Arabidopsis. The microarray data from
two publicly available websites was used for rice (http://ricexpro.dna.affrc.
go.jp) and Arabidopsis (http://www.weigelworld.org/resources/
microarray/AtGenExpress), respectively. (A) Rice SUSIBA2-like (GenBank Ac
No. AK121838). (B) Arabidopsis WRKY20 (a homologue of SUSIBA2,
GenBank Ac No. NM_11898). (C) Rice ISA1 (GenBank Ac No. AB015615). (D)
Arabidopsis ISA1 (GenBank Ac No. NM_128551). (E) Rice AGPS (GenBank Ac
No. AK103906). (F) Arabidopsis AGPS (GenBank Ac No. NM_124205).

Additional file 8: A flow chart of DSN-mediated (duplex-specific
nuclease) suppression subtractive hybridization (SSH). A small
amount of RNA samples from tester (GM077) and driver (BP034) was used
for template-switching cDNA synthesis and step-out PCR amplification
[78]. SP6 and T7 RNA polymerases were then employed to generate
sufficient tester and driver transcripts, respectively. After a secondary
reverse transcription and RNA digestion, the tester cDNAs were subjected
to an excess amount of driver RNA for hybridization. Hybridization was
performed by denaturation and ressociation. cDNAs in hybrids with RNA
were digested by duplex-specific nuclease. The left-over single-stranded
cDNAs from hybridization were only the temples for exponential PCR
amplification to generate cDNA fragments for construction of a cDNA
library. Tsp (template-switching primer), 3’ap (adaptor primer), PI (primer I).
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