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Abstract

Background: Concentrations of cadmium (Cd) in the grain of many durum wheats (Triticum turgidum subsp.
durum) grown in North American prairie soils often exceed international trade standards. Genotypic differences in
root-to-shoot translocation of Cd are a major determinant of intraspecific variation in the accumulation of Cd in
grain. We tested the extent to which changes in whole-plant Cd accumulation and the distribution of Cd between
tissues influences Cd accumulation in grain by measuring Cd accumulation throughout the grain filling period in
two near-isogenic lines (NILs) of durum wheat that differ in grain Cd accumulation.

Results: Roots absorbed Cd and transported it to the shoots throughout the grain filling period, but the low- and
high-Cd NILs did not differ in whole-plant Cd uptake. Although the majority of Cd accumulation was retained in
the roots, the low- and high-Cd NiLs differed substantively in root-to-shoot translocation of Cd. At grain maturity,
accumulation of Cd in the shoots was 13% (low-Cd NIL) or 37% (high-Cd NIL) of whole-plant Cd accumulation.
Accumulation of Cd in all shoot tissue, including grain, was at least 2-fold greater in the high-Cd NIL at all harvests.
There was no net remobilization of shoot Cd pools during grain filling. The timing of Cd accumulation in grain was
positively correlated with grain biomass accumulation, and the rate of grain filling peaked between 14 and 28 days

phloem transfer in the stem.

Remobilization

post-anthesis, when both NILs accumulated 60% of total grain biomass and 61-66% of total grain Cd content.

Conclusions: These results show that genotypic variation in root-to-shoot translocation of Cd controls
accumulation of Cd in durum wheat grain. Continued uptake of Cd by roots and the absence of net remobilization
of Cd from leaves during grain filling support a direct pathway of Cd transport from roots to grain via xylem-to-
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Background

Cadmium (Cd) is a toxic, non-essential element that is nat-
urally present in most soils. While concentrations are typic-
ally low (trace), anthropogenic inputs have elevated Cd
concentrations in some agricultural soils [1,2]. Cadmium is
readily absorbed by roots and transported to above ground
portions, including grains [1,2]. Consequently, contami-
nated foods have become the dominant source of human
exposure to environmental Cd [3], with cereals contributing
the majority of dietary Cd [2,3]. Some cereals, including rice
(Oryza sativa L.) and durum wheat (Triticum turgidum L.
subsp. durum (Desf.) Husn.), can accumulate Cd in grain
to levels that exceed international trade standards. For
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example, concentrations of Cd in the grain of many
durum wheats grown on the North American prairies
[4,5] often exceed the maximum level for Cd in wheat
grain (0.2 mg kg™) established by Codex Alimentarius [6].

Cadmium accumulation by plants is influenced by
many factors, including available Cd in the soil, soil type
and chemistry, climate, agronomic practices, and plant
genotype [1,2]. Among the management practices pro-
posed to limit accumulation of Cd in crops [2], breeding
for low Cd accumulation has been cited as the most reli-
able approach [7]. Understanding the mechanisms respon-
sible for genotypic variation in Cd accumulation in grain
will accelerate breeding efforts [7,8]. This is particularly
true for crops where accumulation of Cd is controlled by
major quantitative trait loci (QTL) such as durum wheat,
where a single locus (Cdul on chromosome 5B) accounts
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for 80-90% of phenotypic variation in grain Cd [9-11].
Identification of the genetic factor(s) responsible for Cdu1I
will enable selection of low-Cd genotypes from durum
wheat germplasm with different genetic backgrounds with-
out phenotyping or revalidating the marker-Cdul allele re-
lationship [12].

Genotypic differences in root-to-shoot translocation of
Cd are a major determinant of intraspecific variation in
the accumulation of Cd in grain [3]. As cereals retain
the majority of absorbed Cd in the roots [13] variation
in translocation of this pool can greatly affect Cd levels
in shoot and grain. For example, Uraguchi et al. [14]
conducted a study on uptake and translocation of Cd by
indica (high grain Cd) and japonica (low grain Cd) culti-
vars of rice. Although the japonica cultivar had greater
short-term Cd absorption in roots of seedlings, the high-
Cd indica cultivar had >2-fold greater accumulation in
shoots and grain. Furthermore, concentrations of Cd in
xylem sap were strongly correlated (r = 0.98) with con-
centrations in shoots [14]. A subsequent screen of 69 di-
verse cultivars from the world rice collection showed
that Cd concentrations in xylem sap were also positively
correlated with genotypic variation in grain Cd concen-
tration [14]. Restricted root-to-shoot Cd translocation
has also been reported in studies using well-defined gen-
etic systems in which the inheritance of the low-Cd trait
is quantitative [15-17].

Differences in Cd accumulation in the grain of durum
wheat cultivars and near-isogenic lines (NILs) have also
been attributed to genotypic differences in root-to-shoot
Cd translocation [18-24]. Differential accumulation of Cd
in grain was unrelated to short-term uptake of Cd by roots
of seedlings [19,23,25] or maturing plants [21]. Partitioning
of Cd between roots and shoots prior to flowering was pre-
dictive of Cd accumulation in the grain [8,18,19,21-23,26].
In addition, the Cd concentration of grain was positively
correlated with Cd accumulation in other shoot tissues
during grain filling [20,22].

Cadmium transported to the shoots of cereals prior to
anthesis accumulates in the leaves and stems in a declin-
ing gradient towards the developing spike [20,27,28].
Thus, there are multiple pools of Cd (multiple shoot or-
gans and the roots) that are potentially available for
remobilization to the grain. Plants can also continue to
absorb Cd from the soil during grain filling, directly
transporting Cd to the grain via the stem. Unfortunately,
evidence for the relative contribution of different pools
of Cd (i.e. roots, stems, and leaves) to Cd accumulation
in the grain, and for the timing and pathway of Cd
transport to the grain is contradictory. Kashiwagi et al.
[29] documented accumulation of Cd in shoots of field-
grown rice prior to and following heading. Loss of Cd
from leaves between heading and maturity coincided
with increased accumulation of Cd in grain, while shoot
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Cd content did not change. They concluded that Cd
remobilized from the leaves was the primary source of Cd
accumulated in the grain [29]. Conversely, rice grown in
hydroponic culture continued to absorb Cd from the nu-
trient solution and translocate it to the shoots during grain
filling [30]. Comparison of rice plants supplied with Cd
prior to (but not following) flowering with plants supplied
Cd only after flowering showed that 40% of grain Cd con-
tent was attributable to Cd uptake during grain filling [30].

In durum wheat grown in hydroponic culture, short-
term (24 h) uptake of '*°Cd by roots occurred at tiller-
ing, flowering, and grain ripening, while transport of
absorbed '°°Cd to shoots and spikes was reduced at
flowering and abolished during ripening [21]. The au-
thors concluded that import of Cd into the spikes was
the result of remobilization of Cd from the shoot. In
contrast, low- and high-Cd NILs grown in hydroponic
culture continued to accumulate Cd in the flag leaf and
spikes throughout grain filling [22], and the magnitude
of difference between NILs was consistent with differences
in root-to-shoot translocation [22,23]. Several studies have
interpreted differences in Cd accumulation ratios within
shoot organs (e.g. flag leaf:grain Cd concentration ratio) as
evidence of remobilization of Cd from vegetative shoot or-
gans to the grain [20,28].

Although some of these differences might be attrib-
uted to variations in experimental conditions and the
plant genotypes selected, many of the datasets are in-
complete. Frequently, only selected tissues are harvested
[20,22,29] or shoot tissues are treated as homogenous
units (e.g. combining leaf and stems tissues [21,26]). In
many experiments grain was harvested at only one time
point, typically maturity [20-22,26,27,29]. As a result,
these studies do not provide information on the timing
of Cd transport to the grain. In a notable exception,
Rodda and Reid [30] showed that accumulation of Cd in
rice grain occurred during early grain filling (0 to 16 days
post-anthesis), coinciding with a period of rapid accumu-
lation of grain biomass. However, Cd accumulation in
grain could not be related to whole-plant Cd accumula-
tion or Cd distribution between tissues during grain filling
since the experimental design relied on repeated subsamp-
ling of single panicles from individual plants [30].

To provide a more thorough understanding of the tim-
ing of Cd accumulation in the grain, and to determine if
the timing of Cd transport is related to changes in whole-
plant Cd accumulation and the distribution of Cd between
tissues, durum wheat was grown to maturity in chelator-
buffered solution culture. Chelator-buffered solution cul-
ture ensures that the roots are exposed to non-toxic,
agriculturally-relevant concentrations of Cd. Whole-plants
were harvested at first flowering (anthesis) and at different
stages during grain filling. Two near-isogenic lines (NILs)
of durum wheat differing in accumulation of Cd in grain
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were compared to determine if changes in accumulation
and partitioning during grain filling could account for the
observed differences in grain Cd concentration.

Results

Growth and cadmium accumulation by seedlings
Seedlings were harvested 21 d after germination when
plants had developed 3 or 4 tillers. No differences in growth
(dry weight), or whole-plant Cd content between the low-
and high-Cd NILs were observed (Table 1). In contrast,
NILs differed in distribution of Cd between shoots and
roots. The low-Cd NIL retained more Cd in the roots and
transported less Cd to the shoots than the high-Cd NIL
(Table 1). As a result, the shoot/root Cd content ratio was
2-fold greater in the high-Cd NIL, and the high-Cd NIL
displayed lower concentrations of Cd (ug g) in roots and
higher concentrations of Cd in shoots. Accumulation and
distribution of the micronutrients, copper (Cu), iron (Fe),
manganese (Mn) and zinc (Zn), were not significantly
different between the low- and high-Cd NILs (Additional
file 1).

Whole-plant growth and cadmium accumulation during
grain filling

Near-isogenic lines (NILs) differed (P < 0.001) in time to
anthesis (high-Cd, 53.7 £ 2.6 d; low-Cd, 58.5 + 3.3 d). At
anthesis, all plants appeared vigorous and free of senes-
cence. By the final harvest (42 days post-anthesis; DPA)
symptoms (leaf yellowing) of senescence had begun to ap-
pear in the oldest leaves, while younger tissue remained
vigorous. Consistent with the longer pre-anthesis growth
period, the low-Cd NIL accumulated significantly more
shoot, root, and whole-plant biomass than the high-Cd
NIL at all harvests (P < 0.001; Figure 1). Whole-plant bio-
mass increased linearly during the post-anthesis period

Table 1 Growth and cadmium accumulation by durum
wheat seedlings

Tissue Low-Cd High-Cd
Dry weight (g planf1) Whole plant  0.72 (0.02) 0.70 (0.03)
Shoot 0.52 (0.02) 049 (0.02)
Root 0.20 (0.01) 021 (0.02)
Cd content (ug p\amt”) Whole plant  1.19 (0.05) 1.24 (0.07)
Shoot 029 (0.02) ** 051 (0.03)
Root 090(003) *  0.73(005)
Cd concentration (Lg 9'1) Whole plant  1.64 (0.03) * 1.78 (0.04)
Shoot 0.55(0.01)  **  1.04 (002
Root 451 (0.16)  *** 354 (0.07)

Dry weight, Cd content, and Cd concentration of seedlings of low- and
high-Cd near-isogenic lines of durum wheat (Triticum turgidum subsp. durum)
grown for 21 d in chelator-buffered nutrient culture containing 0.5 uM Cd
(0.014 nM free activity). Significant differences between near-isogenic lines as
determined by ANOVA (F-test) are indicated by * (P < 0.05) and *** (P < 0.001).
Numbers in parenthesis are SE (n = 5).
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(Figure 1), increasing 3-fold between 0 and 42 DPA. Shoot
growth accounted for 85% of whole-plant biomass accu-
mulated post-anthesis (NILs combined).

Similar to the seedlings (Table 1), the NILs did not differ
in whole-plant Cd accumulation during grain filling, but
differed substantively in the distribution of Cd between
shoots and roots. Whole-plant Cd content increased 3.6-
fold between 0 and 42 DPA (NILs combined; Figure 1).
Although whole-plant Cd content of the low-Cd NIL was
6% greater (across all harvests) than the high-Cd NIL (P <
0.05), this was attributable to 15% greater biomass in the
low-Cd NIL. In contrast, whole-plant Cd concentration
did not change during grain filling and did not differ
significantly between low- and high-Cd NILs (P > 0.05;
Figure 1). The Cd content of shoots and roots increased
linearly during the post-anthesis period, increasing by 6
and 3.2-fold, respectively (NILs combined) between 0 and
42 DPA. The low-Cd NIL retained more Cd in the roots
and transported less Cd to the shoots than the high-Cd
NIL. Both the content and concentration of Cd in shoots
of the high-Cd NIL were at least 2-fold greater than in
low-Cd NIL at all harvests (P < 0.001; Figure 1). The con-
tent and concentration of Cd in roots of the low-Cd NIL
were also greater than in the high-Cd NIL (P < 0.01).

Grain development and cadmium accumulation by grain
Grain biomass increased slowly from zero biomass (at an-
thesis) during the first 7 DPA, and subsequently increased
(7-28 DPA) before slowing again as grain approached
physiological maturity (28—42 DPA; Figure 2A). The highest
rate of grain filling was between 14 and 28 DPA, a period
in which both NILs accumulated 60% of total grain DW.
Grain development accounted for 33% and 36% (high- and
low-Cd NILs respectively) of the biomass accumulated by
shoots during the post-anthesis period. Total grain weight
of the low-Cd NIL was 19% greater than the high-Cd NIL
(P < 0.05), a difference that was attributable to the larger
heads (number of grain per head) produced. When aver-
aged across all harvests, the low-Cd NIL produced 19 more
grain per head than the high-Cd NIL (high-Cd, 97.5 + 5.7;
low-Cd, 116.0 + 9.5; P < 0.001). Near-isogenic lines (NILs)
did not differ in dry weight accumulation on a per grain
basis (mg grain™) during grain filling (Figure 2B).

Grain Cd content increased during the post-anthesis
period in both NILs (Figure 2C), closely paralleling the
increase in grain DW. Increasing grain Cd content was
highly correlated with DW accumulation (mg grain™') in
the low- and high-Cd NILs (r = 0.98 and 0.91, respec-
tively). Between 61% (high-Cd) and 66% (low-Cd) of total
grain Cd content accumulated between 14 and 28 DPA.
However, grain Cd content of the high-Cd NIL was sig-
nificantly greater than that of the low-Cd NIL at all har-
vests (P < 0.001). Grain Cd concentration of the high-Cd
NIL was also greater than that of the low-Cd NIL at all
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Figure 1 Whole-plant growth and accumulation of cadmium by durum wheat during grain filling. Dry weight (whole plant, shoot, root)

and Cd (content, concentration) accumulation by low- (open circles) and high-Cd (closed circles) near-isogenic lines of durum wheat (Triticum
turgidum subsp. durum) between anthesis and 42 d post-anthesis. Plants were grown in chelator-buffered nutrient culture containing 0.5 uM Cd
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harvests (P < 0.001), increasing from 2.4-fold greater Cd
concentration at 7 DPA to 4.9-fold at 42 DPA (Figure 2D).
Coinciding with the period of rapid grain biomass accu-
mulation, grain Cd concentration increased by 0.4 ug g™
(88%) between 14 and 28 DPA (P < 0.05) in the high-Cd
NIL. In contrast, grain Cd concentration in the low-Cd NIL
did not change over the post-anthesis period (P > 0.05),
remaining at around 0.2 pg g

Growth and cadmium accumulation of shoot tissues
during grain filling

Subdivision of shoot tissue (excluding grain) into com-
ponent parts (Figures 3 and 4) demonstrated that the
higher biomass of shoots in the low-Cd NIL was a general
feature of biomass accumulation. Except for vegetative
tillers (Figure 3) and the peduncle (Figure 4), the biomass
of all shoot tissues was greater in low-Cd NIL than in the
high-Cd NIL (P < 0.05; Figures 3 and 4). The biomass of
several shoot tissues increased between anthesis and 7 or
14 DPA as the stem continued to elongate, but were con-
stant thereafter. This was true of flag leaf, peduncle, and
stems 2-3 biomass (P < 0.05; Figures 3 and 4). Spikelet and
rachis biomass increased more consistently throughout the

post-anthesis period, whereas the biomass of leaves 2-3,
lower leaves, and lower stems did not change over the post-
anthesis period (P > 0.05). Vegetative tillers, along with
grain, accounted for the majority of biomass accumulated
by shoots between 0 and 42 DPA, combining for 90% of
biomass accumulated during the post-anthesis period (NILs
combined). There were no significant ANOVA interactions
(P > 0.05) between treatments (NIL x harvest) for tissue
biomass accumulation during grain filling.

Two patterns of Cd accumulation (both content and
concentration) were observed in various shoot tissues (ex-
cluding grain) during grain filling. Leafy tissues (spikelets,
flag leaf, leaves 2-3, lower leaves, and vegetative tillers) ac-
cumulated Cd throughout grain filling (Figure 3), increas-
ing by at least 2-fold. In contrast, stem tissues (rachis,
peduncle, stems 2-3, and lower stems) showed a variable
pattern of Cd accumulation during grain filling (Figure 4).
Accumulation of Cd by the rachis and peduncle increased
over the initial 7 (peduncle) or 14 (rachis) DPA (P < 0.05)
and plateaued thereafter. While stems 2-3 showed negli-
gible change in Cd content, their Cd concentration de-
creased between 0 and 14 DPA (P < 0.05) as the stem
continued to elongate. Both the content and concentration
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Figure 2 Grain development and accumulation of cadmium in grain of durum wheat. Total grain dry weight (A), per grain dry weight (B),
grain Cd content (C), and grain Cd concentration (D) of low- (open circles) and high-Cd (closed circles) near-isogenic lines of durum wheat
(Triticum turgidum subsp. durum) between anthesis and 42 d post-anthesis. Plants were grown in chelator-buffered nutrient culture containing
0.5 uM Cd (0.014 nM free activity). Plotted values are means + SE (n = 4 or 5).

of Cd in lower stems were constant during the post-
anthesis period, except at the 42 DPA harvest, where both
increased (P < 0.05). The Cd concentrations of all shoot
tissues in the high-Cd NIL were at least 2-fold greater than
in low-Cd NIL at all harvests (P < 0.001; Figures 3 and 4).
With the exception of Cd accumulation in the rachis (both
concentration and content), there were no significant
ANOVA interactions (P > 0.05) between treatments (NIL x
harvest) for accumulation of Cd in various tissues during
grain filling.

Whole-plant and grain micronutrient accumulation during
grain filling

Whole-plant micronutrient content increased by 2.3-fold
(Mn), 2.6-fold (Cu, Fe), or 3.5-fold (Zn) between 0 and
42 DPA (NILs combined, P < 0.05; Figure 5). Whole-
plant Cu and Fe content were higher in the low-Cd NIL
(P < 0.001), while whole-plant Mn and Zn content were not
significantly different between low- and high-Cd NILs (P >
0.05). Similar to grain Cd content (Figure 2), grain micronu-
trient content increased most rapidly between 14 and 28
DPA (Figure 5). However, grain micronutrient content did

not significantly differ between low- and high-Cd NILs (Fe
and Mn, P > 0.05), or was greater (Cu, 30%; Zn, 10%) in the
low-Cd NIL (P < 0.01). The micronutrient analysis results
are fully reported in Additional file 2.

Cadmium and micronutrient distribution during grain filling

Cadmium, in contrast to the micronutrients (Cu, Fe,
Mn, Zn), was retained predominantly in the roots. By
the final harvest (42 DPA), accumulation of Cd in the
shoots accounted for 13% (low-Cd) or 37% (high-Cd) of
whole-plant Cd content (Table 2). In contrast, accumula-
tion of micronutrients occurred primarily in the shoots,
ranging between 61% (Cu) and 89% (Mn) of whole-plant
accumulation at 42 DPA (Table 2). Furthermore, Cd in
grain accounted for 1.3% (low-Cd) or 5% (high-Cd) of
whole-plant Cd content, whereas micronutrients in grain
was between 20% (Cu) and 31% (Mn) of whole-plant ac-
cumulation (Table 2). Similar to shoot Cd concentrations
(Figures 3 and 4), the percentage of whole-plant Cd dis-
tributed to each shoot tissues was at least 2-fold greater in
the high-Cd NIL as compared to low-Cd NIL (P < 0.001;
Table 2). There were no differences (P > 0.05) between the
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Figure 3 Growth and cadmium accumulation of spikelets, leaves, and vegetative tillers in durum wheat during grain filling. Total dry
weight, Cd content, and Cd concentration of spikelets, flag leaf, leaves 2-3, lower leaves, and vegetative tillers of low- (open circles) and high-Cd
(closed circles) near-isogenic lines of durum wheat (Triticum turgidum subsp. durum) between anthesis and 42 d post-anthesis. Plants were grown
in chelator-buffered nutrient culture containing 0.5 uM Cd (0.014 nM free activity). Plotted values are means =+ SE (n = 4 or 5).

NILs in Cu, Fe, Mn and Zn distribution, with the excep-
tion of Mn for rachis and leaves 2—3 (Table 2).

Although the amount of Cd accumulated in shoot tis-
sues differed between the low- and high-Cd NILs, the
relative pattern of Cd accumulation in the shoots was
similar (Table 2). The largest pools of Cd in the shoots of

both NILs were the grain and leafy tissues (spikelets, flag
leaf, leaves 2-3, lower leaves, and vegetative tillers). Stem
tissues (rachis, peduncle, stems 2-3, and lower stems) ac-
cumulated little Cd, individually accounting for <1% of
whole-plant Cd content in both NILs. The Cd content in
leaves of both NILs was associated with leaf position or
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Figure 4 Growth and cadmium accumulation of stem tissues in durum wheat during grain filling. Total dry weight, Cd content, and Cd
concentration of the rachis, peduncle, stems 2-3, and lower stems of low- (open circles) and high-Cd (closed circles) near-isogenic lines of durum
wheat (Triticum turgidum subsp. durum) between anthesis and 42 d post-anthesis. Plants were grown in chelator-buffered nutrient culture
containing 0.5 UM Cd (0.014 nM free activity). Plotted values are means + SE (n = 4 or 5).

age; accumulation was highest in the oldest leaves (lower
leaves) and lowest in the youngest leaves (flag leaf) (Table 2;
the same pattern also shown for leaf Cd concentration,
Figure 3).

Uptake of Cd by the roots and export of Cd from the
roots to the shoots occurred throughout grain filling in
both the low- and high-Cd NILs, as shown by increasing
whole-plant, shoot, and root Cd content (Figure 1). How-
ever, there was no indication of net remobilization of Cd
from shoot tissues during grain filling (Table 3). Most shoot
tissues accumulated Cd throughout grain filling (e.g. spike-
lets, flag leaf), reaching maximum Cd content at the final
harvest (42 DPA). The rachis and peduncle accumulated

Cd between 0 and 14 DPA and plateaued thereafter. In
contrast, the micronutrient content (Cu, Fe, Mn, Zn) of tis-
sues near the grain decreased markedly between 14 and 42
DPA (Table 3). The Cu content of the spikelets, rachis, and
flag leaf decreased by approximately 50% after 14 DPA. Less
Cu (20-40%) was remobilized from the peduncle, leaves 2—
3, and lower leaves. Manganese was remobilized (50-70%)
from the peduncle, flag leaf, stem 2-3, and lower stems.
The majority of Fe (70-80%) and Zn (50-70%) was re-
mobilized from the upper stem (rachis, peduncle, and stem
2-3) after 14 DPA. Iron was remobilized to a lesser extent
(20-50%) from the flag leaf, leaves 2-3, and lower stems,
while Zn was not remobilized from the leaves.
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Discussion

We have used chelator-buffered hydroponic culture to
mimic the low activities of trace elements present in uncon-
taminated agricultural soils [31]. The supply of nutrients
was sufficient for healthy plant growth and grain develop-
ment. Plants grew vigorously and without visual symptoms
of Cd phytotoxicity. Micronutrient concentrations in ma-
ture grain were similar (Cu, Mn) or 2 to 3-fold greater (Fe,

Zn) than plants grown under field conditions [5]. Higher
concentrations of micronutrients might be expected given
the unrestricted transpirational flow inherent to hydroponic
culture. High transpirational flow should also favour move-
ment of Cd to the grain. Concentrations of Cd in mature
grain (Figure 2D) were 2 to 4-fold greater than observed in
the same NILs grown in the field over 11 site-years [5], and
comparable to concentrations in a pair of related NILs
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Table 2 Whole-plant mineral distribution (%) of durum wheat at grain maturity

Tissue cd’ Cu Fe Mn Zn
Low-Cd High-Cd Low-Cd High-Cd Low-Cd High-Cd Low-Cd High-Cd Low-Cd High-Cd

Shoots 13(02)* 37 (1.0) 64 (2.4) 61 (0.5 79 (0.5) 75 (0.9) 89 (1.1) 89 (1.8) 75 (0.8) 74 (0.9)
Grain 300m* 50 (04) 22 (0.8) 20 (0.9) 23(1.2) 21 (1.1) 31 (14) 30 (2.5) 27 (0.8) 26 (0.7)
Spikelets IRN(OAN 33(03) 26 (0.1) 24(0.1) 3(02) 49 (0.5) 9.6 (0.6) 89 (0.8) 4.1(0.2) 38(0.1)
Rachis 0.1 (0.0) * 02 (0.0) 0.2 (0.0) 0.1 (0.0) 2 (00 0.2 (0.0) 1.0 (0.1) * 05 (0.1) 03 (0.0) 03 (0.0)
Peduncle 4 (0.0) * 1.0 (0.1) 1.3 (0.1) 1.5(0.2) 4 (0.0) 06 (0.2) 1.2(0.2) 1.3(0.2) 1.0 (0.1) 1.2 (0.2)
Flag leaf 9(0.1)* 32(06) 1.8 (0.1) 19(03) 0(0.1) 2.1(03) 18(0.2) 20 (04) 27 (0.) 29 (04)
Stems 2-3 5(0.0) * 1.1 (0.0) 14 (0.1) 1.5 (0.0) 9 (0.0) 09 (0.1) 1.2(0.1) 09 (0.1) 13 (0.1) 1.2 (0.1)
Leaves 2-3 0(.1)* 7.0(0.3) 34(0.3) 35(03) 3(0.2) 4.9 (0.5 55(06) * 84 (0.5) 42 (0.1) 4.0 (04)
Lower stems 3(0.0) * 09 (0.1) 1.0 (0.1) 1.0 (0.1) 4(0.1) 1.0 (0.1) 04 (0.0) 03 (0.1) 1.0 (0.1) 09 (0.1)
Lower leaves 2(03)* 7.8 (1.0) 3.0 (0.5) 26 (04) 4(0.5) 44 (0.5) 18 (26) 16 (1.3) 36 (04) 33(06)
Veg. tillers 30(0.2) * 7.7 (0.6) 27 (1.8) 26 (1.0 36 (1.6) 35(1.3) 19 (1.7) 21(0.7) 30 (14) 31(1.2)

Roots 87 (0.2) * 63 (1.0) 36 (24) 39 (0.5) 21 (0.5) 25 (0.9) 11(1.1) 11 (1.8) 25(0.8) 26 (0.9)

! Mineral content (Cd, Cu, Fe, Mn, Zn) of low- and high-Cd near-isogenic lines of durum wheat (Triticum turgidum subsp. durum) at physiological grain maturity
(42 d post-anthesis) expressed as a percentage of the whole-plant content. Plants were grown in chelator-buffered nutrient culture containing 0.5 uM Cd
(0.014 nM free activity). Significant differences between near-isogenic lines as determined by F-test-protected Student’s t-test are indicated by * (P < 0.05). The
t-tests were computed only when the ANOVA of the complete data set (all harvests for each tissue) yielded significant NIL or NIL x harvest treatment effects.

Numbers in parenthesis are SE (n = 4).

grown in chelator-buffered culture [22]. We conclude that
the chelator-buffered hydroponic culture provided a rea-
sonable approximation of Cd and micronutrient accumula-
tion under field conditions.

Cadmium uptake and distribution presumably reflects
a complex array of factors operating at the cellular, tis-
sue, and whole plant level, as affected by genotype and
environment. Some of these factors are associated with
Cdul, the major QTL for accumulation of Cd in durum
wheat grain [9-11]. Other factors are independent of
Cdul, and result in a pattern of Cd accumulation that
is common to both near-isogenic lines. Since the NILs
share a pedigree with the majority of modern Canadian
durum wheat cultivars [32], these common patterns should
be indicative of Cd accumulation by durum wheat more
generally.

The most important difference between the low- and
high-Cd NILs is the degree of root-to-shoot Cd transloca-
tion [19]. Restricted Cd translocation is also the primary de-
terminant of intraspecific variation in Cd accumulation in
rice grain [3,33]. In our study, the majority of Cd absorbed
by plants was retained in the roots, and significantly more
was retained by roots of the low-Cd NIL (Figure 1). This
difference was apparent in seedlings (Table 1), confirming
previous results [19,20,22,23], and persisted throughout
grain filling. At grain maturity, accumulation of Cd in the
shoots was 13% (low-Cd) or 37% (high-Cd) of whole-plant
Cd accumulation (Table 2). Differences in root-to-shoot
partitioning of Cd were evident throughout the shoot: accu-
mulation of Cd in every shoot tissue was at least 2-fold
higher in the high-Cd NIL at all harvests (Figure 3 and 4),
a pattern of accumulation that is maintained under field

conditions (Harris and Taylor, unpublished data). By 7
DPA, when less than 5% of final grain DW had accumu-
lated (Table 3), concentrations of Cd in the grain were
already 2-fold greater in the high-Cd NIL. This was true
despite the fact that the low- and high-Cd NILs did not dif-
fer in whole-plant Cd uptake (Figure 1), indicating no sig-
nificant difference in absorption of Cd by roots. Earlier
studies with wheat have shown that genotypic differences
in grain Cd accumulation were unrelated to short-term Cd
uptake by roots [19,21,23,25].

Field studies have demonstrated that concentrations of
micronutrients (Cu, Fe, Mn and Zn) in grain are typic-
ally not affected by the low-Cd trait [5]. Our results con-
firm that the low-Cd trait has no detrimental effect on
micronutrient accumulation (Figure 5) or the distribution
of micronutrients between tissues (Table 2). Thus, breed-
ing for low Cd should not negatively affect the micronu-
trient content of durum wheat grain [7].

Although the NILs differed significantly in the magni-
tude of Cd accumulation in shoot tissues, the pattern of
Cd accumulation was remarkably similar in both lines
(Table 2), an observation that is most clearly illustrated in
the animated time-course of Cd accumulation (Additional
file 2: mini-website). Both NILs absorbed Cd from the nu-
trient solution and transported Cd to the shoots through-
out grain filling (Figure 1). Although some reports suggest
that uptake of Cd by roots and root-to-shoot translocation
are limited during grain filling [21,29], others suggest that
both rice and wheat continue to absorb Cd from the
growth medium and export it to the shoots. Rodda and
Reid [30] showed that 40% of Cd in mature grain could be
accounted for by absorption and translocation of Cd



Table 3 Remobilization of biomass and minerals in durum wheat during grain filling

Tissue dry weight and mineral content (% of maximum, low-Cd:high-Cd)’

Harvest (DPA?) Grain Spikelets  Rachis  Peduncle Flag leaf Stems2-3  Leaves 2-3  Lower stems  Lower leaves  Veg. tillers  Shoots Roots Total
DW 0 NA® 57:63 64:63 23:33 84:80 48:60 89:83 81:81 100:91 NA 23:21 64:57 33:31
7 34 83:76 7774 76:82 97:94 78:89 97.93 88:87 86:87 43 30:28 81:70 43:39
14 15:17 88:80 91:79 100:95 100:96 100:98 95:90 97:84 87:89 28:33 46:46 87:83 57:56
28 7577 90:91 98:96 95:100 98:100 92:100 97:99 100:92 75:89 54:62 73:76 93:91 78:80
42 100:100 100:100 100:100 88:99 100:93 84:99 100:100 96:100 84:100 100:100 100:100  100:100  100:100
cd 0 NA 44 917 15:22 21:17 5177 21:20 56:40 45:28 NA 20:15 3526 3322
7 31 12:9 43:45 66:83 37:28 63:92 35:29 62:45 51:37 32 29:23 4543 43:36
14 12:8 24:21 85:100 9191 52:37 7173 44:38 57:42 66:41 22:25 43:33 60:53 5846
28 79:70 56:55 98:88 67:72 7374 7691 69:69 67:62 73:70 49:56 66:66 91:82 88:76
42 100:100 100:100 100:96 100:100 100:100 100:100 100:100 100:100 100:100 100:100 100:100 100:100 100:100
Cu 0 NA 63:77 5572 31:41 82:83 9291 92:89 9391 100:100 NA 30:29 5751 40:38
7 88 100:100 99:100 78:100 100:100 93:100 100:100 100:100 85:91 55 40:39 72:70 51:51
14 23:22 97:89 100:73 100:94 99:98 100:82 94:93 100:100 80:88 3844 58:58 80:91 66:71
28 71:68 66:73 46:53 60:71 79:82 65:63 79:88 82:81 56:73 53:63 7277 99:99 82:85
42 100:100 57:55 43:45 64:72 53:54 90:98 66:70 90:86 59:80 100:100 100:100 100:100 100:100
Fe 0 NA 31:39 25:41 14:30 56:64 57:63 70:77 76:77 90:88 NA 24:22 86:83 4037
7 22 65:70 83:92 61:87 86:99 96:100 95:100 100:100 98:100 54 3735 97:89 54:48
14 13:11 79:80 100:100 100:100 100:100 100:74 100:98 93:95 100:94 31:32 56:50 100:92 69:60
28 73:67 93:.97 25:40 37:48 71:78 36:42 83:92 64:83 75:93 49:56 7173 99:95 81:78
42 100:100 100:100 14:25 17:29 50:53 2532 70:83 68:68 81:99 100:100 100:100 85:100 100:100
Mn 0 NA 24:34 17:41 19:32 83:80 89:100 80:82 100:100 89:80 NA 37:37 87:79 4442
7 55 4352 40:44 96:100 100:100 100:88 100:100 73:59 83:84 32 45:46 81:58 50:48
14 20:22 63:83 7293 100:68 90:92 62:50 7599 40:52 86:90 2543 54:63 71:86 57:66
28 88:82 53:60 100:100 40:29 62:58 47:27 80:87 25:30 81:88 61:59 80:78 100:100 84:82
42 100:100 100:100 98:77 57:44 3842 50:37 76:87 26:31 100:100 100:100 100:100 84:93 100:100
Zn 0 NA 52:67 26:38 16:26 65:71 70:77 7377 100:94 90:66 NA 20:20 61:49 30:27
7 33 7778 62:57 65:79 80:86 91:100 80:83 100:100 76:59 44 2828 61:68 36:38
14 15:14 90:77 100:78 100:100 100:91 100:78 93:82 84:74 91:60 29:34 47:44 65:71 51:51
28 76:74 59.76 88:100 35:40 86:99 46:45 85:98 70:73 67:66 5261 68:73 100:80 7675
42 100:100 100:100 53:49 31:32 97:100 36:36 100:100 83:90 100:100 100:100 100:100 100:100 100:100

' Dry weight (DW) and mineral content (Cd, Cu, Fe, Mn, Zn) of low- and high-Cd near-isogenic lines of durum wheat (Triticum turgidum subsp. durum) during grain filling expressed at each harvest as a percentage of
the maximum accumulation at any harvest (low-Cd:high-Cd). > DPA days post-anthesis. > NA not applicable.
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during grain filling in rice grown in hydroponic culture.
Similarly, the shoot Cd content of rice grown in Cd-
contaminated soil increased by a third between early grain
filling and grain maturity [27]. Measurable quantities of
Cd in xylem exudates collected during early grain filling
confirmed root-to-shoot Cd transport [27]. Hart et al. [22]
reported that the Cd concentration of the flag leaf and
spike of durum wheat grown in chelator-buffered culture
increased throughout grain filling, which is consistent with
our results (Figure 3).

Cadmium accumulated in the shoot tissues (especial-
ly the leaves) in a declining gradient towards the head
(Figure 3; Table 2), a pattern that is typical of cereals
[20,27,28]. Leafy tissues (spikelets, leaves, vegetative til-
lers), which are terminal sinks for transpirational flow,
accumulated Cd throughout grain filling. In contrast, the
Cd content of stem tissues were generally constant during
grain filling, except for when they increased in weight and
Cd content during early grain filling (Figure 4). Although
the stems were subject to high Cd flow towards the grain
and leaves, they were nonetheless minor pools of Cd (indi-
vidually <1% of whole-plant Cd content; Table 2). Collec-
tively, these results show that the relative size and temporal
development of shoot Cd pools varies between shoot or-
gans, highlighting the need to quantify these pools when
studying Cd transport to grain.

The timing of Cd accumulation in grain was strongly
correlated with grain biomass (DW) accumulation in
both NILs. Like rice [30], it was not constant throughout
grain filling. When stems continued to elongate during
early grain filling (<14 DPA), grain DW and Cd both accu-
mulated slowly (Figure 2). The highest rate of grain filling
was between 14 and 28 DPA, a period in which both NILs
accumulated 60% of total grain DW and 61-66% of total
grain Cd content.

Remobilization of Cd stored in the leaves, particularly
the flag leaf, has been suggested as an important source
of Cd transported to the grain in cereals [20,21,27-29].
While our data do not preclude the movement of Cd from
leaves, there was no indication of net remobilization during
grain filling (Table 3). Thus the rate of Cd remobilization
from leaf Cd pools, either from pre-existing symplastic Cd
pools or from apoplastic Cd accumulated after xylem un-
loading, must be less than the rate of import to the leaves
via the xylem.

Several observations support the conclusion that little
Cd is exported from the leaves during grain filling and,
as a result, leaf Cd pools are minor contributors to grain
Cd accumulation. The first observation is that our experi-
mental system is capable of detecting net remobilization
during grain filling, but we have not observed net remo-
bilization of Cd. Even though uptake and translocation of
Cu, Fe, Mn, and Zn to the shoots continued throughout
grain filling (Figure 5), and the majority of absorbed
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micronutrients were transported to the shoots (61 to 89%,
Table 2), we were still able to detect substantial remobi-
lization of micronutrients from shoot tissues near the grain
(Table 3). Between 40 and 80% of Cu and Fe were re-
mobilized from the flag leaf and upper stem after 14 DPA,
and 60-70% of Zn was remobilized from the peduncle and
stem 2-3. Even Mn, which is typically considered to have
low mobility in the phloem [34-36], was strongly remobi-
lized from the stem and flag leaf (50-70% export).

The second observation is related to the fact that low-
and high-Cd NILs differ not only in root-to-shoot Cd
translocation, but also in Cd transport from the flag leaf
to the grain, which we have previously shown to be ap-
proximately 2-fold greater in the high-Cd NIL [37]. If
the flag leaf was a primary source of Cd transported to
the grain, it might be expected that greater transport
would lead to lower Cd content in the flag leaf of the
high-Cd NIL, or at a minimum the flag leaf Cd content
of NILs would converge during grain filling. The size of
the Cd pool in the flag leaf leads to the conclusion that a
majority of this Cd pool would need to be remobilized
to the grain if the flag leaf was the leading contributor to
Cd accumulation in grain. In fact, the entire pool of Cd
accumulated post-anthesis by the flag leaf would only
account for 50% (high-Cd NIL) or 56% (low-Cd NIL) of
Cd accumulated in the grain. Our results show that Cd
accumulation in the flag leaf was more than 2-fold greater
in the high-Cd NIL at all harvests (Figure 3).

The lack of net remobilization of Cd from leaves during
grain filling (Table 3) is consistent with previous studies
that documented limited movement of Cd from leaves via
the phloem, but does not imply that Cd transport via the
phloem is unimportant to Cd accumulation in the grain.
To be sure, there is evidence for Cd transport via the
phloem [35-40], including direct measurement of Cd in
phloem sap [27,41,42]. However, extensive evidence doc-
umenting low rates of remobilization of Cd from leaves to-
wards growing sink tissues, such as grain, roots, and young
expanding leaves [35,36,39,40], suggests that Cd has limited
phloem mobility in wheat. As an example, the low- and
high-Cd NILs have been shown to differ in '®’Cd transport
from the flag leaf to the grain via the phloem [37], but the
majority (75-80%) of absorbed '®’Cd was retained in the la-
belling region; only 10 to 15% of the '*’Cd was transported
to the grain after 7 d. In contrast, 65-70% of ®*Zn absorbed
by the flag leaf was transported to the grain [37]. Similarly,
in seedlings of Triticum species, **’Cd applied to the ma-
ture first leaf was largely (~95%) retained in the labelled
leaf; between 1 and 2% of the absorbed '%°Cd was trans-
ported to other shoot tissues after 42 h [39,40]. Transport
of phloem-mobile **Rb to other shoot tissues was 10-fold
higher than that of 199Cd [40]. Several other studies have
also documented evidence of low rates of remobilization of
Cd from leaves [35,36,43].
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Notwithstanding these low rates of remobilization,
transport via the phloem is important to Cd accumula-
tion in grain. This must be true given the xylem discon-
tinuity present in the grain pedicel of wheat [44]; Cd
transport to the grain is ultimately dependent on deliv-
ery through the phloem. In this regard, a key question is:
what is the origin of Cd loaded into the phloem that is
transported to the grain? Is it Cd that essentially flows
uninterrupted from the roots through the stem on its way
to the grain, or a genuine remobilization of Cd that has
been deposited in leaf tissues? In our study, roots continued
to absorb Cd from the nutrient solution and export Cd to
the shoot throughout the grain filling period, as shown by
increasing whole-plant and shoot Cd accumulation. This
result, combined with the absence of net remobilization of
Cd from leaves, strongly suggests that the majority of Cd
accumulated in the grain was transported from the roots
through the stems to the grain. Recently, real-time imaging
of positron-emitting *”’Cd tracer in rice plants [45,46] iden-
tified stem nodes as important sites of direct xylem-to-
phloem Cd transfer. Accumulation of '*’Cd in short-term
experiments was localized principally in the stems, concen-
trated at nodes and grain, but little accumulation occurred
in the leaves [45,46]. Tissue-level imaging of stems provided
evidence for intervascular Cd trafficking at nodes [47,48].
Studies using detached wheat shoots labelled with '*°Cd
below the flag leaf node leads to similar conclusions. Dis-
rupting the phloem by steam-girdling the upper peduncle
decreased Cd accumulation in the grain by 3-fold and in-
creased Cd retention in the peduncle [35,38], indicating
that the majority of '*Cd transported to the grain had been
transferred from the xylem to the phloem in the lower ped-
uncle and/or flag leaf node.

Although stem tissues accumulated little Cd (Table 2),
they are likely important sites for xylem-to-phloem Cd
transfer, a necessary step in Cd transport to the grain.
Such flow-through movement of Cd from roots through
the stems to the grain could be affected by the conditions
under which Cd is supplied to the plant. Our results
shows that when root-to-shoot Cd flux is continuous
(such as in solution culture) the majority of Cd in the
transpiration stream is delivered to high transpiration
tissues (spikelets, leaves, and vegetative tillers). Cadmium
accumulation in these tissues is passive, reflecting the de-
gree to which Cd is released by the roots, which is lower
in the low-Cd NIL. While translocation of Cd is driven by
transpirational flow, and treatments that restrict transpi-
ration reduce transport of Cd to the shoots [14,49], vari-
ation in transpiration rates do not explain genotypic
differences in shoot and grain Cd accumulation of cereals
[14,50,51], including for the NILs used in this study [52].
When Cd is less abundant in the transpiration stream it
might be readily removed from the xylem and transported
to the grain via the phloem. Following application of trace
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quantities (250 pM) of '®*Cd to the fourth stem-internode
of intact durum wheat, 'Cd accumulated in the stem
in a declining gradient towards the spike [37]. Subse-
quently, '®Cd was remobilized from the stem and trans-
ported to the grain; very little '°Cd accumulated in the
spikelets or leaves [37]. Similarly, Cd applied to intact
wheat plants via a stem flap cut below the flag leaf node
initially accumulated in the peduncle and flag leaf, but was
later remobilized from the peduncle, but not the flag leaf,
to the grain [38].

The mechanistic basis for restricted root-to-shoot Cd
translocation in low-Cd genotypes of durum wheat re-
mains to be determined. Cadmium transport in plants
has been shown to be regulated by a variety of transport
proteins that mediate uptake from the rhizosphere, sym-
plastic sequestration, xylem loading, xylem-to-phloem
transfer, and remobilization via the phloem [3,33]. Not-
withstanding this complexity, studies of inheritance of
the low Cd trait in durum wheat have shown that grain
Cd concentration is probably controlled by a single,
dominant gene [53]. It is difficult to reconcile these ob-
servations unless a single gene was involved in a cellular
phenomenon that is pathway-independent. Apoplastic or
symplastic loading of the phloem in the leaves or stems,
followed by unloading in sink tissues (e.g. grain) is fun-
damentally different from xylem loading in roots, which
simply requires efflux from xylem parenchyma into the
lumen of xylem vessels. Recently, allelic variation in a
rice P1p-ATPase, OsHMA3, was associated with major
QTLs for Cd accumulation in grain [54,55]. OsHMA3 is
a Cd-specific transporter that is localized to the tono-
plast [54,55]; it mediates the sequestration of Cd in the
vacuole and restricts root-to-shoot translocation of Cd
[54]. Loss-of-function mutations in OsHMA3 observed in
some cultivars resulted in elevated Cd accumulation in
shoots and grain [54-56]. Arabidopsis HMA3 (AtHMA3)
also localizes to the tonoplast [57]. Recently, a screen of a
world-wide collection of accessions identified AtHMA3 as
the primary determinant of natural variation in leaf Cd
[58]. The transport activity of HMAS3 is a process that is
pathway independent. A wheat homolog of HMA3 could
contribute to sequestration of Cd in root cell vacuoles,
limiting radial Cd transport to the stele and subsequent
xylem loading. Similarly, sequestration of Cd in the vacu-
ole of mesophyll or bundle sheath cells could restrict
phloem loading in the leaves. A major QTL (designated as
Cdul) controlling accumulation of Cd in grain of durum
wheat has been reported on chromosome 5B [9]. Fine
mapping has localized Cdul to a 0.7 ¢cM interval that
explains more than 80% of the variation in Cd accumula-
tion in grain [10]. However, the regions collinear to Cdul
on rice chromosome 3 and Brachypodium distachyon
chromosome 1 contain no candidate genes with putative
metal transporter activity [10]. Breaks in microcollinearity
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were also documented in this region [10], indicating that
map-based cloning will be required to isolate the gene re-
sponsible for Cdul in durum wheat.

Conclusions

Genotypic variation in the accumulation of Cd in grain
of durum wheat is attributable to Cdul, a major QTL
controlling accumulation of Cd in grain [9-11]. Our results
show that Cdul controls accumulation of Cd in grain by
regulating root-to-shoot translocation of Cd. Differences
between NILs in root-to-shoot partitioning of Cd were evi-
dent in all shoot tissues (including grain) and Cd accumu-
lation was at least 2-fold higher in the high-Cd NIL at all
harvests. Continued Cd uptake and the absence of net
remobilization of Cd from leaves during grain filling sup-
ports a direct pathway of Cd transport from roots to grain
via xylem-to-phloem transfer in the stem. As the roots
retained the majority of absorbed Cd, variation in trans-
location of this Cd pool greatly affects Cd levels in shoots
and grain. Identification of the genetic factor(s) responsible
for Cdul will enable selection of low-Cd genotypes from
durum wheat germplasm with different genetic back-
grounds without phenotyping or revalidating the marker-
Cdul allele relationship [12].

Methods

Plant growth

A pair of near-isogenic lines (NILs) of durum wheat dif-
fering in accumulation of Cd in grain [59], were used in
these experiments. Field studies have shown that the
high-Cd line (8982-TL-H) accumulates 2.5-fold greater
Cd concentrations in mature grain than the low-Cd line
(8982-TL-L) [5].

Seeds were surface sterilised in 1.2% NaOCI for 20 min,
rinsed, and imbibed for 24 h in an aerated solution of
1 mM CaCl, and 5 mg L™ Vitavax fungicide (Uniroyal
Chemical Ltd, Calgary, AB, Canada). The germinated
seeds were placed on nylon mesh suspended over 10 L
of aerated, chelator-buffered nutrient solution. The nutri-
ent solution was prepared in reverse osmosis (RO) water
(<3 uS cm™) and contained 1.0 mM Ca(NOs),, 0.3 mM
Mg(NO3)y, 0.3 mM NH4NO3, 0.25 mM KNO3, 0.1 mM
K,HPO,, 0.1 mM K3SO,, 50 uM KCl, 100 uM Fe(NOs3)s,
10 uM H3BO3, 0.2 pM Na;MoQO,, 10 pM ZnSQO,, 2 pM
CuSOy4 1 pM MnSO,4, 05 pM CdCl,, 0.1 pM NiCl,,
138.6 uM N-(2-hydroxyethyl)ethylenediaminetriacetic acid
(HEDTA), 142 mM KOH, and 2 mM 2-(N-morpholino)
ethanesulfonic acid (MES) buffer (pH 6.0). The supplied
concentration of HEDTA provided a 25 pM excess over
the total concentration of transition metal cations, thereby
buffering free metal activities at environmentally relevant
levels [31]. Free ion activities (p(M™)) were 10.84 (Cd**),
13.44 (Cu®), 16.64 (Fe’"), 7.75 (Mn*"), 14.44 (Ni**), and
9.94 (Zn**) as calculated by GEOCHEM-PC [60].
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Seedlings were grown for 3 days in the dark, and then
a further 4 days in a controlled environment growth
chamber (16 h daylight, 21/16°C day/night temperature,
and 450 pmol m™ s photosynthetically active radiation).
Caryopses were removed after 7 d and the seedlings were
transferred to 10-L polyethylene buckets (under the same
growth conditions) containing aerated, chelator-buffered
nutrient solution as described above. Each bucket held two
seedlings, supported independently by polyethylene mesh
baskets mounted in opaque polycarbonate lids. Buckets
containing nutrient solutions were suspended in a common
water bath to limit temperature fluctuations and maintain a
consistent root temperature in all experimental containers.
Nutrient solutions were replaced every 14 d. Between solu-
tion changes, RO water was added to maintain a constant
solution volume, and solution pH and electrical conductiv-
ity (EC) were monitored daily. The pH was adjusted with
1.25 N HNOj; or KOH when it deviated from 6.0 + 0.1.

Electrical conductivity (EC) was used to estimate de-
pletion of nutrient solutions on a daily basis. Equal volumes
of two daily addition stock solutions were added to adjust
the solution EC to the nominal level (580 pS cm™). The
amount of daily addition solution required was determined
by titration of addition volume against EC. The compo-
sition of daily addition stock solutions (Stock 1: 40 mM
KH,PO,, 210 mM NH,NO,, 420 mM KNO,, 20 mM
(NH,4),SO4; Stock 2: 20 mM Ca(NO3),, 40 mM Mg(NOs),,
0.4 mM H;3BO3) was optimized in preliminary experiments
to maintain shoot nutritional status and to minimize solu-
tion pH fluctuation. The maximum rate of nutrient usage
occurred from 14 d pre-anthesis to 7 d post-anthesis. Dur-
ing this period the mean daily decline in solution EC was
60 uS cm™, corresponding to a daily addition of 150 pM
NHj, 450 uM NO3, 24 uM PO}, 12 uM SO7, 276 uM K,
12 uM Ca**, 24 uM Mg?*, and 0.24 uM H3BOs.

High nutrient concentrations inherent to solution cul-
ture can induce high rates of tillering in cereal species
[22,61,62], resulting in uneven grain maturation [61]. In
preliminary experiments where plants were allowed to
grow unchecked, each plant produced 30-40 tillers that
initiated flowering over 2 to 3 weeks. In order to relate
whole-plant Cd accumulation and partitioning to grain
maturation, only the first four tillers (main stem and
three auxiliary tillers) were allowed to develop (the cole-
optile tiller, if present, was always removed). Additional
tillers were removed every 2—3 d, beginning after the first
solution change (15 d post-transplantation) and continu-
ing until anthesis. All pre-anthesis tillers were discarded.
After anthesis, tillers were allowed to develop for up to 7
days. This prevented tillers that developed post-anthesis
from flowering. These tillers were collected and pooled at
harvest (designated vegetative tillers).

As flowering heads (4 per plant) began to emerge, they
were monitored daily and tagged at the initiation of



Harris and Taylor BMC Plant Biology 2013, 13:103
http://www.biomedcentral.com/1471-2229/13/103

anthesis (anther protrusion). Plants were harvested at
anthesis, and at 7, 14, 28 and 42 d post-anthesis (DPA).
In preliminary experiments, physiological grain maturity
(maximum grain dry weight) was achieved between 35
and 42 DPA. To ensure that harvests were completed at
a uniform developmental stage, each plant was harvest
at the designated number of days after the date of first
flowering. Thus, replicate plants within a harvest were
not necessarily harvested on the same day; most were
spread over 6 to 8 d (range: 3—11 d). Flowering of all
four tillers within each plant was initiated within 2 to 4 d
of each other.

Plant sampling and analysis

Immediately prior to the first solution change (14 d
post-transplantation), five randomly selected buckets of
each NIL were harvested (21-d-old seedlings). The plants
in these buckets were replaced during the first solution
change with one plant from an adjacent bucket. The
remaining buckets were thinned to one plant per bucket.
Thereafter, plants were randomly assigned to harvests, and
the position of the buckets were re-randomized every 14 d.
At each harvest, plants were separated into grain, spikelets
(glumes, palea, lemma, and rachilla), rachis, peduncle, flag
leaf, stems 2-3, leaves 2—3, lower stems, lower leaves, vege-
tative tillers, and roots. Leaves (lamina and sheath) and
stems were labelled from the top of the plant. The flag leaf
and peduncle are the first leaf and first stem internode
below the spike. Leaves 2—3 and stems 2-3 are the com-
bined second and third leaves and stem internodes. Lower
leaves and lower stems are all the remaining leaves and
stems. Vegetative tillers included tillers that developed be-
tween anthesis and harvest.

Shoot tissues were washed immediately on harvest in
RO water for 30 s, while the roots were triple rinsed (RO
water, 1 min; 1 mM CaCl,, 5 min; RO water, 1 min) and
blotted dry. Plant samples were oven-dried at 65°C for 3 d,
weighed, and finely ground in a stainless steel mill. Ground
sub-samples (0.5 g) were digested at 95°C in solutions
containing 5 mL of trace-metal grade, concentrated HNO;
and 2 mL of 30% H,O,, and diluted to 50 mL with deion-
ized water (>18 MQ purity). Cadmium and Cu were deter-
mined by graphite furnace atomic absorption spectroscopy
(AAS), and Fe, Mn, and Zn were determined by flame
AAS (AAnalyst 700; PerkinElmer, Waltham, MA). Reagent
blanks and a NIST Standard Reference Material (NIST No.
8436 durum wheat flour) were included in each batch of
samples for quality control. Recovery of the reference con-
centration values were (mean + SD) 98 + 9% (Cd), 94 + 4%
(Cuw), 102 + 6% (Fe), 101 + 3% (Mn), and 105 + 4% (Zn).

The experiment was arranged in a completely random-
ized design with unequal replication. All harvests had five
replicates except for the final harvest (42 DPA), which due
to space constraints had four replicates. Data were analysed
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by analysis of variance. When significant (P < 0.05) treat-
ment effects were detected, differences between treatment
means were determined by Student’s z-test or Tukey’s test
for pairwise and multiple comparisons, respectively. Data
for some variables were log, transformed to attain homo-
geneity of variance. The entire experiment as described
above was repeated (with similar results) to ensure repeat-
ability of results.

Complete growth and metal accumulation data col-
lected during grain filling are presented as an interactive
website (Additional file 2: Mini-website showing Cd, Cu,
Fe, Mn, and Zn accumulation in low- and high-Cd near-
isogenic lines of durum wheat during grain filling).

Additional files

Additional file 1: Micronutrient accumulation by durum wheat
seedlings.

Additional file 2: Mini-website showing Cd, Cu, Fe, Mn, and Zn
accumulation in low- and high-Cd near-isogenic lines of durum
wheat during grain filling.
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