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Abstract

Background: The opaque2 mutant is valuable for producing maize varieties with enhanced nutritional value.
However, the exact mechanisms by which it improves protein quality and creates a soft endosperm texture are
unclear. Given the importance of improving nutritional quality in grain crops, a better understanding of the
physiological basis for these traits is necessary.

Results: In this study, we combined transcript profiling and proteomic analysis to better understand which genes
and proteins are altered by opaque? in the W64A inbred line. These analyses showed that the accumulation of
some lysine-rich proteins, such as sorbitol dehydrogenase and glyceraldehyde3-phosphate dehydrogenase, was
increased in mature kernels and may contribute substantially to the lysine content of opaque2 endosperm. Some
defense proteins such as beta-glucosidase aggregating factor were strongly down regulated and may be regulated
directly by opaque2. The mutant also had altered expression of a number of starch biosynthesis genes and this was
associated with a more highly crystalline starch.

Conclusions: The results of these studies revealed specific target genes that can be investigated to further improve
nutritional quality and agronomic performance of high lysine maize lines, particularly those based on the presence

generation of the soft, starchy endosperm.

of the opaque2 mutation. Alteration of amylopectin branching patterns in opaque2 starch could contribute to
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Background

Maize is a major food and feed crop, and the acreage
devoted to maize cultivation is expected to increase sig-
nificantly over the next several decades due to greater
demand for the grain [1]. The majority of the maize crop
is used to feed livestock, but in substantial parts of
Central America, Africa and Asia, maize is the primary
food staple for humans. In order to maximize land prod-
uctivity, the nutritional quality of crops should be one of
the factors considered, along with water and nitrogen
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use efficiency, yield, pest resistance and other determi-
nants of crop productivity [2].

Maize protein is deficient in the essential amino acids
lysine and tryptophan, which limits its value for mono-
gastric animals. Therefore, for the past several decades
there have been efforts to create maize lines with in-
creased essential amino acid content. In the 1960s the
research groups of Mertz and Nelson at Purdue Univer-
sity identified several mutants with increased lysine
content, opaque2 (02) and floury2 in particular, had sub-
stantially higher essential amino acid content [3,4]. How-
ever, these mutations result in a soft, chalky endosperm
phenotype that is not suitable for agronomic production
because of increased susceptibility to insect and fungal
pests and decreased yields [5,6]. The O2 gene was found

© 2013 Jia et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:bryan_gibbon@baylor.edu
http://creativecommons.org/licenses/by/2.0

Jia et al. BMC Plant Biology 2013, 13:60
http://www.biomedcentral.com/1471-2229/13/60

to encode a b-zip transcription factor [7] that regulates
expression of several genes in the endosperm, notably
those encoding the 22 kDa «-zein storage proteins [8].
The substantial reduction in synthesis of a-zeins results in
smaller, less numerous protein bodies and a concomitant
increase in non-zein endosperm proteins [3]. These
changes in protein accumulation result in an endosperm
that has nearly twice the lysine and tryptophan content of
wild-type maize [3], which substantially improves its value
for monogastric animals [9]. Therefore, breeders began re-
current selection of 02 lines with high lysine and a hard
endosperm, called Quality Protein Maize [10].

Recently, considerable progress has been made devel-
oping maize lines and optimizing amino acid balance
using transgenic [11-13] and conventional breeding ap-
proaches through marker-assisted selection [14,15]. The
most successful transgenic strategies have been specific
knock down of zein storage protein or lysine catabolism
gene expression with RNA interference (RNAi) ap-
proaches [11-13,16]. Reduced synthesis of the lysine-
poor zein proteins and compensatory increases in other
proteins dramatically improves the nutritional quality of
the grain. The underlying mechanism for rebalancing
amino acid content for both 02 and RNAI is unclear, al-
though it depends on reduced synthesis of the zein storage
proteins and a compensatory increase in non-zein protein
content [17]. Generally, the total protein content is only
slightly depressed relative to wild type kernels [12,17,18],
and knocking down 19- and 22-kDa a-zeins in high or low
protein lines by RNAi only modestly changes total protein
content from the parental levels, suggesting that total
protein content is under genetic control [17]. It is possible
that competition between mRNA transcripts for ribo-
somes is responsible for the final protein composition, as
has been proposed for soybean [19].

Despite these advances in developing maize lines with
higher nutritional value, the underlying physiological
and molecular mechanisms that cause soft kernels is still
not well understood. Several studies have investigated
the changes in transcriptional patterns caused by the 02
mutation [20-23]. Consistent observations among them
point to pleotropic changes in gene expression, but it
has been difficult to identify physiological pathways that
explain the soft kernel phenotype and changes in protein
synthesis that contribute to the improved amino acid
composition of the endosperm. Genes related to endo-
plasmic reticulum (ER) stress responses are consistently
up regulated in opaque mutants [22], as are many genes
in the glycolytic pathway and others that are typically as-
sociated with physiological responses to anoxic stress,
such as alcohol dehydrogenase and sorbitol dehydrogen-
ase [21,22,24], but their roles in the expression of the
opaque phenotype are not clear. Proteomic analysis of
protein accumulation during 02 development is generally
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consistent with the pattern of gene expression observed
by microarray analysis [25].

In this study we analyzed gene expression in 02 endo-
sperm using an amplified fragment length polymorphism
(AFLP)-based approach that is open-ended and does not
depend on known or predicted gene sequences. We also
performed a proteomic analysis of mature seeds to iden-
tify specific proteins that contribute disproportionately
to the increased lysine and tryptophan content in order
to relate these more abundant gene products to gene
expression in maturing endosperm. In addition to
confirming overall gene expression patterns previously
described for 02 mutants, we identified a number of
other differences in mRNA transcript levels compared to
wild type endosperms. Several gene products related to
defense responses were also substantially down regulated
in 02 endosperm, which could further explain its greater
susceptibility to ear rots and insect pests. Expression of
starch biosynthetic genes was altered in 02 and was asso-
ciated with changes in starch granule structure. Further-
more, analysis of protein accumulation in mature seeds
revealed a few lysine-rich proteins that were substan-
tially more abundant in 02 endosperm. These changes
could explain a significant fraction of the increased ly-
sine content in W64A02. How changes in gene expres-
sion, protein content and starch structure contribute to
the development of opaque endosperm is discussed.

Results and discussion

Overview of transcript profiling

To systematically compare gene expression patterns be-
tween W64A +and W64Ao02 at the most metabolically
active stage of endosperm development, transcript pro-
filing was performed at Curagen Corp. (New Haven,
CT) by GeneCalling" [26] at 22 days after pollination
(DAP). The GeneCalling" approach does not rely on a
priori knowledge of gene sequences and can therefore
identify expression differences for genes that are not
present in sequence databases. cDNA fragments were
generated with 47 different pairs of restriction enzymes,
and the expression levels of the corresponding gene
fragments were compared. A total of 470 putative genes
were identified as differentially expressed in W64A + and
W64A02 by the GeneCalling software using a t-test.
The sequence of a subset of the differentially expressed
gene fragments was confirmed by oligonucleotide compe-
tition, “poisoning”, with an unlabeled gene-specific primer
or by cloning and sequencing the fragments if poisoning
failed. The identities of 274 gene fragments ranging from
50 to 500 bp were confirmed and represented a total of
151 gene products. Further characterization of these genes
was obtained by BLASTN and BLASTX analyses against
Genbank and Maize Genome Sequence databases (http://
www.maizesequence.org). The molecular functions and
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biological processes were annotated using the gene ontol-
ogy database (G.O. http://www.geneontology.org) and
classification of their molecular functions and biological
processes are illustrated in Figure 1. A comprehensive
table of differentially expressed genes and their properties
is provided in Additional file 1: Table S1. Twenty-six dis-
tinct biological functions were affected in W64:A02, includ-
ing carbohydrate metabolism and stress responses, which
are associated with the altered endosperm phenotype of
the 02 mutant. Specifically, 70 genes corresponding to 23
functional groups were up regulated and 81 gene frag-
ments belonging to 16 groups were down regulated in 02.

GO functional classes of up regulated and down
regulated genes

As expected, a large number of down regulated genes
have a molecular function associated with nutrient reser-
voir activity (Figure 1), which is due to the accumulation
of several 19- and 22-kD a-zein genes and the 27-kD
y-zein being significantly reduced in 02. These proteins
are encoded by large gene families with highly conserved
sequences and are well-characterized targets of O2 regu-
lation [27,28]. Reduction in nutrient reservoir gene
function in 02 is followed by catalytic activity (23%),
structural molecule activity (8%), protein binding (8%),
DNA binding (6%), transporter activity (4%) and other
minor categories (4%), such as ion binding and enzyme
regulator activity. Among biological processes, 34% of
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the down regulated genes participate in the secretory
pathway, which may reflect a response to the reduced ac-
cumulation of the ER-resident zein storage proteins. Other
down regulated functional categories include physiological
defense (11%), metabolism (8%), lipid metabolism (7%),
transport (4%), translation (4%) and other (17%). There
are 20% and 16% of the genes with unknown molecular
function and biological process, respectively.

For genes that are up regulated in 02, only a small pro-
portion have the function of nutrient reservoir activity
(6%). Instead, the largest proportion of the up regulated
genes have catalytic activities (23%), followed by DNA
binding (13%), protein binding (7%), structural molecule
activity (4%) and other (15%). This is consistent with
metabolism being the most affected biological function
(19%), followed by secretion (14%), protein folding (6%),
transcription (6%), transposition (6%), and physiological
defense response (4%). Of the up regulated genes, 32%
could not be assigned a molecular function and 34%
could not be assigned to a biological process.

Genes down regulated in 02

As expected, members of the zein gene family were sig-
nificantly down regulated in 02 (19 kDa and 22 kDa
a-zeins and 27 kDa y-zein). There were a few zein genes
with increased expression in 02. However, this method
of analyzing transcripts is very sensitive to allelic differ-
ences, and the up regulated zein genes may represent
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(B). The plots on the left are genes down regulated in 02 and the plots on the right are genes up regulated in 02.

transport

translation biological process

unknown

lipid metabolism

Secretory

pathway metabolism

other
physiological defense

Transposition

Secretory
pathway Biological process
unknown
Regulation of
transcription

response

Other Metabolism



http://www.geneontology.org

Jia et al. BMC Plant Biology 2013, 13:60
http://www.biomedcentral.com/1471-2229/13/60

such alleles. Several genes that are reported to partici-
pate in defense responses to biotic and abiotic stresses
were also significantly down regulated in 02, such as a
ribosome-inactivating protein (RIP) b-32, which has a
defensive role against pathogens and viruses and a well-
known target of O2 regulation in maize [29,30]. A beta-
glucosidase aggregating factor-like protein (BGAF) was
also strongly down regulated; such proteins are reported
to be involved in defense against pathogens and herbi-
vores [31,32]. The BGAF-like protein may be a particu-
larly interesting gene to study further because it has an
02 consensus binding sequence [24,33] at -227 nt from
the predicted transcription start. However, there were
several other defense-related transcripts that were down
regulated to a lesser extent, subtilisin-chymotrypsin in-
hibitor CI-1B (CI-1B), which responds to wounding [34],
flower-specific gamma-thionin (defensin SD2), which is
toxic to animal cells and defends against parasites [35],
and basal layer antifungal protein2 (BAP2). It is possible
that the high sensitivity of 02 to fungal and insect pests
is due to the synergistic effect of reducing both b-32 and
BGATF protein levels in 02 endosperm.

Several ribosomal proteins, such as the 40S subunit
protein S3a and the 60S ribosomal subunit protein L19-
3, and the 18S RNA gene, the structural RNA for the
small subunit of eukaryotic cytoplasmic ribosomes, were
all down regulated in 02. Some of these changes in
ribosomal constituents may be cellular responses to the
changes in the overall mRNA pool, which lacks the
abundant ER-targeted a-zein mRNAs in 02. Other down
regulated transcripts included NAC (NAM, ATAF, and
CUC transcription factor) domain-containing protein 48,
which is predicted to function as a plant specific tran-
scription factor involved in a variety of developmental
events, as well as in biotic and abiotic stress responses
[36]. Genes that function in signal transduction, such as
YT521-B-like family protein, glutathione S-transferase
GST 31, protein FAR-RED IMPAIRED RESPONSE 1,
also showed decreased expression in 02. The role of
these transcription factors and signal transduction pro-
teins have in the formation of the opaque phenotype, if
any, is unclear.

Several genes that function in amino acid metabolism
were also down regulated, including tryptophan ami-
notransferase (TA1l) and ketol-acid reductoisomerase
which catalyzes two steps of the biosynthetic pathway of
the branched-chain amino acids valine, leucine and iso-
leucine [37] and alanine-glyoxylate aminotransferase 2.
Surprisingly, LKR-SDH1 is thought to be regulated by
02 [38], yet the transcript expression was not signifi-
cantly different between W64A +and W64Ao02 and this
may indicate that its expression is influenced by genetic
background or environment. It may be the case that a
large number of amino acid biosynthetic enzymes are
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regulated to some extent by O2. The yeast homolog of
02, the b-zip transcription factor GCN4 (General Con-
trol Non-derepressible 4), is known to induce the ex-
pression of a large number of amino acid biosynthetic
genes in response to amino acid starvation [39] and gcn4
mutants can be complemented by expression of the
maize O2 gene [40].

Several genes related to cell structure and development
were down regulated in W64Ao02, including: katanin p60
ATPase which is involved in the regulation of microtubule
dynamics [41] and regulates plant cell division and growth
[42]; arabinogalactan protein (AGP), which serves as a
marker of cellular identity and fate, and functions in plant
vegetative growth and development as well as secondary
cell wall thickening and programmed cell death [43];
brassinosteroid biosynthesis-like proteins, which are nat-
ural growth regulators required for post-embryonic growth
[44]; and maternal effect embryo arrest 21 (MEE21), which
regulates embryo development and maturation [45]. Al-
though it is not known how such proteins influence the
opaque phenotype, it is possible that they could cause
changes in cellular organization that predispose the endo-
sperm cells to develop the characteristic gaps between
starch granules that is a hallmark of opaque endosperm.

Genes up regulated in 02

A number of genes encoding primary carbohydrate me-
tabolism enzymes were up regulated in W64A02. Two
enzymes of the glycolytic pathway were up regulated,
cytosolic triosephosphate isomerase (TIM) and cytosolic
phosphoglycerate kinase (PGK). Fructokinase-1, which
functions at the entry point into glycolysis via the forma-
tion of glucose-6-phosphate and maintains the flux of
carbon towards starch formation, was increased 1.85-
fold. Many of these changes in glycolytic enzyme expres-
sion and the up regulation of alcohol dehydrogenase 1
by 2.86-fold were consistent with a hypoxic response. It
has been shown that the maize endosperm is a highly
anoxic environment compared to the embryo, and that
this is likely to result in the shunting of carbon into
starch rather than oil [46]. However, it is not clear why
the 02 mutant would display increased hypoxic re-
sponses, and the proportion of starch in 02 endosperm
is essentially identical to wild type in the W64A back-
ground (not shown).

Enzymes involved in starch biosynthesis were increased
in 02, including granule-bound starch synthase I (GBSSI),
which is required for the synthesis of amylose. Enzymes
required for amylopectin synthesis were also up regulated,
including pullulanase-type starch debranching enzymel
(Zpul), which hydrolyzes the a-1,6-glucosic linkages of
polyglucans, 1,4-alpha-glucan-branching enzyme 2 (BE2),
which catalyzes the formation of a-1,6 glucan and is re-
quired for amylopectin synthesis at the surface of the
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starch granule. Trehalose-6-phosphate synthase was also
increased, which has been implicated in the redox activa-
tion of ADP-Glc phosphorylase, the enzyme that catalyzes
the first committed step of starch synthesis [47,48]. Prior
work has shown that the biochemical properties of starch
are altered in opaque mutants [49], but the underlying
mechanism is still not clear. The change in expression of
one or more starch biosynthesis enzymes could result in
the observed properties of 02 starch, although altering the
expression or mutation of one starch biosynthetic enzyme
can have complex effects on multiple enzyme activities.

Several proteins involved in the maintenance and fold-
ing of proteins in the ER were up regulated. The expres-
sion of the calcium-dependent protein chaperones,
Calnexin, calreticulin2 and the chaperone DNA ]2, were
increased approximately two-fold in W64Ao02. The small
cytoplasmic chaperones, 16.9 kDa class I heat shock pro-
tein 3 and heat shock protein18c were also up regulated.
Other ER enzymes involved in the oxidation of cysteine
to form disulfide bonds including protein disulfide isom-
erase (PDI) and ER Membrane-Localized Oxidoreduc-
tase 1 (ERO1) were increased [50]. These genes are
related to the unfolded protein response and their up
regulation is likely due to alteration of protein body
structure in the ER [22].

Stress-response and defense genes up regulated in
W64A02 included the following: alliin lyase 2 (alliinase)
and cystatin 6, which are part of the defense response
against herbivores [51,52]; xylanase inhibitor protein 1
and glycine—aspartic acid—serine-leucine (GDSL)-motif
lipase/hydrolase-like protein, both of which are involved
in the defense against fungal pathogens [53,54]; and a Pi
starvation-induced protein and an ABA-responsive
40 kDa protein [55-57]. A MAP kinase was up regulated,
as were several MAP kinase responsive genes. These in-
clude the respiratory burst oxidase protein, homolog B
(RBOHB), and an inducible form of the NADPH oxidase,
a downstream effector in the mitogen-activated protein
kinase (MAPK) regulated signaling pathway that generates
reactive oxygen species (ROS) and triggers innate immun-
ity in response to various stresses [58]. Additionally, the
WRKY transcription factor was up regulated, which is
phosphorylated and activated by MAPKs in response to
biotic and abiotic stresses [59]. These up regulated stress
responses are unlikely to confer enhanced resistance to
pests and most likely represent pleiotropic responses to
mutation of 02, because there is ample evidence that 02 is
much more susceptible to pests.

Proteomic comparison of opaque2 and wild type lines

In order to detect differences in non-zein protein accu-
mulation in W64A02 and wild type lines, we performed
2D SDS-PAGE analysis with equal amounts of non-zein
proteins purified from mature endosperms using a
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borate extraction method [60]. Mature kernels were ana-
lyzed in order to determine if abundant non-zein pro-
teins that contribute to increased lysine were consistent
with their gene expression during endosperm develop-
ment. After visualization and alignment of gels, 40 pro-
tein spots that were differentially resolved or showed
altered accumulation levels were excised from gels for
identification (Figure 2). Proteins of interest were identi-
fied by MALDI-TOF peptide mass mapping of trypsin
digests of the protein spots. GBSSI, enolase 1, legumin-
like protein, GAPDH, TIM and SDH showed increased
accumulation in 02, while enolase 2 and HSP3 showed
no alteration in accumulation (Table 1). Many of the lar-
gest differences in protein accumulation were reflected
in the transcript levels measured by transcript profiling
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Figure 2 2D SDS-PAGE analysis of W64A + and W64Ao02.
Non-zein proteins from W64A + (A) and W64Ao02 (B) lines were
extracted from mature endosperm flour and separated by 2D SDS-
PAGE. Circled, numbered spots were excised from gels and protein
identities were determined by MALDI-TOF peptide mass mapping
and correspond to the rows in Table 1.
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Table 1 Identity and expression differences of proteins separated by 2D SDS-page

Spot Genbank Annotation Fold-change
1 P04713 Granule-bound starch synthase 1

2 P04713 Granule-bound starch synthase 1

3 P04713 Granule-bound starch synthase 1

4 P04713 Granule-bound starch synthase 1

5 NP_001105896 enolase 1

6 NP_001105896 enolase 1

7 NP_001105371 enolase 2

8 NP_001105371 enolase 2

9 BAB11045 sorbitol dehydrogenase-like protein

10 BAB11045 sorbitol dehydrogenase-like protein

11 BAB11045 sorbitol dehydrogenase-like protein

12 BAB11045 sorbitol dehydrogenase-like protein

13 ACG32147 eukaryotic translation initiation factor 2 alpha

14 AAO63267 Legumin-like protein, complete

15 Q43247 Glyceraldehyde-3-phosphate dehydrogenase

16 Q43247 Glyceraldehyde-3-phosphate dehydrogenase

17 NP_001140424 triosephosphate isomerase

18 ACG35098 174 kDa class | heat shock protein 3

19 P04713 Granule-bound starch synthase 1 -2.5'
20 P04713 Granule-bound starch synthase 1 -2.1
21 P04713 Granule-bound starch synthase 1 -15
22 NP_001105896 enolase 1 13
23 NP_001105896 enolase 1 12
24 NP_001105896 enolase 1 1.1
25 NP_001105371 enolase 2 1.1
26 NP_001105371 enolase 2 13
27 BAB11045 sorbitol dehydrogenase-like protein -15
28 BAB11045 sorbitol dehydrogenase-like protein -12
29 BAB11045 sorbitol dehydrogenase-like protein -1.4
30 BAB11045 sorbitol dehydrogenase-like protein -1.2
31 ACG32147 eukaryotic translation initiation factor 2 alpha 1.2
32 AAO63267 Legumin-like protein, complete 1.5
33 Q43247 Glyceraldehyde-3-phosphate dehydrogenase 1.7
34 Q43247 Glyceraldehyde-3-phosphate dehydrogenase 1.8
35 AAA87580 Glyceroldehyde-3-phosphate dehydrogenase 16
36 NP_001149440 sorbitol dehydrogenase homolog1 2.7
37 ABA70761 sorbitol dehydrogenase 29
38 NP_001140424 triosephosphate isomerase, cytosolic 1.5
39 ACG35098 174 kDa class | heat shock protein 3 1.2
40 NP_001140424 triosephosphate isomerase, cytosolic 16

'Bold values indicate significant difference by ANOVA (p < 0.05; n = 3).
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at 22 DAP. The exceptions were GBSSI and enolase 1,
which had inconsistent fold-changes in multiple studies
[20-22]. This could be due to differences in genetic
backgrounds of the lines analyzed or the different envi-
ronments in which the materials were grown. However,
in the W64A background the transcript profiling and
proteomic data showed enolase 1 accumulation was
higher in 02 (Figure 2). Notably, there was a significant
increase (~1.8-fold) in the accumulation of GAPDH,
which contains over 8% lysine, but was not found to be
significantly different in transcript abundance in the
transcript profiling data. Likewise there was a >2.5-fold
increase in some SDHI isoforms and this protein con-
tains 4% lysine, which is lower than GAPDH, but nearly
two-fold higher than the typical total lysine content of
wild type maize endosperm. The increase in GAPDH
and SDH1 could contribute significantly to the elevated
level of lysine in W64Ao02, and the expression of these
very abundant proteins may be associated with the ex-
pression of translation elongation factor 1A (EFIA),
which is correlated with lysine content in maize endo-
sperm but is not sufficient to explain the total increase
in lysine content [61].

Validation of gene expression

Quantitative real-time polymerase chain reaction (qRT-
PCR) was performed for several genes encoding both up
and down regulated transcripts in W64Ao2 to validate
the results from the transcript profiling experiment
with endosperms from both genotypes at 22 DAP.
Retinoblastoma-related protein 1 (RRB1) was used as
the reference gene, because it is consistently expressed
in both genotypes (see Materials and Methods). The RIP
gene, b-32, was chosen as a positive control for qRT-
PCR, because it is known to be down regulated in 02
mutants [30]. Genes were selected based on the follow-
ing categories: 1) genes with expression that was highly
reduced in the 02 mutant in the profiling experiment,
such as proteosome regulatory subunit AAA-ATPase
(AAA-ATPase), stem-specific protein (TSJT1), 16-kDa
oleosin, CI-1B and BGAF, which had not been character-
ized in previous studies; 2) starch biosynthesis genes,
such as Zpul, starch branching enzyme IIb (BEIIb) and
GBSSI; 3) genes related to carbohydrate metabolism that
were changed in the transcript profiling or 2D SDS-
PAGE analysis, including GAPDH, sorbitol dehydrogen-
ase 1 (SDH1), TIM, enolase 1 and PGK; and 4) other
genes that showed changes in W64Ao02 according to
profiling results, such as actin2, leguminl, 17.4 kDa class
I heat shock protein 3 (HSP3) and LKR-SDHI1.

The relative expression levels of transcripts among
various samples in the qRT-PCR generally agreed with
the profiling results (Pearson correlation coefficient
r=0.80, ANOVA p <0.001; Additional file 2: Figure S1).
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However, in some cases the transcript fold-changes mea-
sured by Gene Calling were higher than those from
qRT-PCR. The transcript level of the known O2-
regulated gene b-32 was significantly reduced in 02 by
both transcript profiling and qRT-PCR (Figures 3A and
3B), consistent with previous reports [20-22]. The tran-
script levels of BGAF, 16 kDa oleosin, CI-1B, TSJT1 and
AAA-ATPase were all significantly reduced in 02, com-
pared to W64A + by qRT-PCR (Figure 3B) and Gene
Calling (Figure 3A and Additional file 1: Table S1). qRT-
PCR analysis also confirmed the expression of starch
synthesis genes that were found to be up regulated in 02
such as Zpul and BEIIb [20,22] (Figure 3). Although in
the case of Zpul, the increase was greater in the
GeneCalling results (2.27-fold versus 1.55-fold in qRT-
PCR). These results indicate that the majority of changes
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Figure 3 Confirmation of genes or proteins altered in W64A02 by
gRT-PCR. Expression of the indicated genes was analyzed in 22 DAP
endosperms of W64A + and W64A02 by GeneCalling transcript profiling
(A) or gRT-PCR to confirm the difference in expression in the transcript
profiling, or to measure the expression levels of genes that were
differentially expressed by 2D SDS-PAGE analysis (B). All expression
values are normalized relative to the expression of RRB1. Asterisks
indicate significantly different expression using the two-tailed t-test at a
level of p < 0.05. Note that the Y-axis is logarithmic to accommodate
the wide differences in gene expression levels among the transcripts.
Missing columns in A indicate that the gene was not among the genes
that had a confirmed identity in the transcript profiling data.
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in gene expression are the result of the 02 mutation, and
not the genetic background or environmental conditions
in the field. On the other hand, the expression of some
genes was not consistent, notably LKR-SDH and GBSSI.
As stated previously LKR-SDH was not significantly dif-
ferent in the transcript profiling data (Figure 3A), yet
when measured by qRT-PCR in individuals grown in a
different environment there was a significant difference
(Figure 3B). Likewise, the difference in the transcript
level of GBSSI was not consistent among previous
reports [20-22]. GBSSI transcript increased in 02
according to the GeneCalling analysis, but decreased sig-
nificantly based on the qRT-PCR analysis. These results
together with data from prior studies indicate that ex-
pression of GBSSI and LKR-SDH may be dependent on
both genotype and environmental conditions.

Carbohydrate metabolism-related genes significantly
affected in 02 by either GeneCalling or 2D SDS-PAGE
analysis were also examined by qRT-PCR. Of the genes
that were tested, only SDH1 showed significantly higher
expression in 02 at 22 DAP (Figure 3). Finally, the
expression of HSP3 and actin2 measured by qRT-PCR
did not agree with the GeneCalling results, but the
decreased level of actin2 in 02 was observed in other
experiments [21,22]. There is a possibility that this dif-
ference was due to primer specificity, since both HSP
and actin belong to multigene families and there are
other family members that share significant sequence
similarity. Therefore, multiple gene family members
could be detected at the same time in qRT-PCR.

Western blot analysis of opaque2 and wild type lines

Western blot analysis of 22 DAP W64A + and W64A02
maize endosperm was performed to extend the tran-
script profiling and proteomic analysis (Figure 4); quan-
titative measurement by densitometry is shown in
Table 2. In contrast to the gene expression data, the 02
mutants showed an increase in GAPDH protein abun-
dance by both 2D SDS-PAGE and by western blot ana-
lysis. This suggests that the GAPDH protein may be
particularly stable in endosperm cells and therefore ac-
cumulates to a substantially higher level than indicated
by its transcript abundance during seed development.
Although expression of actin2 was increased in 02 in the
transcript profiling data, no measurable protein differ-
ence was observed on western blots (Figure 4). However,
the anti-actin antibody available is reported to recognize
many isoforms of the protein across multiple kingdoms.
Therefore it was not specific for the product of the gene
that was up regulated in the present analysis. As
expected, EF1A was significantly higher in 02, whereas
other translation-related factors were either slightly
higher (translation initiation factor 5A, IF5A) or slightly
lower (ribosomal protein S6, S6RP) in W64Ao02.
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Figure 4 Western blot analysis of selected proteins in W64A +
and W64Ao02. Western blots were performed using antisera against
the proteins indicated on the left. Three replicate samples for each
line were obtained from independent ears frozen at 22 DAP and

25 g of protein from each was separated by SDS-PAGE followed by
western blotting. Each band was analyzed by densitometry and the
fold change values calculated for each protein and the values are
presented in Table 2.

However, there were no measurable differences in
eukaryotic translation initiation factor 4G (elF4Q),
eukaryotic translation initiation factor 2 alpha subunit
(eIF2a), or eukaryotic translation initiation factor 4E
(eIF4E) (not shown). Analysis of starch biosynthetic en-
zymes showed that BEIIa and BEIIb were not different be-
tween 02 and wild type. However, there was increased
accumulation of starch synthase Ila (SSIla) and starch
branching enzyme I (BEI) in 02. Both of these enzymes

Table 2 Densitometry analysis of western blots of wild
type and opaque2 endosperm extracts

W64A+ W64A02
Protein  Mean SD  Mean SD  Fold-change p'
GAPDH 9.80 0.65 1473 0.94 1.50 0.002
EFT1A 2.57 0.82 7.19 0.62 2.79 0.001
S6RP 7.16 0.59 503 091 -143 0.03
IFSA 8.19 0.88 937 161 1.14 033
Actin 2.84 0.78 247 0.23 -1.15 047
BGAF 7.55 1.62 223 0.38 -3.38 0.005
SSlla 2.68 043 374 0.87 140 0.13
SSHI 5.22 0.79 6.35 0.84 122 0.17
BEI 0.69 0.07 204 0.54 297 0.01
BElla 3.08 0.17 374 0.67 1.21 0.18
BEIlb 583 0.64 7.52 1.02 129 0.07

"p-value for two tailed Student’s t-test. Bold figures are significantly different
at a level of p<0.05 (n=3).
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have significant effects on starch structure when mutated
or knocked down by RNAi, which results in the accumula-
tion of amylopectin with relatively short glucan chains
[62,63]. In contrast, BEI preferentially produced longer
chain length branches (>16) compared with BEIIb, which
preferentially produced shorter branches (<12) in an
in vitro assay [64]. Together, these observations suggest
that in the W64A02 mutant the average chain length of
amylopectin branches would be greater than in W64A +.

Analysis of starch

The expression of several starch biosynthesis genes var-
ied between W64A +and W64A02 based on gene ex-
pression analysis and 2D SDS-PAGE. Interestingly, 02
was the only mutant among eight different isogenic
opaque mutant lines that showed significant expression
differences in starch biosynthesis genes ([22], Gibbon
and Larkins unpublished). Because levels of several
starch biosynthesis enzymes were altered in 02, SSlIla
and BEI in particular, the properties of the starch from
W64A +and W64A02 were analyzed by differential
scanning calorimetry (DSC) to determine if these
changes affected the starch structure. The onset and
peak endotherm temperatures as well as the total en-
thalpy of gelatinization were significantly higher for
W64A02 (Table 3). The higher values for these thermal
properties in 02 are consistent with starch that has lon-
ger amylopectin branches and higher crystalline starch
content. To further characterize the structure of the
starch, the amylopectin branch length distributions of
W64A + and W64A02 were measured. Debranched
starch glucans were separated by capillary electrophor-
esis and the resulting branch length distributions were
compared (Figure 5). The two genotypes had similar
molar percent content of glucans, but the distribution of
glucans from W64Ao2 was shifted toward a higher de-
gree of polymerization (Figure 5A). A difference plot
clearly showed a marked increase in glucan chains with
a degree of polymerization between 15 and 25 glucose
subunits in W64Ao02 (Figure 5B). These results were
similar to what was previously observed for 02 in the
CM105 inbred line [49]. Together, the western blot ana-
lysis and analysis of starch structure suggest that en-
hanced BEI or SSIIa activity results in amylopectin with
significantly longer glucan chains in W64Ao02. These
changes in the crystallinity and branching pattern of

Table 3 DSC analysis of W64A + and W64A02 starch

W64A+ W64A02 p'
Onset (°C) 6802 + 0659 7138+0.169 <0001
Peak Endotherm (°C) 71.84+0.846 74.65+0.172 <0001
Total Enthalpy (J/G) 11.29+083 1439+ 1.00 <0001

'Student’s t-test.
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Figure 5 Amylopectin branch length analysis. Solubilized starch
was de-branched in the presence of isoamylase and the resulting
glucan chains were separated by capillary electrophoresis.
(A) Histograms of the distribution of glucan chains were similar but
W64A02 was shifted toward a higher degree of polymerization.
(B) Difference plot was calculated by subtracting the W64A + values
from the W64A02 values showed a substantial increase in chains
with a degree of polymerization between 15 and 25 glucose
subunits. The histograms represent the average of three replicates
for each genotype.

W64A02 starch may alter the association of the starch
granules with endosperm proteins and thus promote for-
mation of a soft, opaque phenotype.

Conclusions

The analysis of opaque2 transcription patterns by Gene
Calling significantly expanded the results of previous
studies using microarrays, and by combining transcript
profiling with proteomic analysis, we were able to docu-
ment the presence of certain abundant lysine-containing
proteins related to primary carbon metabolism. This is
consistent with prior proteomic analyses of developing
kernels [25], but the relative levels appear to be
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proportionally much higher in mature kernels. The two
proteins that appeared to be most abundant were SDH1
and GAPDH, which have lysine contents of 4.2 and 8.5
percent, respectively. Especially for GAPDH, its rela-
tively high accumulation in mature endosperm could
contribute a substantial proportion of the total increased
lysine observed in 02. The results could explain the rela-
tively high lysine content of W64A02 endosperm, and
the basis of the phenotypic variability for this trait
among maize inbreds [65].

Additional genes that contribute to the deleterious
phenotypes of 02 and that appear to be related to pest
resistance were identified in this analysis. RIP is a well-
known o2 target gene and plays a role in the defense
against fungal pathogenesis [66]. Likewise, BGAF was
strongly down regulated, and it is suggested to have a
role of concentrating beta-glucosidase at wound sites to
promote activation of glycosylated defense compounds
[31]. Other down regulated defense proteins included
Cl-1B, BAP2, and defensin SD2. Down regulation of
such defense proteins may synergistically contribute to
the high susceptibility of 02 to fungal and insect pests.
Investigation of these genes in 02 or modified 02
backgrounds may aid in the development of better
performing high lysine maize lines.

Finally, 02 was the only opaque mutant to show sig-
nificant alteration of starch biosynthetic gene expression.
In particular, the up regulation of BEI and/or SSlIa ap-
pears to explain the production of starch granules that
are more highly crystalline in character, which could
contribute to the opaque phenotype. Former studies in-
dicated that an alteration in starch granule structure
could be an important contributor to the restoration of
vitreous endosperm by 02 modifiers in QPM [49]. Our
recent studies indicate that pullulanase activity is signifi-
cantly higher in QPM and correlates well with the extent
of endosperm modification, and this change is most
likely due to a reduction in glucan chain length relative
to soft 02 mutants (Wu and Gibbon unpublished data).
Therefore, manipulation of starch quality by transgenic
means or naturally occurring alleles of BEI or SSIla may
be a way to enhance kernel quality and suppress the
opaque phenotype for the improvement of QPM or
other high lysine maize lines.

Methods

Transcript profiling by GeneCalling™

Plants of the nearly-isogenic maize (Zea mays L.) inbred
lines W64A + and W64A02 [22] were grown in the sum-
mer of 1998 in field plots at the Pioneer Hi-Bred Inter-
national genetic nursery in Johnston, IA. Well-filled ears
of each inbred line were harvested 22 DAP and immedi-
ately frozen in liquid nitrogen. To minimize the effect of
biological variation between ears on the gene expression
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analysis, equal numbers of endosperms from the middle
portion of three ears were pooled. Total RNA was iso-
lated using the PUREscript kit (Gentra Systems, Inc.,
Minneapolis), and mRNA profiling was performed at
Curagen (New Haven, CT) by GeneCalling™ [26]. In
brief, ¢cDNA was synthesized from three indepen-
dently pooled W64A +and three independently pooled
W64A02 endosperm samples (biological repetitions).
Each of the six ¢cDNA preparations was divided into
three aliquots (technical repetitions) to provide nine rep-
etitions per genotype for profiling analysis. Each ¢cDNA
aliquot was digested with 47 different combinations of
restriction enzyme pairs. Fragments from each digest
were ligated to adapters; the fragments were amplified
with primers that have unique tags (biotin on one end,
fluorescent marker at the other). Labeled fragments were
purified using streptavidin beads and resolved by
high-resolution gel electrophoresis to generate traces
showing peaks whose position and height represented
M, and abundance of ¢cDNA fragment(s), respectively.
GeneCalling " software compiled a list of differentially
abundant fragments and assigned a ranking (signifi-
cance) to each detected difference. The software further
searched a nucleic acid database for fragments with the
same length and end sequences and predicted likely gene
candidates. The identity of predicted fragments was con-
firmed by competitive amplification with an unlabeled
gene-specific primer (“poisoning”) or by cloning and
sequencing the fragment [26]. A file containing the
confirmed gene sequence tags is provided as Additional
file 3.

Confirmation of expression differences by quantitative
real-time PCR

Plant materials

W64A +and 02 kernels for quantitative polymerase
chain reaction (qQRT-PCR) and western blotting were
grown in Elm Mott, TX during the summer of 2012.
The kernels were harvested at 22 DAP and kept frozen
at -80°C. Three ears of each genotype were used as
three biological replicates. Six endosperms of each ear
were dissected and ground to a fine powder in liquid ni-
trogen using a mortar and pestle. For RNA isolation, up
to 0.1 g of the materials were used. For protein extrac-
tion, 50 mg were weighed and homogenized in borate
extraction buffer (12.5 mM NaBOs;, 1% [w/v] sodium
dodecyl sulfate and 2% [v/v] 2-mercaptoethanol).

RNA isolation, cDNA synthesis and qRT-PCR

Total RNA was isolated from frozen endosperms
using Purelink™ Plant RNA Reagent (Invitrogen,
Carlsbad, CA) following the manufacturer’s instruc-
tions. RNA samples were diluted to a final concen-
tration of ~100 ng/pl and quantified on a NanoDrop
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ND-1000 UV/Vis spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE), the purity of which was
checked by the ratio of absorptions at 260 nm and 280 nm
and all the samples had a ratio > 2.0. First-strand cDNA
was synthesized from 1 pg of RNA using qScript’ cDNA
SuperMix (Quanta Biosciences, Gaithersburg, MD) and
subsequently diluted 10-fold in water.

Primers for qRT-PCR were designed to amplify
a 150-300 bp region of selected genes based on Primer3
Plus software (http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi). Primers were designed
for a 62°C annealing temperature and to span exon-
exon junctions in order to control for genomic DNA
contamination (Additional file 4: Table S2).

For gene expression analysis, qRT-PCR was performed
in a 72-well rotor using the Corbett Rotor-Gene" 3000
(Qiagen, Velancia, CA). Each 20 pl reaction contained
10 pl PerfeCTa® SYBR® Green FastMix® (Quanta Bio-
sciences, Gaithersburg, MD), 2.5 pl 10-fold diluted
¢DNA or 1 pl plasmid standards with copy numbers
from 10° to 10% and 1 puM of each primer. The PCR
program was as follows: 50°C hold for 2 min for auto
gain optimization, 95°C initial denaturing for 10 min,
50 cycles of 95°C for 15 s and 60°C for 1 min. Melting
curves were obtained by heating from 55°C to 95°C with
a 1°C per second ramp rate to confirm single amplicons.
Expression levels of genes in W64A + and W64A02 were
normalized against the expression of RRB1 gene in the
corresponding genotypes [67], since it was not differen-
tially expressed between the two genotypes in prelimin-
ary experiments. Normalization of Gene expression was
performed using the Q-Gene Core Module file [68]. Statis-
tical differences of gene expression levels between W64A +
and W64A02 were evaluated with unpaired two-tailed stu-
dent’s t-test, and the agreement of gene expression levels
from transcript profiling and qRT-PCR results were calcu-
lated with Pearson correlation coefficient with significance
determined by ANOVA, using the JMP statistical software
(SAS Institute Inc., Cary, NC).

Kernel protein extraction, SDS-PAGE and western blotting
Total soluble proteins from maize kernels were extracted
with borate extraction buffer containing 12.5 mM sodium
borate, 1% (w/v) SDS, 2% [B-mercaptoethanol, pH 10 [69].
One ml of borate extraction buffer was added to 50 mg
ground kernels and incubated with shaking for at least 2 h
at room temperature. Insoluble cell debris was removed
from the crude extract by centrifugation for 15 min at
16,000 x g at room temperature. The cleared protein ex-
tracts were aliquoted and stored at —80°C.

Twenty-five pug of total protein from each sample were
separated by 12% SDS-PAGE in 1X SDS-PAGE running
buffer (25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS)
and then transferred to a BioTrace" PVDF membrane
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(Pall Corporation, Pensacola, FL) using a TE 22 Mighty
Small Transphor Tank Transfer Unit (GE Healthcare,
Piscataway, NJ). The quality of protein transfer was
visually checked using pre-stained protein markers
(Precision Plus Protein’" All Blue standards, Bio-Rad,
Hercules, CA) and staining the membrane with Ponceau
S (0.1% [w/v] in 5% [v/v] acetic acid). The membrane
was blocked with 3% non-fat dry milk powder in 1X
TBST buffer (10 mM Tris—HCI, Ph 8.0, 150 mM NaCl,
0.1% (v/v) Tween-20) for 1 h at room temperature with
shaking.

Primary antibodies for immunoblots were as follows:
RPS6 provided by Julia Bailey-Serres; BGAF provided by
Asim Esen; GAPDH provided by Ming-Che Shih; elF2q,
elF4E, and elF4G provided by Karen Browning; SSlIla
provided by Hanping Guan; SSIII, BEI and BEIla/b pro-
vided by Alan Myers; anti-actin mouse monoclonal anti-
body (Cat. No. A0480, Sigma St. Lois MO). Membranes
were incubated with primary antibodies diluted in TBST
(1:1000 to 1:3000, based on the antibody titer) for 1 h at
room temperature or overnight at 4°C, washed with TBST
and then incubated for 1 h at room temperature with
secondary antibodies (horseradish peroxidase-conjugated
goat anti-rabbit or goat anti-mouse; Invitrogen, Carlsbad,
CA) diluted in TBST (1:30,000). After washing with TBST,
the membrane was treated with 1 ml SuperSignal West
Pico Chemiluminescent Substrate (Pierce, Rockford, IL)
for 2 min and the signals were detected using the Ultra-
LUM Gel Imager System and UltraQuant 6.0 software
(Ultra-Lum, Incorporated, Claremont, CA). The intensity
of bands was quantified using the Image] software [70]
and statistical differences of protein expression levels
between W64A + and W64A02 were evaluated with un-
paired two-tailed student’s t-test with the JMP statistical
software (SAS Institute Inc., Cary, NC).

2D SDS-PAGE

Endosperms from mature kernels were isolated by
soaking overnight in ddH,O at 4°C. Pericarp and embryo
were removed and the endosperms dried in a freeze
dryer; dried endosperms were ground to flour with a
bead mill. Flour samples were extracted in borate extrac-
tion buffer with shaking overnight at 37°C [69]. Protein
extracts were fractionated into zein and non-zein frac-
tions by precipitation in 70% ethanol; the non-zein pro-
tein pellet was washed twice with 70% ethanol, dried
and resuspended in IPG rehydration buffer (8 M urea,
2% CHAPS, 20 mM dithiothreitol, 0.005% bromophenol
blue). Samples were loaded into immobilized pH 4-7
gradient strips directly during the rehydration of the gel.
The first dimension separation was performed according
to the manufacturer’s directions on either a Multiphor II
or Ettan IPGphor 2 (GE Healthcare, Piscataway, NJ). The
second dimension separation was performed using the
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Mini-Protein II vertical gel apparatus (Bio-Rad, Hercules,
CA) according to the manufacturer’s directions. Proteins
were visualized with Coomassie brilliant blue. Gels were
compared and spot intensities quantified using Prodigy
SameSpots gel analysis software (Nonlinear Dynamics,
Newcastle upon Tyne, UK).

Protein identification

Protein spots of interest were excised from the acryl-
amide gel and digested with trypsin using an in-gel
digestion procedure. Briefly, gel pieces were destained by
incubating in 50% acetonitrile 15 min at room tempe-
rature with two to three changes of solution. The gel
pieces were dried in a Speed-Vac drier for 1 h, and were
rehydrated by incubating in trypsin digestion buffer
(50 mM ammonium bicarbonate, 5 mM CaCl,, 15 pg/ml
sequencing grade trypsin (Sigma, St. Louis, MO)) for
10 minutes. Excess buffer was removed and enough
trypsin-free digestion buffer was added to barely cover
the gel pieces; the samples were then incubated over-
night at 37°C. The buffer solution was removed to a
fresh tube and the gel pieces were washed two times by
incubating in 50% acetonitrile with 1% formic acid for
5 minutes and combined with the original supernatant.
Peptides were concentrated and de-salted using C-18
Zip-Tips (Milipore, Billerica, MA) according to the
manufacturer’s instructions.

Protein identification was performed by MALDI-TOF
peptide mass mapping at the University of Arizona Mass
Spectrometry facility. The peak lists derived from the
mass spectra were searched against the Genbank non-
redundant database updated 7/1/11 using the ProFound
peptide mapping tool ([71]; http://prowl.rockefeller.edu/).
Searches were performed using monoisotopic masses with
the following parameters: taxonomy, other green plants;
constant modification, iodoacetamide; Partial modifica-
tion, methionine oxidation; mass tolerance, 200 ppm.

Analysis of starch structure
Starch granules were purified essentially as described by
Gutierrez et al. [72]. Mature kernels were soaked in
0.5% Na,S,05 at 50°C for 24 h. The endosperm was dis-
sected from the pericarp and germ, and ground lightly
in a mortar. The sample was blended with 50 mM NaCl
for 30 s and filtered through two layers of Miracloth
(Calbiochem, San Diego, CA). The filtered material was
extracted and pelleted by centrifugation five times in 1:4
toluene: 50 mM NaCl, followed by extraction two times
with acetone. The starch was dried for 48 h before use.
Dried starch was weighed and suspended in a 1:3 [w:v]
slurry in deionized water. The slurry was sealed in her-
metic pans for DSC. The sample pan was loaded into
the DSC instrument (Q200, TA Instruments, New Castle,
DE) sample pedestal and the reference pedestal held an
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empty hermetic pan. The sample was equilibrated at 35°C
and then a DSC scan was performed from 35-95°C
heating at 5°C/min. The onset temperature, peak
endotherm and total enthalpy were calculated using the
TA Universal Analysis 2000 software (TA Instruments,
New Castle, DE).

Amylopectin glucan chain length distributions were de-
termined by capillary electrophoresis. Starch was dissolved
in DMSO by heating to 95°C for 15 minutes. A small sam-
ple of the dissolved starch was debranched by isoamylase
(Megazyme, Wicklow, Ireland) and the resulting glucans
were labeled with 8-amino-1,3,6-pyrenetrisulfonic acid in
the presence of sodium cyanoborohidride. A sample of the
labeling reaction was diluted and the fluroescently labeled
glucan chains were separated and quantified by fluo-
rescence-assisted capillary electrophoresis. Histograms of
the percentage of area for each peak were plotted and
compared.

Additional files

Additional file 1: Table S1. Gene expression values for differentially
expressed bands with confirmed sequences.

Additional file 2: Figure S1. Correlation analysis of gRT-PCR and
transcript profiling gene expression values. To examine reproducibility for
measurement of gene expression, the values for genes confirmed by
gRT-PCR were plotted against the values measured by GeneCalling
transcript profiling. A Pearson correlation analysis was performed
(r=0.80) and the statistical significance of the linear regression was
tested by ANOVA (p < 0.001). The value of b-32 from gRT-PCR was
determined as a significant outlier by Grubbs' test and therefore the
fold-change values of b-32 from both tests were removed from the plot
and regression analysis.

Additional file 3: Sequence tags used to determine gene identities.
FastA formatted sequence text file. The sequences for each band that
were confirmed by either competitive PCR or sequencing of the band
were used to determine gene identitiy by searching the non-redundant
genbank database using the basic local alignment and search tools
BLASTN and BLASTX.

Additional file 4: Table S2. qRT-PCR primer sequences.
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