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Abstract

photosynthesis was further investigated.

tolerance.

Background: In the context of global climate change, heat stress is becoming an increasingly important constraint
on grapevine growth and berry quality. There is a need to breed new grape cultivars with heat tolerance and to
design effective physiological defenses against heat stress. The investigation of heat injury to plants or tissues under
high temperature is an important step in achieving these goals. At present, evaluation methods for heat injury
include the gas exchange parameters of photosynthesis, membrane thermostability, chlorophyll content etc,;
however, these methods have obvious disadvantages, such as insensitivity, inconvenience and delayed information.
An effective and convenient method for investigating the heat injury of grapevine must be developed.

Results: In this study, an investigation protocol for a critical temperature (47°C) and heat treatment time (40 min)
was developed in detached grape leaves. Based on the results, we found that the OJIP test was superior to
measuring electrolyte leakage or photosynthetic O, evolution for investigating the heat injury of three cultivars of
grapevine. Heat tolerance of 47 grape species and cultivars was evaluated through investigating heat injury using
the OJIP test. Moreover, the electron transport chain (donor side, acceptor side and reaction center) of PSIl in

Conclusions: The OJIP test was a rapid, sensitive and convenient method for investigating heat injury in grapevine.
An analysis of PSII function using this method indicated that the acceptor side was less sensitive to heat than was
the donor side or the reaction center in grape leaves. Among the 47 taxa evaluated (cultivars, hybrids, and wild
species), heat tolerance varied largely in each genotype group: most wild species and hybrids between V. labrusca
and V. vinifera had relatively strong heat tolerance, but most cultivars from V. vinifera had relatively weak heat

Background

Grapevine is the most economically important fruit crop
in the world, with its berries both eaten fresh and used
for making wine, jam, juice, jelly, raisins and vinegar.
Viticultural production is famously sensitive to climate
[1-3], and temperature and moisture regimes are among
the primary elements of grape terroir [3,4]. In many pro-
duction regions, the maximum midday air temperature
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may exceed 40°C, with some regions exceeding 45°C
[5-7]. High temperatures influence the development of
plants and inhibit leaf photosynthesis. Exposure to high
temperatures during flowering significantly inhibits berry
set [8]. After fruit set, high temperatures are generally
not favourable to the development secondary metabo-
lites such as phenolic compounds [9,10] and aromatic
volatiles [7]. High temperatures stimulate sugar accumu-
lation [8], resulting in the production of wines with
higher alcohol concentrations. To cope with heat stress,
it is necessary to breed new cultivars with strong heat
tolerance and to design effective physiological defenses
against heat stress. Consequently, developing an effective
and convenient method for evaluating the heat stress is
a key goal.
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At high temperatures, cell injury and even death may
occur, which may be attributed to a catastrophic collapse
of cellular organization [11]. Several physiological traits
have been investigated as indicators of heat injury: gas
exchange parameters of photosynthesis, including net
photosynthesis rate, photosynthetic O, evolution rates
and stomatal conductance [12-17]; membrane thermo-
stability, including electrolyte leakage and the content of
thiobarbituric acid-reactive-substances (TBARS) [18-20];
chlorophyll content [21-23]. However, these methods all
have disadvantages, including insensitivity, inconveni-
ence in field studies and the delay of information be-
tween the initial damage and the measurable effect(s).
At present, a rapid, sensitive and convenient method of
investigating heat injury for evaluating heat tolerance in
grapevine must be developed.

The cell membrane is thought to be a site of primary
physiological injury by heat stress [24]. The injury
inflicted on leaf tissues under high stress weakens the cell
membrane, which leads to a leakage of electrolyte out of
the cell. Thus, measuring electrolyte leakage is a common
evaluation method for heat injury. Photosynthesis, which
is the basis of yield and quality and has long been recog-
nized as one of the most heat-sensitive processes in plants
[11], depends on the thylakoid membrane. However, it
is difficult to evaluate the heat injury for a large number
of plants by measuring the net photosynthesis rate with
a photosynthesis system (such as the Li-6400) or the
photosynthetic O, evolution rates with an oxygen elec-
trode system due to the time required per plant. Three
major heat-sensitive sites occur in the photosynthetic
apparatus or process: the photosystems, mainly photo-
system II (PSII), and the ATP-generating and carbon as-
similation processes [25,26]. Inactivation of PSII by heat
stress is related to damage of the donor side, the reac-
tion center and the acceptor side of the photosystem’s
electronic transport chain [27]. The inhibition of PSII
leads to a change in variable chlorophyll 4 fluorescence,
and in vivo chlorophyll may be used to detect changes
in the photosynthetic apparatus [28,29]. Strasser et al.
[30] developed a method (chlorophyll a fluorescence
transient) for the analysis of the kinetics of fast fluores-
cence increases, using nondestructive measurements
that can be taken with a high resolution of 10 us. All
oxygenic photosynthetic materials investigated to date
have shown a polyphasic increase in fluorescence consist-
ing of a sequence of phases, denoted as O, J, I and P.
Therefore, the measurement of this chlorophyll a fluores-
cence transient is also called the OJIP test. The OJIP test
has become a powerful tool for the in vivo investigation of
PSII functioning, including its energy absorption, trapping
and electron transport [28,30-33]. In crops such as wheat,
cabbage and raspberry, the OJIP test has been applied
in the investigation of heat injury [34-36]. However, no
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complete comparison study has yet been conducted be-
tween the OJIP test and traditional methods such as the
measurement of electrolyte leakage and photosynthetic
O, evolution rates, and no information exists on the use
of OJIP parameters for identifying heat tolerance in
grapevine germplasm.

The aims of this study were as follow: (1) to establish
a heat stress protocol for grapevine; (2) to determine
which method among the OJIP test, the measurement of
photosynthetic O, evolution rates and electrolyte leakage
was superior for assessing the heat injury of grapevines;
and (3) to evaluate the heat tolerance of 47 grapevine
species or cultivars through determining heat injury by
the best method.

Results

The critical temperature (T,) for the investigation of heat
injury of grapevines

For investigating the heat injury of grapevines, a critical
temperature (T.) was first established. According to Weng
and Lai [37], T, may be determined from the intersection
of the two regression lines extrapolated from the slow-
and fast-rising portions of the temperature-dependent
F, and F,/F,, responses obtained from the OJIP test
(see Method section). As shown in Figure 1, F, and F,/F,
responded differently to a gradual increase of tempe-
rature in the leaves of ‘Jingxiu’, ‘Riesling’ and spine
grape. These values remained relatively stable below a
critical temperature, then started to increase (F,) or de-
crease (F,/F,,) sharply. Little difference was observed in
the critical values of ‘Jingxiu’, ‘Riesling’ and spine grape:
all were approximately 47°C based on the F,/F,, (from
46.5°C to 47.8°C) and F, (from 46.5°C to 47.1°C) values.
Therefore, 47°C was selected as the T, for evaluating the
heat injury of grapevines.

The comparison of investigation methods for heat injury
of grapevines under T,

The electrolyte leakage, photosynthetic O, evolution rate
and OJIP test have all been used to evaluate the heat tol-
erance of plants [19,20,26,38,39]. We further compared
the characteristics of the above methods using the re-
sponses of leaf discs from ‘Jinxiu’, ‘Riesling’ and spine
grape to heat stress at T, over 50 min. In the OJIP test,
we chose parameter F,/F,, to investigate heat injury. In
the photosynthetic O, evolution rate and electrolyte
leakage methods, the O, evolution rate and relative in-
jury index (RII) (indicating the degree of injury to the
cell membrane) were used as investigation parameters,
respectively. Following heat stress at T, the F,/F, and
O, evolution rate values of the three grapevines grad-
ually declined, while their RII values increased (Figure 2).
However, the sensitivity to heat stress varied among
the three cultivars. Significant differences in F,/F,,
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Figure 1 Establishing the critical temperature (T.) for investigating the heat injury of grape leaves using the chlorophyll a fluorescence
parameters F,/F,, and F,. T. was determined from the intersection of the two regression lines extrapolated from the slow- and fast-rising
portions of the temperature-dependent F./F, and F,, response.
A\

were observed among the three cultivars until after
20 min of heat stress, and significant differences in O,
evolution rates and RII were seen until after 30 min of
stress. Significantly lower F,/F,, and O, evolution
rates, as well as a higher RII, were observed in ‘Jinxiu’
than in spine grape. The values of the three parameters
in ‘Riesling’ fell between those of ‘Jinxiu’ and spine
grape. At 40 min after the application of heat stress,
the three cultivars differed significantly for F,/F,,, O,
evolution rate and RII. Moreover, at this point, the dif-
ference among the three cultivars for F,/F,, was signifi-
cantly larger than for O, evolution rate or RII. At the
end of the experiment, i.e., 50 min after the leaf discs
were subjected to heat stress, there was a significant
difference only in F,/F,, among the three cultivars. For
both O, evolution rate and RII, the significant differ-
ences disappeared between ‘Jingxiu’ and ‘Riesling’. In
general, the heat injury of spine grape was the least,
followed by the tolerances of ‘Riesling’ and ‘Jinxiu’
(Figure 2). The data indicated that 40 min is an appro-
priate duration of heat stress at T, (47°C) for investi-
gating the heat injury of grapevines and that the OJIP
test was the most suitable among the three methods
due to the sensitivity of its parameters.

Electron transport chain of PSIl in grapevines under T,

The OJIP test may also reveal information regarding the
electron transport chain of PSII [32]. The response of
the electron transport chain of PSII to heat stress under
T. (47°C) was investigated using the OJIP test in ‘Jingxiu’,
‘Riesling’ and spine grape. The value of W) expresses the
changes of the amplitude in the K step in the OJIP test,
which is used as a specific indicator of damage to the PSII
donor side. In general, the Wy values of the three cultivars
increased sharply by 10 min after the initiation of heat
stress, then increased more slowly in ‘Jingxiu’ and ‘Ries-
ling’ from 10 to 50 min over the experiment (Figure 3A).
However, the W) of spine grape changed little after
10 min and was significantly lower than that of the other
two cultivars throughout the heat stress period. RCq4 in-
dicates the density of the PSII reaction centers [40,41].
The RCq, in all genotypes declined rapidly within 10 min
of heat stress and continued to decrease slowly over the
experiment at T.. The density of RCq, in spine grape was
significantly higher than in the other two cultivars after
10 min (Figure 3B). The changes in the quantum yield of
electron transport (¢g,) in the grape leaves during heat
stress are shown in Figure 3C. ¢k, was used as an indica-
tor of the acceptor side of the electron transport chain of
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Figure 2 Comparison of the three investigation methods (OJIP
test, photosynthetic O, evolution and electrolyte leakage) for
foliar heat injury in three grape cultivars ("Jingxiu’, ‘Riesling’
and spine grape) under the critical temperature (47°C). F./F,
represents the OJIP test method; Rll represents the electrolyte
leakage method; and the O, evolution rate represents the
photosynthetic O, evolution method. Each value represents the
mean of five replicates, and the error bars represent + S.E.

PSIT [40,41]. Heat stress at 47°C altered the ¢g, values in
the grape leaves of all three cultivars. These values were
stable after 10 min of heat stress but rapidly decreased
thereafter. The spine grape and ‘Riesling’ had higher ¢,
values than did ‘Jingxiu’.

Evaluation of heat tolerance in 47 cultivars (or species) of
grapevine under T,

Generally, heat injury under heat temperature may indir-
ectly reflect heat tolerance in plants. The more serious
heat injury, the weaker heat tolerance. In this study, for
evaluating heat tolerance of 47 grape cultivars (or species),
the parameter F,/F, of the OJIP test was chosen to
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Figure 3 The response of the electron transport chain of PSlI,
including the donor side (W,) (A), reaction center (RCqa) (B)
and acceptor side (@g,) (C) parameters, of the leaves of three
grape cultivars (‘Jingxiu’, ‘Riesling’ and spine grape) under the
critical temperature (47°C). Each value represents the mean of five

replicates, and the error bars represent + SIE.

investigate their heat injury under T.. We measured the
E,/F, of these genotypes in May, June and July of 2012
and June and July of 2013. Positive correlations for the
F,/F., values in these grape leaves were observed among
the different sampling times (Table 1). Our experiment
was conducted in Beijing (latitude from 39°26' to 41°03',
longitude from 115°25' to 117°30"), where the average
daily temperature (16°C-25°C) and lower rainfall in
May are more suitable for grapevine growth than are
conditions in June and July. Therefore, only the data
from May 2012 are reported in this paper, as shown in
Table 2. The F,/F, values varied greatly with the genetic
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Table 1 Correlation analysis of the chlorophyll a fluorescence parameter F,/F,,, among different sampling times in

grape leaves under a heat stress of 47°C for 40 min

Fy/Fn (05/2012) Fy/Fm (06/2012)

F/Fm (07/2012) Fy/Fm (06/2013) Fy/Fm (07/2013)

Fu/Fm (05/2012) 1 0.834** 0.623** 0.542%* 0.602**

F/Fm (06/2012) 1 0.695** 0.683** 0.580**

F/Fm (07/2012) 1 0.640%* 0411%*

Fu/Fm (06/2013) 1 0.480**
)

Fo/Fm (07/2013

1

The asterisks * and ** indicate a significant correlation at P < 0.05 and P < 0.01, respectively.

backgrounds in each genotype group, especially in V.
vinifera. Most wild grapevines had higher F,/F,, values
than did domesticated cultivars. The highest F,/F,
value was found in V. davidii (1, number in the Table 2,
same below) at 0.68, followed by a value of 0.62 in V.
ripara (10). V. rubra (9) had the lowest F,/F,, value at
only 0.39. Interspecific hybrids among wild grapevines
had moderate F,/F,, values, ranging from 0.54 to 0.32
with an average value of 0.43. However, interspecific
hybrids between V. vinifera and V. labrusca had relatively
high F,/F, values. The highest F,/F,, values were found in
‘Kangtai’ (18) at 0.68, followed by ‘Mitsushiru’ (19) at 0.65.
‘Jingyou’ (26) had the lowest F,/F,, value at 0.34. The
F,/F, values of the cultivars of V. vinifera ranged from
0.68 to 0.34, and most cultivars had lower F,/F,, values.
The highest F,/F, values were found in ‘Riesling’ (28)
and ‘Cabernet Sauvignon’ (29) at 0.63 each, followed by
‘Black Balad’ at 0.61. ‘Jingyu’ (42), ‘Muscat Hamburg’ (45),
‘Cabernet Franc’ (43) and ‘Yan73’ (44) all had very low
F,/F., values of only 0.25, 0.24, 0.23 and 0.20, respectively.

To reveal the relationship between the electron trans-
port chain of PSII and the heat tolrance of grape leaves,
the F,/F,,, Wi, RCqa and ¢, of the 47 grape cultivars
(or species) were further analyzed using correlation ana-
lysis based on the data from May 2012. Table 3 shows
that F,/F,, was positively correlated with RCqa and ¢g,
but negative correlated with W)y, indicating that higher
F,/F,, values were associated with higher RCy, and ¢,
values but lower Wy values. These results suggest that
the heat tolerance of grapevine is associated with the
electron transport chain, including the donor side, reac-
tion center and acceptor side of PSII.

Discussion

Methods of investigating heat injury in grapevines

As determined by Weng and Lai [37], T, was easily cal-
culated as 47°C using the OJIP test parameters of F, and
F,/Fp.. Based on this result, the heat injury of ‘Jingxiu’,
‘Reisling’ and spine grape was investigated using three
methods (OJIP test, photosynthetic O, evolution rates
and electrolyte leakage). These methods led to the same
conclusion: the heat injury of spine grape was the least,
followed by ‘Riesling’ and ‘Jinxiu’. Although the three

methods obtained the same results, they exhibited differ-
ent characteristics. First, the processes of measuring elec-
trolyte leakage and photosynthetic O, evolution rates were
more complex and required more time than the OJIP test
(see Methods section for details). Second, the measure-
ment of electrolyte leakage and photosynthetic O, evolu-
tion rates must be conducted in the lab and requires small
leaf discs. The former method requires a conductivity
meter and a water bath, while the later requires an oxygen
electrode system, a computer and a water bath. The OJIP
test can be conducted in the lab or the field, and either leaf
discs or whole leaves may be measured using the Handy
Plant Efficiency Analyzer (volume: 175 x 80 x 40 mm?;
Weight: 0.65 Kg). Third, measuring electrolyte leakage or
photosynthetic O, evolution rates yields only a single par-
ameter, but the OJIP test can produce several parameters,
including information regarding the electron transport
chain of the photosynthetic apparatus. Fourth, the sensi-
tivity of the three methods differed. As shown in Figure 2,
significant differences in the F,/F,, and O, evolution rate
values among ‘Jinxiu’, ‘Riesling’ and spine grape appeared
after 30 min of heat stress at T,, but differences in the RII
values appeared only after 40 min. After 50 min of heat
stress at T, the differences in O, evolution rate and RII
values between ‘Jinxiu’ and ‘Riesling’ disappeared, but the
differences of F,/F,, among the three cultivars remained.
In general, the OJIP test was a rapid, sensitive and con-
venient method for measuring heat injury in grapevine.
Moreover, the reproducibility of the method is very high,
as shown in the correlation analysis between different
years and different months (Table 1). Additionally, the
Handy Plant Efficiency Analyzer may be used directly in
the field. However, this evaluation relies primarily on
photosynthesis and does not consider other physiological
processes. The results of this study may be further ap-
plied in molecular breeding and quantitative trait ana-
lysis (QTL) by providing stable, sensitive phenotypic
data for heat injury.

Heat injury in grape leaves is related to the
photosynthetic electron transport chain of PSII
Photosynthesis, especially the electron transport chain of
PSII, is highly sensitive to high-temperature stress [42,43].
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Table 2 Heat tolerance of grape cultivars or species evaluated using the chlorophyll a fluorescence parameter F,/F,,

No Cultivars or species Fy/Fm Germplasm group Average F,/F,, in a group
1 V. davidii 0.68+0.01a
2 V. amurensis 0.55 + 0.02bc
3 V. pseudoreticulata 041+ 0.04e
4 V. flexuosa 040 +0.02e
5 V. bryoniaefolia 0.52+0.04 cd
Wild grape 0.51+0.03a
6 Shuangging (V. amurensis) 0.58+0.01bc
7 V. cinerea 0.55+0.02bc
8 V. aestivalis 046 +0.03de
9 V. rubra 0.39+0.03e
10 V. ripara 062 +001ab
11 5BB (V. berlandier x V. ripara) 0.33+0.02¢c
12 5C (V. berlandier x V. ripara) 0.53+0.04a
13 SO4 (V. berlandier x V. ripara) 0.50 +£0.03ab
14 Beichun (V. vinifera x V. amurensis) 041+ 0.03bc Hybrids among wild grape 043 +0.03ab
15 Beihong (V. vinifera x V. amurensis) 0.32+0.02¢c
16 Beifeng (V. vinifera x V. adstricta) 048 £0.01ab
17 Beta (V. labrusca x V. ripara) 0.44 +0.05ab
18 Kangtai 068 +0.01a
19 Mitsushiru 065+001a
20 Kyoho 0.55+0.03b
21 Takasumi 0.50 + 0.02bc
22 Gaoqi 049 +0.02bc Hybrids between 05040043
23 lzunishiki 046 + 0.04c V. vinifera and V. labrusca
24 Jingya 044 +0.03c
25 Fujiminori Grape 0.35+0.04d
26 Jingyou 0.34 +0.02d
27 Parasaurolophus 0.56 £ 0.02b
28 Riesling 0.63+0.02a
29 Cabernet Sauvignon 063+001a
30 Black balad 0.61+0.03a
31 Red balad 0.51+0.02b
32 Chardonnay 048 + 0.04bc
33 Ruby Seedless 042+ 0.03def
34 Alexander 0.39 £ 0.04cde
35 Xiangfei 0.37 £ 0.02def
36 Jingxiangyu 0.36 £+ 0.03def
37 [talian Riesling 0.34 £ 0.07efg
38 Red Globe 034 +0.01efg V. vinifera 0.38+0.03b
39 Merlot 0.33+£001efg
40 Cardinal 0.28 + 0.02fgh
41 Gros Colman 0.28 +0.03gh
42 Jingyu 0.25+001gh
43 Cabernet Franc 023+002h
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Table 2 Heat tolerance of grape cultivars or species evaluated using the chlorophyll a fluorescence parameter F,/F,,

(Continued)

44 Yan73 0.19+£002 h
45 Muscat 024+0.02 h
46 Nilawa 0.25+0.01gh
47 Jingyan 045+ 0.02bcd

Values are means + S.E; Different letters indicate means are significantly different at P < 0.05.

However, it is difficult to pinpoint the specific limiting
steps that control the temperature response of the elec-
tron transport chain [44]. In our study, the decrease of the
photosynthetic O, evolution rate under heat stress was as-
sociated with electron transport capacity, which showed
that the PSII of the photosynthetic apparatus was dam-
aged. The different sensitivities of the parameters derived
from the OJIP test may reflect the heterogeneous behavior
of PSII under heat stress conditions. W) expresses the K-
step in the OJIP test, which is used as a specific indicator
of damage to the PSII donor side related to the oxygen
evolving complex (OEC) during heat stress. In this study,
the Wy value increased significantly by 10 min in all grape
genotypes during the heat treatment, demonstrating that
the OEC is one of the most vulnerable complexes of the
photosynthetic electron transport chain. The results also
showed that the stability of the OEC differs among geno-
types, as the OECs of ‘Jingxiu’ and ‘Riesling’ were more
vulnerable than those of the other genotypes.

The density of RCqya may reflect the density of Qa-re-
ducing PSII reaction centers [41], and the PSII reaction
center is also one of the sites damaged by heat stress
[45]. In our study, during heat stress at 47°C, the density
of RCqa decreased rapidly by 10 min for all genotypes,
which indicated that the PSII reaction center was sensi-
tive to heat and that the thermostability of the PSII reac-
tion center differed among cultivars. The parameter ¢g,
represents the quantum vyield or the energy distribution
ratio of the acceptor side of PSII. The decrease in ¢,
showed that the activity of electron transport beyond Qu
was inhibited in grape leaves after 50 min of heat stress,
but after only 10 min, the ¢, values showed almost no
change. These results indicated that while heat stress
damaged the acceptor side of PSII, this structure was
relatively stable in the initial stages of heat stress. The

Table 3 Correlation analysis among F,/F,, Wy, RCqa and
Peo

Fu/Frm RCon Oco W,

Fo/Fm 1.00 084" 079" 041"
RCon 1.00 049" 073"
Pro 1.00 003
Wi 1.00

The asterisks * and ** indicate a significant correlation at P < 0.05 and
P <0.01, respectively.

correlation analysis of the evaluation of different culti-
vars (species) further corroborated these results (Table 3).
Therefore, the OJIP test can also reveal the relationship
between heat injury in grape leaves and the photosyn-
thetic electron transport chain of PSII.

Conclusions

The OJIP test was quicker, more sensitive and more con-
venient for investigating the heat injury of grape leaves
than were measurements of photosynthetic O, evolution
rates or electrolyte leakage. Moreover, PSII functional
analysis using the OJIP test indicated that the acceptor
side of the photosystem II was less damaged by heat
than were the donor side or the reaction center in grape
leaves. The heat tolerance of 47 cultivars (or species) was
evaluated by determining heat injury using this method.
In general, the heat tolerance among cultivars or species
varied largely in each genotype group. Most wild species
and some hybrids of V. labrusca and V. vinifera had
relatively strong heat tolerance, while most cultivars of
V. vinifera had relatively weak heat tolerance.

Methods

Plant materials

A total of 47 wild species and cultivars were used in this
study (Table 4). All of the grapevines were planted at the
Germplasm Repository for Grapevines in the Institute
of Botany of the Chinese Academy of Sciences, located
in Beijing, in the spring of 1993. The vines, trained to
bilateral cordons, were spaced 1.5 m apart within the
row and 2.5 m apart between the rows with a north-
south row orientation. All vines were subjected to similar
management practices for irrigation, fertilization, soil
management, pruning, and disease control. Healthy
leaves of approximately 30 days in age were used in this
study. In May, June and July of 2012 and June and July
of 2013, samples were taken in the morning, placed in
the dark with the petiole in water, and then treated by
heat stress.

Heat stress process, critical temperature and appropriate
heat stress time

The heat stress process was as follows: leaf discs (5.5 cm
in diameter) were cut from the detached sample leaves,
wrapped in a wet paper towel and placed in a small
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Table 4 Grape cultivars or species used in this study
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Germplasm groups Cultivar number Cultivars

Wild grape 10 V. davidii (1), V. amurensis (2), V. pseudoreticulata (3), V. flexuosa (4), V. bryoniaefolia (5), Shuangqging
(V. amurensis, 6), V. cinerea (7), V. aestivalis (8), V. rubra (9), V. ripara (10)

Hybrids among wild grape 7 5BB (V. berlandier x V. ripara) (11), 5C (V. berlandier x V. ripara) (12), SO4 (V. berlandier x V. ripara) (13),
Beichun (V. vinifera x V. amurensis) (14), Beihong (V. vinifera x V. amurensis) (15), Beifeng (V. vinifera x
V. adstricta) (16), Beta (V. labrusca X V. ripara) (17)

Hybrids between V. vinifera 10 Kangtai (18), Mitsushiru (19), Kyoho (20), Takasumi

and V. labrusca

(21), Gaogi (22), lzunishiki (23), Jingya (24), Fujiminori Grape (25), Jingyou (26), Parasaurolophus (27)

V. vinifera 20

Riesling (28), Cabernet Sauvignon (29), Black balad (30), Red balad (31), Chardonnay (32), Ruby

Seedless (33), Alexander (34), Xiangfei (35), Jingxiangyu (36), Red Globe (37), Italian Riesling (38),
Merlot (39), Cardinal (40), Gros Colman (41), Jingyu (42), Cabernet Franc (43), Yan73 (44), Muscat
Hamburg (45), Nilawa (46), Jingyan (47)

vessel made of aluminum foil. The vessels were then
floated on water in a temperature-controlled water bath.
To compare the effects of different evaluation methods
for heat injury and to evaluate heat tolerance in the
different species and cultivars, the critical temperature
(T.) and appropriate heat stress time were first deter-
mined. According to the methods of Weng and Lai
[37], T, is the temperature at which the chlorophyll a
fluorescence parameter F, starts to increase sharply or
F,/F,, decreases sharply. The experiment was conducted
in three cultivars or species: ‘Jingxiu’ (V. vinifera), Riesling’
(V. vinifera) and spine grape (V. davidii) in May of 2012.
Leaf discs of each cultivar were heated from 25°C to 55°C
at a rate of approximately 1°C min™" in darkness, accord-
ing to the above heat stress process. F,/F,, and F, were
measured every 1-2 min using a Handy Plant Efficiency
Analyzer (Hansatech Instruments, King’s Lynn, Norfolk,
UK) (details shown below). T, was determined from the
intersection of the two regression lines extrapolated from
the slow- and fast-rising portions of the temperature-
dependent fluorescence parameter F, or F,/F,, responses.
To determine the appropriate heat stress duration, the leaf
discs were exposed to T, for 50 min, and the F,/F, elec-
trolyte leakage and photosynthetic O, evolution rates were
determined every 10 min. The time at which a significant
difference for each parameter was observed among the
three cultivars was regarded as the appropriate heat stress
time for the study.

Three methods of investigating heat injury (electrolyte
leakage, photosynthetic O, evolution rate, chlorophyll a
fluorescence)

After determining the critical temperature and appropri-
ate heat stress time, the three investigating methods,
electrolyte leakage, photosynthetic O, evolution rate and
the OJIP test, were compared in May of 2012.

To measure electrolyte leakage, the heat-stressed leaf
discs (5.5 cm in diameter) were again cut into smaller
leaf discs (1 cm in diameter) and washed with deionized
water, then incubated in 10 ml of deionized water at

25°C for 6 h using a shaker. The initial electrical con-
ductivity (E;) was read using a FE30 conductivity meter
(Mettler Toledo, Shanghai, China). The samples were
then boiled at 95°C for 60 min and cooled to 25°C be-
fore being measured again for electrical conductivity
(E;). The relative electrolyte leakage (REL) was esti-
mated using the following formula: REL (%) = E;/E, x
100. The relative injury to cell membranes after heat
stress treatment (47°C) was calculated using the following
formula: RII (relative injury index) = Trgr/Crgr, where
T and C refer to the heat stress (47°C) and control (25°C)
temperatures, respectively [14].

The photosynthetic O, evolution rates of the leaf discs
were measured using a ChloroLab-2 liquid-phase oxygen
electrode system (Hansatech Instruments, King’s Lynn,
Norfolk, UK), as described previously [46]. The heat-
treated leaf discs (5.5 cm in diameter) were first adapted
at 25°C in the dark for 30 min, then cut into smaller leaf
discs (1 cm in diameter) that were immediately placed into
a reaction chamber filled with 1.5 ml 50 mM Hepes-KOH
(pH 7.2), 0.5 mM CaSO, and 20 mM NaHCOs. At the
same time, the leaf discs were exposed to a photon flux
density of 800 pumol m™> s, which was provided by an
array of light-emitting diodes. After 10 min of equilibra-
tion under this light, the O, evolution was measured,
and the data were continuously monitored for 10 min.
The O, evolution rate was calculated over the last 3 min
of measurement [47].

The OJIP test was conducted using a Handy Plant
Efficiency Analyzer after the heat-stressed leaf discs
had been adapted at 25°C for 30 min in the dark. The
OJIP test was performed under a saturating photon flux
density of 3000 yumol m™2 s™" provided by an array of three
light-emitting diodes (peak 650 nm). The fluorescence sig-
nals were recorded within a time span from 10 ps to 1 s,
with a data acquisition rate of 10 us for the first 2 ms and
every 1 ms thereafter. The following data from the original
measurements were used: Fy: the fluorescence intensity at
300 ps [required for the calculation of the initial slope (M)
of the relative variable fluorescence (V) kinetics and Wy];
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Ej: the fluorescence intensity at 2 ms (the J-step); F;: the
fluorescence intensity at 30 ms (the I-step); and F: the
maximal fluorescence intensity (the P-step). The derived
parameters were as follows: F,, the fluorescence intensity
at 50 ps; Wy, calculated as Wy = (Fy - F,)/(F; - F,,) and as-
sumed to represents the damage to the oxygen evolving
complex (OEC) of PSII; and RCqa,, calculated as the num-
ber of active PSII RCs per cross section (CS) at t = t,;, using
the formula RCqu = RC/CS,, = ¢p, x (Vj/M,) x (ABS/CS,;,)
and assumed to represent the density of Qa-reducing
reaction centers (RCs). Here, ABS represents the total
photon flux absorbed by the PSII antenna pigments. Ac-
cording to the energy flux theory proposed by Strasser
et al. [47], the total ABS is partially trapped by the PSII
RCs, and the fraction of the ABS used to reduce Q, is
labeled as TR, whereas the electron transport flux from
Qa to Qg is labeled as ET. The yield indices or flux ra-
tios can then be derived as follows: the parameter ¢p,,
representing the maximum quantum vyield of primary
photochemistry, is calculated as the ratio of TR/ABS at
t=0 using the equation ¢p,=TR,/ABS=1 — F,/F,, =
F,/F; the parameter ¢g,, representing the quantum yield

Table 5 Summary of parameters, formulae and their
descriptions using data extracted from the OJIP test

Fluorescence
parameters

Fluorescence parameters description

Extracted parameters

Fe Fluorescence intensity at time t after onset
of actinic illumination

Minimum reliable recorded fluorescence at
50 ps with the Handy PEA

Fluorescence intensity at 300 us

FSO Hs

Fr (F300 ps)

Fp Maximum recorded (=maximum possible)
fluorescence at P-step

Area Total complementary area between

fluorescence induction curve and F = F,

Derived parameters

Fo = Fso s Minimum fluorescence, when all PSII RCs are
open

Fn=Fp Maximum fluorescence, when all PSII RCs are
closed

Vy=(F - Fo)/(Frm - Fo) Relative variable fluorescence at the J-step
(2 ms)

Vi=(Fi - Fo)/(Fm - Fo) Relative variable fluorescence at the I-step
(30 ms)

Wi = (Fi - Fo)/(Fj - Fo) Representing the damage to oxygen

evolving complex (OEC)

Mo=4 (Fx - Fo)/(Fm - Fo)  Approximated initial increment (in ms-1) of

the relative variable fluorescence

Fu/Fm=1- (Fo/Frm) Maximum quantum yield of primary

photochemistry at t=0

Qg0 =ETo/ABS = (FmyF))/Fry

RCon = Opo X (ABS/CS) X
(Vi/Mo)

Quantum vyield for electron transport at t=0

Amount of active PSII RCs (Qa-reducing PSII
reaction centers) per CSat t=m
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of the electron transport flux from Q, to Qg (at t=0), is
calculated using the equation ¢g,=ET,/ABS = (F,, - F)/
F... All of these parameters are shown in Table 5.

Evaluation of heat tolerance in different grape cultivars
and species using OJIP test

The heat tolerance of the leaves of 47 grape cultivars (or
species) were evaluated in May, June and July of 2012
and June and July of 2013 based on the above heat stress
procedures. After the leaf discs were exposed to high
temperatures (47°C) for 40 min, the OJIP test was per-
formed using a Handy Plant Efficiency Analyzer to investi-
gate heat injury which indirectly reflects heat tolerance.

Statistical analysis

The data were processed using SPSS 13.0 for Windows,
and each value of the means and standard errors in the
figures represents five replications. Differences were con-
sidered significant at a probability level of P < 0.05 accord-
ing to Duncan’s multiple range comparison.
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