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Sodium hydrosulfide induces systemic
thermotolerance to strawberry plants through
transcriptional regulation of heat shock proteins
and aquaporin
Anastasis Christou1,3, Panagiota Filippou2, George A Manganaris2 and Vasileios Fotopoulos2*
Abstract

Background: Temperature extremes represent an important limiting factor to plant growth and productivity. The
present study evaluated the effect of hydroponic pretreatment of strawberry (Fragaria x ananassa cv. ‘Camarosa’)
roots with an H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), on the response of plants to acute heat
shock treatment (42°C, 8 h).

Results: Heat stress-induced phenotypic damage was ameliorated in NaHS-pretreated plants, which managed to
preserve higher maximum photochemical PSII quantum yields than stressed plants. Apparent mitigating effects of
H2S pretreatment were registered regarding oxidative and nitrosative secondary stress, since malondialdehyde
(MDA), H2O2 and nitric oxide (NO) were quantified in lower amounts than in heat-stressed plants. In addition, NaHS
pretreatment preserved ascorbate/glutathione homeostasis, as evidenced by lower ASC and GSH pool redox
disturbances and enhanced transcription of ASC (GDH) and GSH biosynthetic enzymes (GS, GCS), 8 h after heat
stress imposition. Furthermore, NaHS root pretreatment resulted in induction of gene expression levels of an array
of protective molecules, such as enzymatic antioxidants (cAPX, CAT, MnSOD, GR), heat shock proteins (HSP70, HSP80,
HSP90) and aquaporins (PIP).

Conclusion: Overall, we propose that H2S root pretreatment activates a coordinated network of heat shock
defense-related pathways at a transcriptional level and systemically protects strawberry plants from heat
shock-induced damage.

Keywords: Ascorbic acid, Heat shock proteins, Hydrogen sulfide, Nitrosative stress, Oxidative stress, Priming,
Thermotolerance, Fragaria x ananassa
Background
Threats of climate change and global warming render
heat stress a general concern for the agricultural sector
worldwide [1]. Plants exposed to high temperatures may
experience severe cellular injury that may lead to cell
death within a short period [2]. The primary targets of
heat shock injury in plants are photosynthesis [3], water
status [4], carbon assimilation processes [5] and mem-
brane stability [6]. At the cellular level, heat stress re-
sults to protein denaturation and aggregation, increased
* Correspondence: vassilis.fotopoulos@cut.ac.cy
2Department of Agricultural Sciences, Biotechnology and Food Science,
Cyprus University of Technology, 3603 Lemesos, Cyprus
Full list of author information is available at the end of the article

© 2014 Christou et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
waiver (http://creativecommons.org/publicdom
stated.
fluidity of membrane lipids, inactivation of enzymes in
chloroplast lamella and mitochondria, inhibition of pro-
tein synthesis and secondary oxidative stress through the
production of reactive oxygen species (ROS) [7].
Consequently, plants manifest different mechanisms

for adaptation and protection in elevated temperatures.
The initial heat stress signal, probably perceived as
the increase of plasmalemma lipid bilayer fluidity [8],
triggers downstream signaling processes for transcrip-
tional regulation [9]. Up-regulation of mitogen activated
protein kinase (MAPK) transduction pathway through
the induction of Ca2+ influx [10], ROS signaling and hor-
monal activation, as well as heat shock protein (HSP)/
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chaperone signal transduction pathways, seems to be the
key players in plant transcriptional regulation under heat
stress [11]. As a result, major thermotolerance mecha-
nisms, such as the induction of antioxidant machinery,
accumulation of heat shock proteins, osmolytes and sec-
ondary metabolite adjustments, are activated, driving to
cellular homeostasis and repairing of damaged proteins
and membranes [12].
Extensive plant breeding efforts and more recent

transgenic approaches have largely validated that heat
stress tolerance is a multigenic trait [13]. In addition,
benefits from transgenic approaches have been limited
and have not led to agronomically improved crops for
heat tolerance under field conditions [14]. Thus, consid-
erable attention has been devoted in alleviating the det-
rimental effects of high temperatures in plants through
the exogenous application of various priming agents. Ex-
ogenously applied calcium [7], ascorbic acid [15], absci-
sic acid [16], salicylic acid [17], H2O2 and NO [18]
managed to enhance thermotolerance of treated plants.
Furthermore, seed pretreatment with H2O2 improved
heat tolerance of wheat seedlings through the alleviation
of oxidative damage and the up-regulation of stress pro-
teins [19].
Sulfur-containing defense compounds (SDCs) are cru-

cial for the survival of plants under biotic and abiotic
stress [20]. Recent evidence revealed the role of H2S in
orchestrating plant responses to environmental stimuli
[21,22]. More precisely, exogenous application of H2S
donor sodium hydrosulfide (NaHS) managed to alleviate
heavy metal toxicity in germinating wheat [23], cucum-
ber [24] and barley seedlings [25]. Exogenous application
of NaHS was found to promote osmotic stress tolerance
in sweet potato [26], soybean seedlings [27] and straw-
berry plants [28]. Furthermore, H2S promoted root or-
ganogenesis [29] and was also found to be involved in
guard cell signaling [30].
Recent reports showed that NaHS pretreatment sig-

nificantly increased heat tolerance in tobacco suspension
cultured cells [31] and maize seedlings [32,33], respect-
ively. However, whether H2S priming could transcrip-
tionally induce a systemic activation of plant defense
mechanisms for providing tolerance to subsequent ex-
posure of a heat-sensitive soft fruit crop such as straw-
berry remains largely unexplored. In the present study
we hypothesized that transient pre-exposure of straw-
berry plant roots to H2S may induce systemic thermotol-
erance to subsequent exposure of plants to heat shock
treatment (42°C, 8 h). Therefore, the effects of root pre-
treatment with H2S donor NaHS on several key compo-
nents of stress tolerance mechanisms in the leaves of
strawberry plants were investigated following a com-
bined physiological, biochemical and molecular ap-
proach. As far as is known, this is the first study dealing
with the employment of H2S for the protection of a fruit
crop from temperature extremes, as well as the first re-
port to implicate the transcriptional regulation of HSPs
and aquaporins in the response.

Results
Phenotypic observations
Exposure of strawberry plants to 42°C for 8 h resulted in
mild wilting and leaf curling (Figure 1C), while NaHS
root pretreatment prior to stress exposure exhibited ob-
vious mitigating effect, as evidenced by the conservation
of plant leaf turgor and structure (Figure 1D). Non-
stressed NaHS-treated plants (Figure 1B) displayed simi-
lar phenotype with control plants (Figure 1A), verifying
the non-toxic effects of NaHS at the concentration
applied.

Hydrogen sulfide content
Sodium hydrosulfide root pretreatment resulted in sig-
nificantly higher absolute H2S content in strawberry
leaves compared with control samples, thus verifying its
status as an H2S donor (data not shown). Heat stress
caused a marked modulation in H2S leaf content, mani-
fested by a significant increase after 1, 4 and 8 h of ex-
posure to 42°C compared with control samples. A
significant increase in H2S content was also recorded in
NaHS-pretreated plants after 1 h exposure to heat stress,
gradually lowering to control levels thereafter (Figure 2).

Chlorophyll fluorescence
Apparent negative effects of heat stress on Fv/Fm ratio of
strawberry plants were registered; a significant reduction
on Fv/Fm ratio was measured in plants subjected to heat
stress for 8 h. Nevertheless, root pretreatment with
NaHS prior to heat exposure enabled strawberry plants
subjected for 8 h to heat shock treatment to maintain
higher quantum efficiency of photosystem II compared
with plants directly exposed to heat stress (Figure 3).

Cellular damage effects
Heat stress enhanced membrane damage, resulting in in-
creased MDA content (Figure 4). MDA content was
doubled within 1 h of exposure to 42°C, following an in-
creasing pattern thereafter. Inversely, NaHS root pre-
treatment prior to stress exposure managed to mitigate
the levels of lipid peroxidation, validated by the lower
MDA content compared with non-pretreated stressed
plants.

Hydrogen peroxide and nitric oxide content
Progressive heat shock caused a marked increase in both
H2O2 and NO content, reaching maximum levels after 8 h
(Figure 5). However, lower rates of H2O2 accumulation
were recorded in NaHS-pretreated plants subsequently
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Figure 1 Phenotypic effects of H2S donor NaHS (100 μM) on strawberry plants exposed to heat shock treatment (42°C) for 8 h. {(A)
Control: pretreated with H2O and subjected to 23°C for 8 h, (B) NaHS: pretreated with NaHS and subjected to 23°C for 8 h, (C) Heat: pretreated
with H2O and subjected to 42°C for 8 h and (D) NaHS→ Heat: pretreated with NaHS and subjected to 42°C for 8 h}. Red arrows indicate wilted,
curled leaves.
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exposed to progressive heat shock treatment, albeit signifi-
cantly higher than control, unstressed plants (Figure 5A).
In turn, no significant modulation in NO content was re-
corded in NaHS-treated plants exposed to heat treatment,
compared with control samples (Figure 5B).

ASC and GSH content/redox state
Exposure to elevated temperature for 8 h resulted in a
significant increase in both total ascorbate and total
glutathione content, while NaHS root pretreatment prior
to heat exposure resulted to a greater increase in both
antioxidants’ pools. The increase is likely attributed to
the increase of both reduced and oxidized forms of as-
corbate and glutathione. More precisely, heat stress re-
sulted in non-significant increase in ASC content, while
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Figure 2 Effect of H2S donor NaHS (100 μM) on H2S content of strawb
relatively to content at time point 0 h. Treatment acronyms are describe
with different letters are significantly different at p < 0.05.
a significant increase in GSH leaf content was recorded.
NaHS pretreatment prior to heat exposure resulted in a
greater increase of both reduced forms (Figure 6A and D).
On the other hand, a substantial increase in both DHA
and GSSG content was registered after heat exposure for
8 h. Interestingly, root pretreatment with NaHS managed
to ameliorate further oxidation of both antioxidant mole-
cules as evidenced by the lower levels of DHA and GSSG
content (Figure 6B and E). Overall, NaHS root pretreat-
ment managed to significantly alleviate both ascorbate
and glutathione redox state disturbances compared with
non-pretreated stressed plants (Figure 6C and F). In ad-
dition, total ascorbate and glutathione pools of
NaHS-treated unstressed plants were maintained in
similar levels to those observed in control samples.
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erry leaves exposed to heat shock treatment (42°C) for 8 h,
d in Figure 1 caption. Data are means ± SE of three replications. Bars
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Figure 3 Effect of H2S donor NaHS (100 μM) on chlorophyll
fluorescence (Fv/Fm) of strawberry leaves exposed to 42°C for 8 h.
Treatment acronyms are described in Figure 1 caption. Data are means±SE of
three replications. Bars with different letters are significantly different at p<0.05.
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Gene expression levels
The relative expression ratio of a diverse set of specific
genes involved in antioxidant machinery, cellular redox
regulation, signal transduction and protein structure
stability, assayed by quantitative real-time RT-PCR, is
presented in Figure 7. These included key enzymatic
antioxidant (cytosolic ascorbate peroxidase, cAPX; cata-
lase, CAT; manganese superoxide dismutase, MnSOD;
glutathione reductase, GR), ascorbate and glutathione
biosynthesis (L-galactose dehydrogenase, GDH; glutamyl-
cysteine synthetase, GCS; glutathione synthetase, GS),
NO biosynthesis (nitrate reductase, NR), transcription
factor (dehydration-responsive element binding factor,
DREB), heat shock proteins (HSP70, HSP80, HSP90) and
aquaporin (PIP) genes. Overall, heat stress alone or in
combination with NaHS root pretreatment significantly
0.0

1.0

2.0

3.0

4.0

1 4 8

R
el

at
iv

e 
M

D
A

 c
o

n
te

n
t

Exposure time to 42 C (h)

Control
NaHS
Heat
NaHS Heat

a
a

a

ababab

b

b

b

b

b

b

Figure 4 Effect of H2S donor NaHS (100 μM) on
malondialdehyde (MDA) content of strawberry plant leaf tissue
exposed to heat shock treatment (42°C) for 8 h, relatively to
content at time point 0 h. Treatment acronyms are described in
Figure 1 caption. Data are means ± SE of three replications. Bars with
different letters are significantly different at p < 0.05.
induced mRNA expression levels of most examined
genes, being highly dependent on the duration of heat
exposure.
The main trends observed were the overall low levels of

regulation of all genes examined in plants treated solely
with NaHS, compared with control samples, except for
GDH 8 h after the end of root incubation (Figure 7). In
turn, 1 h of heat stress imposition revealed a significant
up-regulation of most genes examined (with the excep-
tions of GR, NR, GCS and DREB), greatly ameliorated after
progressive heat stress exposure. Furthermore, heat treat-
ment caused the rapid accumulation of high levels of
cAPX, PIP, HSP80 and HSP90 transcripts as early as 1 h
after heat stress imposition (see Additional file 1: Table
S1). Nevertheless, the expression pattern of most genes
examined in non-treated plant suffering heat stress for 8 h
was generally similar to respective controls.
Interestingly, the protective effect of NaHS root pre-

treatment on heat stress tolerance in terms of transcrip-
tional induction of defense-related genes was recorded 4 h
after stress imposition, reaching maximal induction levels
for most genes examined (except for CAT, NR, GS and
DREB) after 8 h of heat stress (Figure 7). Conversely, no
significant activation of defense-related molecular machin-
ery was recorded 1 h after stress imposition in NaHS-
pretreated and subsequently stressed plants.

Discussion
Heat stress affects a broad spectrum of cellular compo-
nents and metabolism, often causing irreversible damage
to plant growth and development. Despite the constant
advances being made towards understanding plant re-
sponses to temperatures extremes and improving ther-
motolerance, examples of plants with heat tolerance
through conventional breeding and transgenic ap-
proaches are limited and condensed into laboratory con-
ditions [14]. Therefore, compounds that might result in
the mitigation of high temperature detrimental effects
could potentially be of great importance. We have re-
cently postulated the priming effect of H2S in the allevi-
ation of salinity and non-ionic osmotic stress [28]. In the
current study, an array of physiological, biochemical and
molecular approaches provided novel evidence that root
pretreatment with H2S donor NaHS enhanced thermo-
tolerance of strawberry plants subsequently exposed to
temperature extremes, supporting the notion that H2S is
a key signaling molecule in plants. This seems to be
of pivotal importance for strawberry cultivation, since
strawberry growth and productivity are found to be
greatly affected by temperature extremes [34]. Further-
more, this study revealed that the role of NaHS in alleviat-
ing heat shock stress could be attributed to H2S, as the
levels of endogenous H2S increased following NaHS pre-
treatment and subsequent stress imposition, in accordance
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with similar findings by Zhang et al. [27]. Importantly,
Zhang et al. [26,29] reported that only H2S, and no other
Na+- or sulfur-containing compounds released from
NaHS, have a protective role during abiotic stresses, while
similar findings were provided by Li et al. [32] in maize
plants under heat stress following an H2S inhibitor
approach.
Photosystem II (PSII) is the most thermally sensitive

component of photosynthesis and its activity is greatly
reduced or even partially stopped under high tempera-
tures [35]. Our results are in agreement with previous
findings highlighting that maximal photochemical effi-
ciency (Fv/Fm) in leaves of several plant species was re-
duced under heat stress conditions [7,36]. However,
NaHS application results in the alleviation of heat stress
injuries to PSII activity, as evidenced by the higher Fv/Fm
ratio preserved in pre-treated stressed strawberry plants
compared with untreated stressed plants (Figure 3).
Furthermore, in order to verify the role of NaHS root

pretreatment in alleviating heat shock derived oxidative
damage, lipid peroxidation and H2O2 leaf content were
assayed. Results showed that NaHS mitigated heat
stress-induced MDA and H2O2 content increase in
strawberry leaves, thus suggesting that oxidative damage
to membranes and other cell components was reversed
following H2S treatment (Figures 4 and 5). Our findings
further support previous results showing that NaHS pre-
treatment resulted in lower content of both MDA and
H2O2 in stressed plants. More precisely, NaHS resulted
to the conservation of MDA and H2O2 content increase
against osmotic stress [26,27], or under high aluminum
concentration [23]. In addition, we recently provided
evidence that NaHS root pretreatment resulted in lower
levels of MDA and H2O2 in strawberry plants suffering
ionic and non-ionic osmotic stress [28]. Rapid (within
1 h) accumulation of H2O2 in heat-stressed plants alone,
may suggest a role for H2O2 in triggering the early ex-
pression of heat-shock proteins in stressed plants, as
previously reported [37,38]. Our findings are further
supported from the transcript levels of major enzymatic
antioxidants (cAPX, CAT, MnSOD, GR), which were
found to be induced in NaHS-pretreated plants in com-
parison with untreated ones, after 4 and 8 h of exposure
at 42°C. Transcript levels are in line with previous
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observations in NaHS-pretreated strawberry plants ex-
posed to NaCl and PEG-6000 treatment [28], as well as
with enhanced antioxidant enzymatic activities in NaHS-
treated plants under cadmium [39], heat [32] and
drought [27] stress, as well as in NaHS-treated salt-
stressed germinating seeds [40], thus rendering the ap-
parent induction of antioxidant enzymes of prime im-
portance for the enhanced tolerance observed.
Besides ROS, NO and other NO-derived products, cu-

mulatively called reactive nitrogen species (RNS), may
also be overproduced under abiotic stress conditions,
causing secondary nitrosative stress in plants [41,42].
NO has also been shown to act in parallel with other sig-
naling molecules for regulating many biological pro-
cesses, including responses to abiotic stresses [43-45].
Results indicated that NaHS pretreatment managed to
sustain NO content in levels similar to control, as sup-
ported by the non-significant modulation of NR relative
expression compared with control samples. In contrast,
strawberry plants experiencing heat shock treatment
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exhibited a marked increase in leaf NO content, despite
similar NR expression levels with control samples. Such
a negative correlation could be attributed to feedback in-
hibition of NR [46], possibly due to NO toxicity [47].
However, the increase in NO content in heat-stressed
plants may be the key factor driving to the rapid accu-
mulation of HSP transcripts observed. Xuan et al. [48]
reported that NO acts upstream of AtCaM3 in thermo-
tolerance for the stimulation of DNA-binding activity of
heat shock transcription factors and the accumulation of
HSPs. Interestingly, recent findings by Li et al. [32] sug-
gested that H2S may be a downstream signal molecule
in NO-induced heat tolerance of maize seedlings, further
supporting the interplay between reactive species to-
wards induced tolerance.
Beside their participation in oxidative processes that

may lead to cell damage, ROS participate in redox state-
based sensing mechanisms that are activated or ampli-
fied in response to environmental stimuli [49,50]. In par-
allel with ROS detoxification, ascorbate and glutathione
are molecules with a regulatory role, since they partici-
pate in the redox signaling of the plant cell under abiotic
stress conditions [51]. In recent years, several studies
have strengthened the notion that high ASC/DHA and/
or GSH/GSSG ratios, sustained by increased ASC and
GSH or diminution of DHA and GSSG cellular produc-
tion, may be the key element for enhanced tolerance
during abiotic stress exposure [52]. In the current study,
we showed that transient root exposure to H2S donor
NaHS prior to stress exposure managed to sustain
higher ratios of ASC/DHA and GSH/GSSG, compared
with non-pretreated heat stressed plants, as evidenced
by higher ASC and GSH redox states. Heat stress re-
sulted in direct and progressive increase of reduced and
oxidized glutathione and oxidized ascorbate. However,
NaHS pretreatment prior to heat exposure resulted in
an additional increase of reduced ascorbate and glutathi-
one and the diminution of their oxidized forms. The in-
duced expression of GDH and GCS provides support for
these observations, since these enzymes contribute to
ASC and GSH biosynthesis and redox homeostasis, re-
spectively. Our results are in agreement with those of
Shan et al. [53,54], who reported that the observed in-
duced tolerance in NaHS-pretreated wheat seedlings
under water and copper stress was attributed to the in-
creased activity of enzymatic antioxidants and ASC (L-
galactono-1,4-lactone dehydrogenase; GalLDH) and
GSH biosynthesis (GCS) enzyme activities, as well as to
the increased contents of ASC, GSH, total ascorbate and
total glutathione, in comparison with untreated stressed
seedlings.
Changes in genotypic expression leading to increase syn-

thesis of heat shock proteins (HSPs) is known to be an early
and important adaptive strategy in cells that are subjected
to all types of stresses [55]. The HSPs, ranging in molecular
mass from about 10 to 200 kDa, have been found to accu-
mulate in great amounts during heat stress in various cellu-
lar structures, such as cell wall, chloroplasts, ribosomes and
mitochondria [2,56]. Their role in maintaining cellular
homeostasis under heat stress, mainly by assisting the
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correct folding of stress-accumulated misfolded proteins,
preventing their aggregation and promoting proteolytic
degradation of misfolded or denatured proteins, as well as
in participating in signal transduction, has been recently
reviewed [57]. In the current study, HSPs appeared to be
substantially accumulated in cells immediately after heat
stress exposure, since HSP70, HSP80 and HSP90 expression
levels were found to be significantly induced, compared
with control samples, as early as after 1 h of exposure to
42°C. The increased expression levels of the examined HSPs
may be attributed to the rapid accumulation of H2O2 and
NO, which function as signaling molecules for the produc-
tion of HSPs, as also previously reported [37,38,48]. Induc-
tion of HSPs in stressed plants was lowered after prolonged
exposure to heat treatment. Our results are in agreement
with previously reported findings, based on transcriptomic
and proteomic analyses, highlighting the importance of the
early accumulation of HSPs for the acquisition of thermo-
tolerance in plants experiencing temperature extremes
[57,58]. The role of HSP70 in Arabidopsis thaliana heat
shock responses and thermotolerance has recently been
elucidated [59]. On the contrary, NaHS treatment prior to
heat stress induced the up-regulation of HSPs only after 4
h of exposure to heat shock conditions, providing evidence
for their possible contribution to the observed mitigation of
heat stress devastating effects, made apparent after 4 h of
exposure to 42°C. The lower H2O2 and NO contents dur-
ing the early stages of heat exposure in NaHS-pretreated
plants can be attributed to late accumulation of HSPs (after
4 h of stress imposition), since both active molecules func-
tion in parallel with HSPs biosynthesis. In turn, acclimation
of Aloe vera plants to less severe temperature extremes re-
sulted in elevated expression of HSPs [60].
The molecular and functional characterization of aqua-

porins (PIPs), a class of membrane proteins that facilitate
water diffusion across cell membranes, has revealed the
significance of their regulation in response to adverse
environmental stimuli [61,62]. In plants, aquaporins are
localized in abundance in the plasmalemma and the vacu-
olar membrane [63]. Recent studies shed light to the pos-
sible role of aquaporins in abiotic stress tolerance. Ayadi
et al. [62] confirmed the role of PIP1 and PIP2 in osmotic
and salinity stress tolerance in durum wheat. Furthermore,
Iglesias-Acosta et al. [64] reported a decline in PIP1 and
PIP2 transcript abundance in the roots of broccoli plants
under increasing temperature, while Chen and Arora [65]
highlighted the role of aquaporins (SoPIP2;1 and SoδTIP)
during the recovery of spinach leaves from reversible
freeze-thaw injury. In the current study, gene expression
analysis revealed that PIP had the same expression pattern
as HSPs, suggesting that heat exposure caused the early
induction (after 1 h) of PIP expression, which was elimi-
nated after prolonged heat stress. On the other hand,
NaHS pretreatment-induced PIP up-regulation was
apparent after 4 h exposure at 42°C (see Additional file 1:
Table S1).

Conclusion
A coordinated, transient induction of antioxidants, HSPs
and aquaporin gene expression was registered when plants
were exposed to heat shock treatment, which was de-
escalated as stress imposition progressed. The early (1 h)
and transient up-regulation of defense-related genes in
plants exposed directly to heat stress conditions seems to
provide inadequate signal for transcriptional regulation of
defense pathways, leading to weak heat stress responses. On
the contrary, NaHS root priming demonstrated a ‘delayed’
(after 4 h) but prolonged (maximized after 8 h) transcrip-
tional activation of defense responses, resulting in acquired
thermotolerance via the sufficient production of protective
molecules such as HSPs and antioxidants. The energy-
consuming coordinated orchestration of several independ-
ent pathways is most likely feasible through increased
photosynthetic capacity in NaHS-treated plants [66]. Over-
all, data reported herein provide novel information for the
improvement of crop tolerance to heat stress and lends add-
itional support to the suggested role of H2S in plant re-
sponses to environmental stimuli. The current state of
knowledge in defining the contribution of H2S in plant tol-
erance mechanisms to abiotic stress warrants further investi-
gation, including the potential application of synthetic
inhibitors of H2S biosynthesis (e.g [67]).

Methods
Plant growth and stress treatments
Forty-eight strawberry (cv. ‘Camarosa’) plants were grown
in peat in greenhouse for six months and subsequently
transferred and grown hydroponically in continuously aer-
ated half-strength Hoagland nutrient solution in a growth
room with 16 h photoperiod (250 μmol m-2 s-1), 23°C/
20°C day/night temperature and 65% relative humidity.
After one week, roots of one half of the plants were incu-
bated in deionized water containing an H2S donor, sodium
hydrosulfide (NaHS; 100 μM for 48 h; changed every
12 h). At the end of the incubation period, plants were
transferred to half-strength Hoagland nutrient solution.
As a result, plants either pretreated or not with NaHS
and grown hydroponically in continuously aerated half-
strength Hoagland nutrient solution were simultaneously
exposed (0 h, stress imposition) or not to elevated
temperature treatment (42°C) for 8 h. Overall, strawberry
plants were subjected to 4 treatments, as presented in de-
tail in Figure 1 and described schematically in Additional
file 2: Figure S1. Each treatment was independently run in
triplicate, and each replicate consisted of 4 individual
plants. Fully expanded leaves were sampled immediately
after the imposition of heat stress treatment (0 h) and after
1, 4 and 8 h of exposure to 42°C. Leaves were flash-frozen



Christou et al. BMC Plant Biology 2014, 14:42 Page 9 of 11
http://www.biomedcentral.com/1471-2229/14/42
in liquid nitrogen and stored at -80°C, unless otherwise
stated.

Physiological and biochemical measurements
The ratio of variable fluorescence to maximum fluores-
cence (Fv/Fm), representing the maximum photochemical
efficiency of photosystem II (PSII), was determined using
a portable chlorophyll fluorometer (OptiSci OS-30p
Chlorophyll Fluorometer, Opti-Sciences Inc, USA).
Leaves were incubated in dark for 1 h prior to measure-
ments. The comparative rates of lipid peroxidation in
strawberry leaves were assayed in terms of MDA content
according to Heath and Packer [68].

Reactive species quantification
Nitric oxide content was indirectly assayed by measuring
nitrite (NO2

–), a stable and non-volatile breakdown prod-
uct of NO reduction, via the Griess reaction, as de-
scribed by Zhou et al. [69]. Leaf H2O2 content was
assayed as described by Loreto and Velikova [70], while
H2S content was determined following the methodology
described by Nashef et al. [71]. Descriptions of all react-
ive species quantification protocols followed can be
found in [28].

ASC and GSH content/redox state
Reduced ascorbate (ASC) and dehydroascorbate (oxi-
dized ascorbate; DHA) were measured according to
Foyer et al. [72]. Redox state of ascorbate was expressed
as the ratio of ASC to total ascorbate (ASC/ASC +
DHA). The levels of reduced glutathione (GSH) and oxi-
dized glutathione (GSSG) were assayed as described by
Griffith [73], while the glutathione redox state was
expressed as the ratio of GSH to total glutathione (GSH/
GSH +GSSG).

RNA isolation, cDNA synthesis and gene expression
analysis
Total RNA from strawberry leaves was isolated follo-
wing the protocol described by [74]. The integrity of
total RNA was checked spectrophotometrically (A260/
A280) using a NanoDrop Spectrophotometer ND-1000
(Labtech International Ltd, Rigmer, UK), followed by gel
electrophoresis. For first strand cDNA synthesis, 1 μg of
total RNA was reverse-transcribed using the Primescript
1st Strand Synthesis kit, according to manufacturer’s in-
structions (Takara Bio Inc., Japan). Quantitative real-
time RT-PCR was performed in a final volume of 10 μl,
containing 4 μl of ten-fold diluted first strand cDNA,
0.5 μl of each of the gene specific primers (10 pM) and
5 μl of KAPA SYBR® FAST qPCR supermix (Takara Bio
Inc). The initial denaturation stage was at 95°C for
3 min, followed by 40 cycles of amplification (95°C for
30 s, Ta°C for 45 s, and 72°C for 45 s) and a final
elongation stage at 72°C for 5 min. Gene amplification
cycle was followed by a melting curve run, carrying out
61 cycles with 0.5°C increment between 65°C - 95°C.
PCR reactions of each treatment were performed in trip-
licate with an iQ5 real-time PCR detection system (Bio-
Rad Laboratories, Inc., California, USA). Fold change in
RNA expression was estimated using threshold cycles.
The housekeeping reference gene used was 18S (Ta = 46°
C) [75]. The statistical analysis of qRT-PCR results (pair-
wise fixed reallocation randomization test) was per-
formed using the REST software, according to Pfaffl
et al. [76]. The list of gene-specific primers used is pre-
sented in Additional file 3: Table S2.

Statistical analysis
Statistical analysis was carried out using the software
package SPSS v17.0 (SPSS Inc., Chicago, USA) and the
comparison of averages of each treatment was based on
the analysis of variance (One-Way ANOVA) according
to Duncan’s multiple range test at significance level 5%
(P ≤ 0.05).

Additional files

Additional file 1: Table S1. Effects of H2S donor NaHS on the relative
mRNA expression (fold change) of enzymatic antioxidants, heat shock
proteins, aquaporins and enzymes involved in RNS biosynthesis, redox
homeostasis and transcription regulation, in leaves of strawberry plants
under non-stress and heat shock conditions compared with controls, as
determined by qRT-PCR.

Additional file 2: Figure S1. Schematic representation of the
experimental design.

Additional file 3: Table S2. Oligonucleotides used as primers for
real-time RT-PCR.
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