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Abstract

plants reflects their improved physiological status.
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Background: Aquaporin (AQP) proteins function in transporting water and other small molecules through the
biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the
precise role of AQPs in drought and salt stresses is not completely understood in plants.

Results: In this study, we have identified a PIPT subfamily AQP (MaPIP1,1) gene from banana and characterized it by
overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its
localization at plasma membrane. The expression of MaPIP1,1 was induced by NaCl and water deficient treatment.
Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and
survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased
salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K*/Na™ ratio.
Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury
and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing

Conclusions: Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and
drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance.

Background

Plant growth depends greatly on water absorption from
the soil and the movement of water from the roots to
other plant parts [1]. However, environmental stresses
such as drought, salt and cold can lead to water loss in
plants. Such environmental stresses severely affect plant
growth and productivity worldwide. Translocation of
water is an important process to maintain the ability to
tolerate desiccation and high salt stresses [2-4]. In plants,
water movement is controlled by both apoplastic and
symplastic pathways [1]. When plants are experiencing
abiotic stress, the symplastic pathway is efficient for
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transporting water across membranes [5-7], and the sym-
plastic pathway is regulated mainly by members of the
aquaporin family of proteins [8].

Aquaporins (AQPs) transport water as well as other
small molecules such as glycerol, CO, and boron through
membranes [9-11]. Biological activities associated with
AQPs are diverse and include seed germination, stomatal
movement, cell elongation, reproductive growth, phloem
loading and unloading and stress responses in plants
[12,13]. Many genes encoding AQP proteins have been
identified from different plant species, including 35 from
Arabidopsis [14], 33 from rice [15] and 36 from maize
[16]. These orthologs can be subdivided into four groups
characterized by highly conserved amino acid sequences
and stereotypical intron positions within each group: the
tonoplast intrinsic proteins (TIPs), the plasma membrane
intrinsic proteins (PIPs), the nodulin-like plasma mem-
brane intrinsic proteins (NIPs) and the small intrinsic pro-
teins (SIPs) [17].

The expression and biological activities of AQPs are
affected by a number of signals, including abiotic
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stresses, plant hormones and light [10,14,18-21]. The
regulation and biochemical functions of AQPs in re-
sponse to abiotic stresses are complex and not well
understood. In a number of transgenic approaches, some
AQPs have been demonstrated to confer tolerance to
abiotic stresses [6,11,13,22-26]. For example, overexpres-
sion of TaAQPS8 results in increased root elongation
under salt stress [25]. Tobacco NtAQPI is involved in
improving water use efficiency, hydraulic conductivity,
and yield production under salt stress [11]. However,
overexpression of a distinct aquaporin, HvPIP2;1, leads
to an increased transpiration rate and slightly decreased
intrinsic water-use efficiency [27]. These attempts to use
AQPs to improve crop tolerance to abiotic stresses have
yielded contradictory results depending on the isoforms
of AQPs. Therefore isoforms that are shown to confer
improved physiological status under stress are of major
importance in crop science.

Banana (Musa acuminata 1.) is a large annual mono-
cotyledonous herbaceous plant found in tropical and
subtropical climates, and is one of the most popular
fresh fruits enjoyed worldwide. Because banana has shal-
low roots and a permanent green canopy, it is especially
sensitive to conditions that lead to water deficit [28,29].
A better understanding of the mechanisms employed
by banana plants to tolerate abiotic stresses will be
helpful for increasing crop production and quality of
this economically valuable fruit. In banana, only one
aquaporin gene, MusaPIPI;2, has been characterized
as a positive factor in abiotic stress tolerance. Trans-
genic plants overexpressing MusaPIP1;2 constitutively
exhibited better abiotic stress survival characteristics in-
cluding lower malondialdehyde content, elevated relative
water content, elevated proline levels and a higher photo-
synthetic efficiency relative to controls under different
abiotic stress conditions [29]. In our previous study, a
transcript displaying upregulated expression at the early
stage of post-harvest banana ripening was identified by
c¢DNA microarray [30]. Sequence analysis suggested that
this ¢cDNA fragment exhibited high similarity to AQP
genes from other plant species. In this study, a full-length
¢DNA encoding MaPIP1;1 was cloned and characterized.
We investigated the function of MaPIP1;1 during drought
and salt stresses, which will lead to increased under-
standing of the mechanisms of environmental stress
tolerance employed by plants.

Results

Banana MaPIP1;1 encodes a PIP1-subfamily aquaporin

A cDNA fragment was identified by cDNA microarray
from genes that were differentially expressed at the early
stage of post-harvest banana ripening and the full-length
cDNA, designated as MaPIP1;1 (GenBank: KC969669),
was obtained using the rapid amplification of cDNA
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ends (RACE) method. The full-length MaPIPI;1 cDNA
is 1123 bp in length with a 861 bp open reading frame
(ORF) that encodes 286 amino acids. BLASTX analysis
demonstrated that MaPIPI;1 had 94% sequence identity
with HcPIP1 from Hedychium coronarium and OsPIPL;2
from Oryza sativa Japonica Group. The predicted MaPIPI;1
protein has a highly conserved amino acid sequence
(‘HINPAVTEG’) characteristic of the MIP family, six
putative transmembrane helices and two ‘NPA’ motifs
(Additional file 1: Figure S1). Phylogenetic analysis of
MaPIP1;1 with other AQPs from Arabidopsis and rice
that MaPIP1;1 is close to PIP1 subfamily (Additional
file 1: Figure S2). These results suggest that the MaPIPI;1
gene cloned in this study is a member of the PIPI subfam-
ily in banana.

MaPIP1;1 localizes to the plasma membrane

To determine the subcellular localization of the MaPIP1;1
protein, its ORF was introduced into pCAMBIA1304-GFP
vector upstream of the GFP gene to create a MaPIP1;1-
GFP translational fusion construct. The MaPIP1;1-GFP
fusion and the plasma membrane-localized maker pm-rk
were co-expressed in onion epidermal cells by particle
bombardment and we observed that the green fluores-
cence MaPIP1;1-GFP and red pm-rk were both confined
to the plasma membrane (Figure 1). These results indicate
that MaPIP1;1 is targeted to the plasma membrane.

Expression of MaPIP1;1 in different banana organs and
after various stress treatments

To investigate the expression of MaPIPI;1 in different ba-
nana organs, total RNA was extracted from leaves, roots,
stems, flowers and fruits, converted to cDNA and subjected
to real-time quantitative polymerase chain reaction (qRT-
PCR) analysis. MaPIP1;1 transcripts were detected in all
organs examined and the gene was most abundantly
expressed in roots (Figure 2A). To determine the transcrip-
tional response of MaPIPI;1 to abiotic stress, various stress
treatments were applied to banana plants. The results indi-
cated that the expression of MaPIP1;1 was induced in
leaves and roots after salinity stress and simulated drought
treatments. The highest expression levels of MaPIP1;1 were
observed when banana seedlings were treated with NaCl
for 6 h and at a soil water capacity at 45% (Figure 2B and
2D). However, the expression of MaPIPI;1 in leaves and
roots was inhibited by chilling treatment (Figure 2C). Taken
together, these results suggest that MaPIPI;1 transcript
levels were affected by various stress treatments.

Phenotypic analysis of MaPIP1;1 overexpressing
Arabidopsis transgenic lines

To further understand the role of MaPIPI;1 in planta,
MaPIP1;1 was introduced into pCAMBIA1304 vector
under the control of the 35S promoter. After floral-dip
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Figure 1 Subcellular localization of MaPIP1;1 fused with GFP. MaPIP1;1:GFP and plasma membrane-localized maker pm-rk were transiently
co-expressed in onion epidermal cells and visualized with fluorescence microscopy after 48 h. (A) Fluorescence image of an epidermal cell
expressing the p355-MaPIP1;1:GFP fusion protein. (B) Merged fluorescence image of an epidermal cell expressing the p355-MaPIP1;1:GFP fusion
protein and pm-rk marker. (C) Fluorescence image of an epidermal cell expressing the pm-rk.

transformation of Arabidopsis, five hygromycin-resistant
transgenic lines from the T3 generation were investigated
by Southern analysis. These results showed that 35S:
MaPIP1;1-13 (L13) and 35S::MaPIP1;1-6 (L6) lines each
integrated two copies of the MaPIPI;1 transgene, while
358::MaPIP1;1-16 (L16), 35S:MaPIPI;1-8 (L8) and 35S:
MaPIPI;1-1 (L1) lines each integrated one copy of
MaPIP1;1 (Figure 3A). The expression levels of MaPIPI;1
in the transgenic lines were also monitored. L13 and L6
exhibited higher levels of MaPIPI;1 expression than the
other transgenic lines, which is consistent with the copy
number of MaPIPI;1 determined by Southern analysis
(Figure 3B). Transgenic MaPIP1;1 overexpression lines ex-
hibited longer primary root length, fewer emerged lateral

roots and more abundant root hairs than untransformed
controls (Figure 3C-3 F; Additional file 1: Figure S3).
These results suggest that MaPIP1;1 overexpression influ-
ences root development under typical Arabidopsis growth
conditions.

Overexpression of MaPIP1;1 enhances tolerance to salt
stress

To investigate the role of MaPIPI;1 during salt stress,
wild-type (WT) Arabidopsis and MaPIPI;1 overexpres-
sion lines were subjected to salinity treatments. Root
growth was enhanced in the transgenic lines compared
to WT seedlings under control and high salt conditions.
In NaCl conditions ranging from 50 mM to 150 mM,
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Figure 2 MaPIP1;1 expression in different banana organs (A) and in leaves and roots with stress treatments (B,C,D). Data are means + SE of
n =3 biological replicates. Means denoted by the same letter do not significantly differ at P < 0.05 as determined by Duncan’s multiple range test.
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determined by Duncan’s multiple range test.

Figure 3 Characterization of MaPIP1;1-overexpressing lines in Arabidopsis. Leaves from four week-old plants were sampled to detect the
MaPIP1;1 copy number (A) and the expression of the transgene (B). Photographs (C) and statistical analyses (D) of primary root length of WT
and transgenic lines under normal conditions. Photographs (E) and statistical analyses (F) of root hairs of WT and transgenic lines under normal
conditions. Data are means + SE of n =4 biological replicates. Means denoted by the same letter do not significantly differ at P < 0.05 as
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the transgenic seedlings exhibited reduced suppression
of primary root length and more abundant root hairs
than did WT seedlings (Figure 4A, 4D and 4E). Further-
more, when mature Arabidopsis plants were subjected to
350 mM NaCl treatment for 15 d in soil, the transgenic
lines exhibited better growth and a higher survival rate
than WT plants (Figure 4B and 4C). These results indi-
cate that MaPIPI;1 overexpressing transgenic lines were
more tolerant to salt stress than WT Arabidopsis.

Overexpression of MaPIP1;1 reduces MDA content and IL
under salt stress

Increased salt tolerance in transgenic lines relative to
the WT led us to investigate physiological differences

between MaPIP1;1 overexpression lines and WT plants.
Malonaldehyde (MDA) is a product of lipid peroxida-
tion caused by reactive oxygen species (ROS), and is
used to evaluate ROS-mediated injury in plants [31].
The MDA content was lower in transgenic seedlings
and in the leaves of the MaPIPI;1 transgenic lines
compared to WT under salt conditions (Figure 5A
and 5B). Ion leakage (IL), an important indicator of
membrane injury, exhibited a pattern similar to MDA
content in leaves and was also lower in the transgenic
lines compared to WT under salt conditions (Figure 5C).
These results suggest that MaPIPI;1 overexpression lines
experienced less lipid peroxidation and membrane injury
under salt stress.
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Figure 4 Roponse to salt stress of MaPIP1;1-overexpressing Arabidopsis plants. Photographs (A) and statistical analyses (D) of the primary
root length of WT and transgenic lines under normal or saline conditions. Photographs (B) and survival rates (C) of WT and transgenic mature
plants grown under saline conditions. (E) The number of root hairs of WT and transgenic lines under normal or saline conditions. Data are
means + SE of n =4 biological replicates. Means denoted by the same letter do not significantly differ at P < 0.05 as determined by Duncan’s
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Overexpression of MaPIP1; 1 decreases K* and Na*
accumulation and increases the K*/Na* ratio under salt stress
Under highly saline conditions, plant cells retain a high
cytosolic K'/Na" ratio in order to survive [32]. To inves-
tigate whether MaPIP1;1 influences the cellular K*/Na*
ratio, the K™ and Na" contents in the roots and leaves of
transgenic lines and WT plants were examined in stand-
ard conditions and after salinity treatment (Figure 6).
The accumulation of K* in leaves was reduced in the
transgenic lines compared to WT under normal condi-
tions. However, after salt treatment, K" and Na" were
both depleted in the roots and leaves of the transgenic
lines in comparison to WT. Moreover, the leaves of the
transgenic lines maintained a higher K*/Na" ratio than
did WT plants during salt treatment. These results sug-
gest that MaPIP1;1 overexpression decreased accumula-
tion of cellular K" and Na" and improved the K*/Na*
ratio under salt stress.

Overexpression of MaPIP1;1 enhances tolerance to
osmotic and drought stresses

To examine the osmotic tolerance of MaPIPI; I-overex-
pressing transgenic plants, mannitol treatment was applied

to transgenic and WT seedlings. The transgenic lines ex-
hibited longer primary roots and more abundant root
hairs than WT seedlings with or without mannitol treat-
ment (Figure 7A, 7D and 7E). To determine whether
MaPIPI;1 plays a role in drought stress, transgenic plants
and WT Arabidopsis plants were subjected to drought
treatment. The transgenic plants displayed better growth,
more green leaves, higher survival rates and lower water
loss rate compared to WT under drought conditions
(Figure 7B, 7C and 7F). These results indicate that overex-
pression of MaPIP1;1 improved tolerance to drought and
osmotic stresses.

Overexpression of MaPIP1; 1 reduces IL and MDA content,
and increases proline accumulation and osmotic potential
under drought stress

Drought stress leads to oxidative injury and disrup-
tion of osmotic balance. To investigate the function of
MaPIPIL;1 in these physiological processes, IL, MDA, pro-
line and osmotic potential were quantified in the transgenic
lines and WT plants under normal and drought condi-
tions. Although no difference in MDA, IL, proline content
and osmotic potential was observed in the transgenic lines
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compared to WT under normal growth conditions,
reduced MDA and IL and higher proline content and
osmotic potential were observed in leaves of trans-
genic lines compared to WT under drought treatment
(Figure 8A-8D). These results indicate that the trans-
genic lines experienced less lipid peroxidation and mem-
brane injury, and improved osmotic adjustment under
drought treatment.

Overexpression of MaPIP1;1 decreases the expression of
ABA-responsive genes

To gain a deeper understanding of MaPIP1;1 function in
abiotic stress tolerance, the expression of several ABA-
responsive genes, namely RD29a, RD29b, RABI18 and
KIN2 was examined in WT plants and the MaPIPI;1-
overexpression lines [33-35] (Figure 9). Under standard
growth conditions, we observed no significant difference
in the transcription of tested genes in the transgenic
lines compared to WT plants. However, transgenic seed-
lings exposed to 2, 4, 6 or 10 h of dehydration or salt
treatment exhibited reduced expression of RD29a,

RD29b, RABI8 and KIN2 compared to WT seedlings
that were similarly treated. These results indicate that
MaPIP1;1 overexpression leads to downregulated ex-
pression of ABA-responsive genes during dehydration and
salt stresses.

Discussion

MaPIP1;1 plays a positive role in mediating drought and
salt stress responses

Several lines of evidence have shown that AQPs are in-
volved in abiotic stress tolerance [11,13,22,25,26,36]. In
our study, we observed that expression of MaPIPI;1 in
leaves and roots was significantly induced after drought
and salt treatment, implying that this gene product may
play a positive role in mediating responses to drought
and salt stresses. To better understand the function
of MaPIP1;1 during abiotic stress, we generated a number
of MaPIPI;1-overexpressing Arabidopsis transgenic lines.
The transgenic seedlings and adult plants exhibited in-
creased tolerance to drought and salt stresses compared
to WT. These results are consistent with previous
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studies demonstrating that overexpression of AQP
genes confers abiotic stress tolerance to transgenic plants
[11,13,25,26,36].

Expression of MaPIP1;1 is associated with reduced
membrane injury

Na" is toxic to cell metabolism and has a deleterious ef-
fect on some proteins. High Na® levels also reduce
photosynthesis and lead to oxidative damage [37]. Add-
itionally, drought stress can induce a rapid accumulation
of ROS leading to damage of the cell membrane and oxi-
dation of proteins, lipids, and DNA [38,39]. MDA, the
product of lipid peroxidation caused by ROS, can be
used to evaluate ROS-mediated injuries in plants [31]. IL
is also an important indicator of membrane injury. Thus,
MDA content and IL were measured to assess the role
of MaPIPI;1 overexpression in reducing membrane in-
jury under drought or salt conditions. MaPIPI;1 overex-
pression resulted in decreased IL and MDA content
relative to WT, indicating that MaPIP1;1-overexpressing
plants may experience less lipid peroxidation and mem-
brane injury under salt or drought conditions. Consist-
ent with our findings, TaAQP7-overexpressing tobacco
plants show lower levels of MDA and IL when compared
to WT under drought stress and BjPIP1-overexpressing
plants exhibit reduced MDA and IL under Cd stress
[26,40]. Overexpression of OsPIP2;7 in rice results in de-
creased IL under chilling stress and TaAQP8-overex-
pressing tobacco plants exhibit reduced MDA and IL
relative to WT plants under salt stress [25,41]. Collect-
ively these studies indicate that AQPs play a vital role in
decreasing IL and MDA, thereby reducing membrane
injury under various abiotic stresses. AQPs participate in
the rapid transmembrane water flow during growth and
development in plants. When plants are subjected to
drought or salt conditions, increased transport of water
across membranes is crucial to maintain a healthy
physiological status. We also observed that MaPIPI;1-
overexpressing plants subjected to drought or salinity
treatments exhibited better growth than the WT plants.
We surmise that physiological improvements conferred
by MaPIP1;1 overexpression contribute to plants main-
taining the protein machinery and hence reducing mem-
brane injury.
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Overexpression of MaPIP1;1 improves ion distribution in maintaining ion homeostasis during a variety of abiotic
under salt conditions stresses. For example, AtSOS1 and SISOS1 are membrane-
A large number of different ion transporters and channel ~ bound Na*/H" antiporters that improve salt stress toler-
proteins, such as SOS1, NHX and HKT, are situated in  ance by exporting Na" [42]. The reduced membrane
the plasma membrane. These proteins play crucial roles injury observed in MaPIPI;I-overexpression lines led
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us to examine K" and Na" accumulation in WT plants
and transgenic lines. MaPIPI;1 overexpression decreases
the accumulation of cellular K* and Na* and improves the
K*/Na" ratio under salt stress. Previous studies have also
reported that aquaporins regulate the distribution of Na*
and K" under salt stress. TaNIP-overexpressing plants ex-
hibit higher K* and lower Na® levels compared to WT
plants under salt stress [13]. TaAQP8-overexpressing to-
bacco plants have elevated Na* and K* levels in roots, re-
duced Na™ and increased K* in stems compared to WT
plants under salt treatment [25]. Although overexpression
of aquaporins appears to cause different patterns of al-
tered Na* and K distribution, the evidence suggests that
these lead to improved K'/Na* ratios under salt condi-
tions. In recent years, a high cytosolic K'/Na" ratio has
become an accepted marker of salinity tolerance [32].
Therefore, the increased salt stress tolerance conferred by
MaPIPI;1 overexpression may be due to not only de-
creased membrane injury but also the increased K*/Na*
ratio in transgenic lines.

Overexpression of MaPIP1;1 improves osmotic adjustment
under drought conditions

Maintaining the ability to retain water is vital for plants
to combat drought stress. AQPs function in rapid trans-
membrane water flow during growth and development
and play important roles in maintaining plant water
relations under drought conditions. We observed that
MaPIPI;1-overexpressing plants exhibited better growth
and a lower rate of water loss compared to WT plants
under drought conditions, indicating a positive influence
of MaPIP1;1 on water retention. Consequently, we investi-
gated the physiological mechanisms involved in improved
water retention conferred by MaPIPl;1. When plants
experience drought conditions, the accumulation of com-
patible osmolytes is employed as a strategy to maintain os-
motic adjustment. One such compatible solute is the
amino acid proline, whose accumulation functions to de-
crease the cellular osmotic potential and to enhance cellu-
lar protection [43]. MaPIP1;1-overexpressing transgenic
plants maintained higher levels of proline and osmotic po-
tential compared to WT plants subjected to similar
drought treatment, implying that MaPIP1;1 may function
in maintaining osmotic adjustment under drought stress.
The reduced membrane injury conferred by overexpres-
sion of MaPIPI;1 may also contribute to improved os-
motic adjustment under drought stress.

Reduced expression of ABA-responsive genes in
MaPIP1;1-overexpressing plants reflects their improved
physiological status

Dehydration can lead to inhibition of physiological pro-
cesses; therefore plants initiate adaptive mechanisms to
survive osmotic stresses [44,45]. ABA-dependent signal
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transduction pathways play crucial roles in the adaptation
of plants to stress [33]. When Arabidopsis plants were sub-
jected to water stress, some ABA-responsive genes, such
as RD29A, RD29B, KIN2 and RABI8 showed increased
transcript levels, indicating that the injury resulted from
water stress induces the expression of ABA-responsive
genes [46]. We examined the expression of these ABA-
responsive genes in MaPIPI;1-overexpressing transgenic
seedlings in relation to WT seedlings. The ABA-responsive
genes were downregulated in the transgenic seedlings
subjected to dehydration or salt treatments in comparison
to similarly treated WT seedlings. This result suggests that
the MaPIP1;1-overexpressing transgenic plants were less
responsive to ABA signaling compared to WT plants,
implying that MaPIPI;1-overexpressing plants have im-
proved physiological status under drought and salt stress
conditions.

Conclusions

The findings of this study demonstrated a role for
MaPIP1;1 function in improving tolerance to drought
and salt stresses. MaPIPI;1 overexpression resulted in
enhanced tolerance to salt stress not only by reducing
membrane injury but also by maintaining a higher cellu-
lar K*/Na" ratio. Enhanced drought stress tolerance con-
ferred by MaPIPI;1 is related to decreased membrane
injury and improved osmotic balance. These findings
further our understanding of the mechanisms of envir-
onmental stress on plants and highlight the role of AQPs
in reducing membrane injury, improving ion distribution
and maintaining osmotic balance. It is necessary to point
out that heterologous expression of banana MaPIPI;1 in
Arabidopsis results in these conclusions that are valid for
such a heterologous system, but may not be the same in
other plants. Further studies are required to characterize
the function of MaPIP1;1 in banana.

Methods

Plant materials and growth conditions

Young banana (Musa acuminata L. AAA group, cv.
Brazilian) seedlings were obtained from the banana
tissue culture centre (Danzhou, Institute of Banana and
Plantain, Chinese Academy of Tropical Agricultural
Sciences). Banana seedlings were grown in soil sup-
plied with half-strength Hoagland’s solution under green-
house conditions (28°C; 200 umol m™ s™* light intensity;
16 h light/8 h dark cycle; 70% relative humidity). Seedlings
with uniform growth at the five-leaf stage were selected
for stress treatment. For NaCl treatment, banana seedlings
grown in soil were irrigated with half-strength Hoagland’s
solution supplemented with 350 mM NaCl for up to 6 h
[47]. Hsiao (1973) proposed that extent of drought stress
that plant suffered can be divided to three levels according
the water potential in soil [48]. For drought stress assays,
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water was withheld from banana seedlings grown in soil
and samples were collected when the soil moisture con-
tent reached different stress degrees as outlined by Hsiao
(1973). The soil moisture content was measured using an
instrument according to manual instructions (TZS-1,
TOP, Zhejiang, China). For low temperature treatments,
banana seedlings were transferred into a growth chamber,
in which the temperature was maintained at 28, 15, 10, 7
or 5°C for 12 h.

Cloning of a full-length cDNA encoding banana MaPIP1;1

The full-length cDNA encoding MaPIPI;1 was amplified
by RACE using sequence information from a cDNA
fragment previously identified by suppression subtractive
hybridization (SSH) [30]. Single-stranded cDNA was used
as a source template and was generated from banana fruit
2 d after harvest. For 5° RACE, the forward primer se-
quence was 5’'-catctcgccgaggtgctecttgtge-3” and the re-
verse primer sequence was 5’-ccttgcctcaacaacacgate-3'.
For 3" RACE, the forward primer sequence was 5'-
cagcggtggcggttggcageggagge-3', and the reverse primer
sequence was 5’ -ctccgagatctggacgage-3'. Amplified prod-
ucts were inserted into the pGEM-T easy vector (Pro-
mega, Madison, WI, USA). A pair of specific primers
was used (5'- tcggccattacggecgggga-3° and 5'-cttatttt
taagggtttttgatac-3') to amplify the entire open reading
frame (ORF) based on the sequences of the 5" and 3’
ends. The resulting full-length cDNA encoding MaPIP1;1
was assessed by DNAMAN software and BLAST (http://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Subcellular localization of the MaPIP1;1 protein

The MaPIP1;1 OREF, including engineered Ncol/Spel re-
striction sites, was obtained using gene-specific primers.
The PCR products were inserted into pCAMBIA1304-
GFP expression vector to generate a MaPIP1;1-GFP fusion
protein under the control of the CMV35S promoter. The
pCAMBIA1304-MaPIP1;1-GFP construct and the pm-rk
used as a plasma membrane-localized maker were transi-
ently co-expressed in onion epidermal cells using a gene
gun to deliver the expression plasmids (PDS-1000, BIO-
RAD) [49]. After a 48 h incubation at 25°C on Murashige
and Skoog medium (MS), fluorescence was examined by
fluorescence microscopy (LSM700, Carl Zeiss, Germany).
The exitation/emission wavelengths are 485/515 nm for
GFP, 585/615 nm for RFP and 460/490 nm for GFP and
RFP in the same well.

Plant transformation and generation of transgenic plants
The pCAMBIA1304-MaPIP1;1-GFP construct was trans-
ferred into Agrobacterium strain GV3101. Transgenic
Arabidopsis plants were generated using the floral dip-
mediated infiltration method [50]. Seeds from T trans-
genic plants were selected on half-strength MS medium
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containing 50 mg/L of hygromycin B. Homozygous T3
lines were used for further functional investigation of
MaPIPI;1. Five hygromycin-resistant transgenic lines from
the T3 generation were used to determine the integration
of MaPIPI;1 to Arabidopsis genome by Southern analysis.
The transcriptional levels of MaPIPI;1 in the 5 independ-
ent T3 lines was examined by qRT-PCR analysis, in which
the AtActin gene was used as an internal control.

Drought and salt stress treatments in WT and transgenic
plants

Arabidopsis thaliana ecotype Columbia (Col-0) was used
as the wild-type control for these experiments. Seeds
were sterilized in 75% (v/v) ethanol for 10 minutes, ver-
nalized for 2 d at 4°C in the dark and then germinated
on half-strength MS medium or directly on soil. Plants
were grown under a chamber (22°C; 120 pmol m™> s~
light intensity; 16 h light/8 h dark cycle; 70% relative hu-
midity). For phenotype analysis in early seedlings under
normal conditions, four day-old seedlings were used to
determine the root hairs, then the seedlings were trans-
ferred to half-strength MS medium for 15 days, and then
the photos were taken and roots length were measured.
For salt stress tolerance analysis in early seedlings, four
day-old seedlings were transferred to half-strength MS
or the same medium supplemented with 50-150 mM
NaCl for 15 days, then the photos were taken, and then
root length and root hairs were measured. For salt stress
tolerance analysis in adult plants, Arabidopsis plants at
four weeks of age were irrigated with 350 mM NaCl for
15 days, then the photos were taken, and then survival
rates were assessed. For osmotic stress tolerance ana-
lysis, four day-old seedlings were transferred to half-
strength MS or the same medium supplemented with
100-300 mM mannitol for 15 days, then the photos
were taken, and then root length and root hairs were
measured. For drought stress tolerance analysis, plants
were grown in pots filled with a mixture of soil and sand
(3:1) at 22°C for four weeks. Water was withheld from
the treatment group for 20 days, then the photos were
taken and survival rates were calculated. For expression
analysis of ABA-responsive genes in WT and transgenic
lines, fifteen day-old seedlings were transferred to half-
strength MS agar plates supplemented with 350 mM
NacCl for up to 10 h or 300 mM mannitol for up to 6 h.
Whole seedlings were used to quantify relative gene
expression.

Rate of water loss

Thirty fully expanded leaves from each line were detached
from four week-old Arabidopsis plants and weighed imme-
diately (Fresh Weight, FW). The leaves were placed on
open Petri dishes, which were then placed in an incubation
chamber (humidity 45%, 22°C). Samples were weighed at
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different time intervals (Desiccated Weights, DW). The
water loss rates was calculated according to the formula:
water loss rate (%) = (FW — DW) / FW x 100 [51].

lon leakage, proline, malondialdehyde and osmotic
potential measurements

Four week-old plants were well watered or irrigated with
350 mM NaCl treatment for 15 days and leaf samples
were collected to examine MDA and IL. Fifteen day-old
seedlings were transferred to fresh half-strength MS agar
plates supplemented with or lacking 350 mM NaCl and
whole seedlings were used to measure MDA and IL.
Four week-old plants were either well-watered or sub-
jected to simulated drought treatment by withholding
water for 20 days. Leaves of WT and transgenic lines
were collected to examine MDA, IL, proline and os-
motic potential. Ion leakage (IL) was measured accord-
ing to the method described by Jiang and Zhang (2001)
[52]. Leaf samples were cut into strips and incubated in
10 ml of distilled water at 25°C for 8 h. The initial con-
ductivity (C1) was determined with a conductivity meter
(DDBJ-350). The samples were then boiled for 10 min to
yield complete IL. After cooling down, the electrolyte
conductivity (C2) was measured. IL was calculated ac-
cording to the equation: IL (%)= C1/C2 x 100. Proline
content was measured according to Bates (1973) [53].
Malondialdehyde (MDA) content was measured accord-
ing to the thiobarbituric acid colorimetric method as de-
scribed by Heath and Packer (1968) [54]. The osmotic
potential was measured using a dewpoint PotentiaMeter
according to the manufacturer’s instruction (WP4C,
DECAGON, USA).

Measurement of Na* and K* contents

Four week-old Arabidopsis plants were well watered or
irrigated with 350 mM NacCl for 15 days. The leaves and
roots from WT plants and the transgenic lines were col-
lected to determine ion content. Plant materials were
washed with ultrapure water, then treated at 105°C for
10 min and baked at 80°C for 48 h. Samples consisting
of 50 mg of dry material were dissolved in 6 ml of nitric
acid and 2 ml H,O, (30%) and then heated at 180°C for
15 min. The digested samples were diluted in a total vol-
ume of 50 ml with ultrapure water, transferred into new
tubes and analyzed by atomic absorption spectroscopy
(Analyst 400, Perkin Elmer, USA).

Southern blot analyses

Genomic DNA isolated from Arabidopsis leaves was
digested with EcoRI restriction enzyme, separated on
0.8% agarose gels, and transferred to nylon membranes.
c¢DNA probes used in Southern blotting were amplified
using a MaPIPI;1 primer set: F- 5'ATGTGTAATCC
CAGCAGC and R- 5'CAAGGAGGACGGAAACAT.
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The probe was labeled using random primer labeling sys-
tem. Hybridizations were performed according to the man-
ufacturer’s instructions (Rochel1745832910, DIG High
Prime DNA Labeling and Detection Starter Kit, USA).

qRT-PCR

Expression of MaPIPI;1 in banana organs and leaves
after various treatments as well as ABA-responsive genes
in Arabidopsis were measured by qRT-PCR using SYBR®
Premix Ex Taq™ (TaKaRa) chemistry on a Stratagene
Mx3000P (Stratagene, CA, USA) instrument. Total RNA
was extracted from Arabidopsis and banana tissues using
a plant RNA extraction kit (QIAGEN) according to the
manufacturer’s instructions. 3 pg of total RNA from each
sample was converted into cDNA using SuperScript II re-
verse transcriptase (Invitrogen). In all qRT-PCR experi-
ments, 2-**“* method was employed to assess relative
expression of the tested genes with three replicates of each
condition [55]. Prior to quantification experiments, a
series of template and primer dilutions were conducted to
obtain the optimal template and primer concentrations
for amplifying the target genes. Primers used in qRT-PCR
analysis had high efficiency and specificity based on melt-
ing curve analysis and agarose gel electrophoresis. The
sequences of these primers were included in Additional
file 1: Table S1. To confirm the specificity of primer
pairs, PCR products were subsequently subjected to
sequence analysis. Amplification efficiencies of primer
pairs were between 90% and 110%. MaRPS2 (HQ853246)
and MallBQ2 (HQ853254) were used as the internal con-
trols to normalize expression of target genes in banana
and S-ACTIN2 (At3g18780) and B-ACTINS (At1g49240)
were selected as reference genes to normalize transcript
levels of target genes in Arabidopsis. All the selected refer-
ence genes were verified to be constitutive expression and
suitable to be used as internal controls [56-58].

Additional file

Additional file 1: Figure S1. Comparison of MaPIP1; 1 with other
known PIP proteins. Six transmembrane-helix are displayed in the box.
The most highly conserved amino acid sequences of MIP are marked
with double transverse lines. The 'NPA" motif is marked with black dots.
The accession numbers of these known proteins in GenBank are as
follows: QpPIP1;3 (JQ846272), FePIP1;1 (AY663794), VWWPIP1;2 (EF364433),
GhPIP1;4 (BK007045) and TuPIP1;5 (KD232839). Amino acid sequences are
aligned by ClusterX software. Figure S2. Phylogenetic analysis of
MaPIP1;1 (boxed) with other known AQPs. The full-length amino acid
sequences of AQPs from Arabidopsis and rice were used to construct
the phylogenetic tree by using ClustalX 1.81 and MEGA 3.1 software.
Figure S3. Photographs of primary root length of WT and transgenic
lines under normal conditions. Table S1. Primers used for gRT-PCR
analysis.
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