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Abstract

Background: Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the
primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions
and the evolution of the genes responsible for producing and modifying them are incompletely understood. The
moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify
deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene
families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families.

Results: Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in
the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases,
polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show
evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene
families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like
proteins, 3-1,4-galactan (3-1,4-galactosyltransferases, rhamnogalacturonan Il xylosyltransferases, and pectin acetylesterases
appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in
the xylogalacturonan xylosyltransferase, rhamnogalacturonan | arabinosyltransferase, pectin methylesterase inhibitor, or
polygalacturonase inhibitor protein families.

Conclusions: Several gene families related to the production and modification of pectins in plants appear to have
multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence
of multiple members of these families even before the divergence of other important cell wall-related genes, such as
cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants.
The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an
attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for
some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land
plant evolution.
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Background

Pectins make up approximately one third of the dry mass
of primary cell walls in eudicots, affecting both water
dynamics and the mechanical behavior of the wall [1].
Pectins consist of four domains: homogalacturonan (HG),
xylogalacturonan (XGA), rhamnogalacturonan I (RG-I),
and rhamnogalacturonan II (RG-II) [2]. Homogalacturo-
nan makes up the majority of the pectic component of
the cell wall and also serves as the backbone of XGA
and RG-II. Xylogalacturonan is made up of HG with at-
tached xylose side-groups, whereas RG-II has four com-
plex and distinct side-chains [3]. Rhamnogalacturonan I
has side-chains containing galactose and arabinose, but its
backbone consists of alternating rhamnose and galacturo-
nic acid. These complex polysaccharides are almost uni-
versally conserved in land plants and are also present in
some algae [4], although structural diversity in pectins is
present between some species. For instance, there is evi-
dence for RG-II in all land plant species analyzed to date
[3,5] but its side chains are not perfectly conserved [6],
and the side chains of RG-I vary among species [1]. Add-
itionally, XGA has not been detected in Physcomitrella
patens [7].

Pectins are important determinants of wall remodeling
during cellular growth [8]. Pairs of HG molecules can be
bound together by Ca** bridges, stiffening the wall [9],
and RG-II side-chains dimerize via borate diol ester bonds
[10]. A decreased ability to form RG-II dimers leads to
dwarfism [11]. Modifications to pectin can enhance or
prevent these interactions and thus affect the properties of
the wall as a whole: for example, alterations in wall stiff-
ness mediated by pectin methylation have been implicated
in organ primordium initiation and cell elongation [8,12].
Pectins also appear to be essential for normal cell-cell ad-
hesion, since some pectin methylation-defective mutants
lack tissue cohesion [13,14].

The complex structures of pectins require a large suite
of biosynthetic genes, many of which are inferred only
by the biochemical reactions required to synthesize the
many linkages in pectins [15,16]. Nevertheless, many
pectin-related genes have been identified, and modifica-
tion of their expression can have serious effects on the
development and growth of mutant plants [17-20]. Pec-
tins play an especially important role in the tip growth
of pollen tubes, with methylation status regulating the
yielding properties of the tip and side walls [21,22], but
this system does not allow for easy genetic manipulation.
Physcomitrella patens, the model moss [23], represents
an attractive experimental system for the genetic and
molecular analysis of pectins in the walls of tip-growing
cells. Its primary growth form is a mass of protonemal
filaments that extend exclusively via tip growth and
might therefore rely heavily on pectins for normal devel-
opment [24,25]. Genes in the Physcomitrella genome [26]
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can be modified directly using high-efficiency homologous
recombination [27], which, combined with the dominant
haploid generation of this moss, makes it ideal for genetic
modification and analysis. As a moss, Physcomitrella is
also likely to resemble an early stage in the transition of
plants from aquatic to terrestrial life, giving us a clearer
view of the cell wall architectures and physiology that
made this transition possible.

As diverse plant genomes are sequenced, there are new
opportunities to study gene families in an evolutionary
context. The PlantTribes 2.0 database [28] is an objective
gene family classification that can be used to investigate
gene family composition and phylogeny on a global scale.
By using the complete inferred protein sequences from ten
diverse plant genomes (seven angiosperms plus the lyco-
phyte Selaginella moellendorffii, the moss Physcomitrella,
and the chlorophyte Chlamydomonas reinhardtii; see
Figure 1), orthologous gene clusters (orthogroups) were
identified that represent deeply conserved, but often nar-
rowly defined gene families. Orthogroups were constructed
using OrthoMCL [29], resulting in gene clusters that typic-
ally align well across their length and have a conserved
domain structure [30]. Leveraging the PlantTribes 2.0
classification is a conservative approach to identify gene
family members from sequenced genomes, avoiding
false positive hits that may be identified using less struc-
tured search algorithms (e.g. BLAST). To assess the
complexity of the pectin biosynthetic and modification
machinery in Physcomitrella and to investigate the evo-
lutionary history of pectin-related gene families in land
plants, we performed an orthogroup-based phylogenetic
study of 16 gene families associated with pectin production
and modification and mapped the relationships of these
genes among terrestrial plant species with sequenced ge-
nomes. These analyses reveal that the Physcomitrella gen-
ome contains at least one member in most of the families
analyzed and that the total number of pectin-related gene
family members in Physcomitrella is much lower than that
in Arabidopsis. Analysis of these families not only identi-
fied members in Physcomitrella, it also reveals that several
pectin-related gene families likely had multiple members in
the land-plant common ancestor.

Results

Identification of pectin-related genes using PlantTribes 2.0
We used a set of genes in Arabidopsis belonging to 16
pectin-related gene families identified in the literature
(Additional file 1) to select orthogroups in the PlantTribes
2.0 database for in-depth phylogenetic analysis (Additional
file 2) [28]. The number of genes from each species in
each family is displayed in Additional file 3. We found at
least one Physcomitrella gene in 12 of the 16 families ex-
amined (Table 1). Notably, no Physcomitrella members of
the xylogalacturonan xylosyltransferase (Additional file 4),
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Figure 1 Summary of land plant phylogeny. The evolutionary relationships of the ten PlantTribes species used in this study (land plants and
Chlamydomonas) and the charophycean algae used as additional outgroups. Note that only one moss and one lycophyte genome has been
sequenced to represent early-diverging lineages of land plants, compared with many genomes representing angiosperms.

rhamnogalacturonan-I arabinosyltransferases (Additional
file 5), pectin methylesterase inhibitor (Additional file 6),
or polygalacturonase inhibitor protein (Additional file 7)
families were detected. There were fewer Physcomitrella
members in most of the pectin-related gene families than
in Arabidopsis, with the exception of the UDP-rhamnose
synthase (four Arabidopsis, six Physcomitrella), B-1,4-

galactan [-1,4-galactosyltransferase (three Arabidopsis, four
Physcomitrella), and UDP-glucuronic acid (UDP-GIcA)
epimerase (five Arabidopsis, nine Physcomitrella) families.

Phylogenetic analysis of pectin-related gene families
Our identification of pectin-related genes in ten diverse
plant species (Figure 1) provided an opportunity to

Table 1 Representatives of pectin-related gene families in Arabidopsis and Physcomitrella

Pectin-related gene family Arabidopsis genes

Physcomitrella genes Putative minimum # of family

members in common ancestor

UDP-Rhamnose synthases 4
UDP-Glucuronic acid epimerases 5
Galacturonosyltransferases (GAUTSs) 15
GAUT-like proteins (GATLs) 10
B-14-Galactan B-1,4-Galactosyltransferase 3
Rhamnogalacturonan I xylosyltransferases 4
Rhamnogalacturonan | arabinosyltransferases 2
Xylogalacturonan xylosyltransferases 2
Homogalacturonan methyl-transferases 6
Pectin methylesterases 66
Pectin methylesterase inhibitors (PMEls) 2
Polygalacturonases 67
Polygalacturonase Inhibitor Proteins (PGIPs) 2
Pectate lyase-like proteins 26
Pectin acetylesterases 11
Pectin acetyltransferases 4
Totals 229

6 1
9 1
8 3
3 1
4 1
1 1
0 ND
0 ND
3 2

~
wn

0 ND
10 5
0 ND
7 2
1 1
3 1
69 24

Sixteen gene families were analyzed. For each gene family, the number under the species with the larger number of genes is highlighted in bold. In most cases
there were more Arabidopsis members than Physcomitrella members. ND (not determined); phylogenetic ambiguity prevents an accurate estimation of ancestral

gene number at this time.
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examine their phylogenetic patterns [31]. To analyze the
evolutionary relationships between gene family mem-
bers, we aligned the sequences from the PlantTribes 2.0
search results for each family using the MUSCLE algo-
rithm [32] followed by manual curation, and constructed
maximum likelihood trees from these alignments using
RAxML [33]. Where possible, we also included a hom-
ologous gene from a green alga to root the trees. We
tested the hypothesis that each pectin-related gene family
would trace back to a single ancestral gene in the common
ancestor of land plants, with any Physcomitrella genes
forming a clade sister to all other land plants. Surprisingly,
this was the case for only seven of the 16 families examined
(Table 1). Five of the trees have multiple well-supported
land plant-wide clades (Figures 2, 3, 4, Additional file 8 and
Additional file 9). Each clade is evidence for a separate an-
cestral gene in the early land plant ancestor of the terres-
trial species examined. These trees and their implications
are explored below.
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The GAUT superfamily contains at least five ancestral land
plant genes

The GAUT superfamily consists of the GAUT and the
distantly-related GAUT-like (GATL) families [34,35].
Some galacturonosyltransferases (GAUTs) are respon-
sible for constructing HG and use UDP-galacturonic
acid (UDP-GalA) as a substrate [34]. In Arabidopsis,
mutations in GAUTs cause phenotypes ranging from
changes in sugar composition of the wall to severe
dwarfism to apparent lethality [34,36-38]. In our ana-
lysis, the GAUT family tree contains three large well-
resolved clades, as well as an unresolved polytomy
(Figure 2). Genes from Physcomitrella and tracheophytes
are present in two of these clades and within the
polytomy from which the root algal gene is not re-
solved. The third of these clades includes genes from
Selaginella, monocots, and eudicots but no Physcomi-
trella genes. This tree suggests a minimum of four
ancestral GAUTs in the earliest land plant.

ATSG47780 (GAUT4)

<

Spirogyra pratensis falls within the polytomy.
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Figure 2 GAUT family tree. Three well-supported clades that suggest ancestral GAUTs are highlighted (blue, pink, and green clouds), and an
unresolved polytomy near the root of the tree is indicated in light grey. The green and pink clades, as well as the polytomy, contain monocot,
eudicot, Selaginella, and Physcomitrella members, whereas the blue clade does not have any Physcomitrella members. The algal root gene from
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Figure 3 Polygalacturonase family tree. Four monophyletic clades (blue, pink, green, and yellow clouds) contain monocot, eudicot, Selaginella,
and Physcomitrella genes. The tree contains two large polytomies, indicated in light grey and labeled "A” and “B". Polytomy B contains unresolved
Physcomitrella and Selaginella members. The algal root gene is from C. reinhardtii, a chlorophytic alga.
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The roles of the GATL proteins are not all clearly
established: some of them have been implicated in pectin
production, while at least one seems to be involved in
xylan synthesis [38,39]. When we generated an alignment
and phylogenetic tree of the entire superfamily (Figure 5),
the GATL family (yellow cloud) appeared as a well-
resolved but distant clade derived from within the GAUT
family that also contains representatives from all of the
land plant species queried.

Polygalacturonase and pectin methylesterase families are
large and deeply conserved

Whereas GAUTs build the HG backbone of pectins,
polygalacturonases (PGs) hydrolyze it, weakening the
pectin matrix and potentially loosening the wall [40]. In
eudicots, PGs are important in cell expansion and also
in abscission and fruit softening [41]. The PG family is
very large in Arabidopsis, with over 65 known members.
Our phylogenetic analysis for these genes resulted in
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Figure 4 Pectin-methylesterase family tree. Two large polytomies, labeled “A” and “B” and shown in light grey, indicate poor resolution of
some of this family’s lineages. Four monophyletic clades contain members from the monocots, eudicots, Selaginella, and Physcomitrella. One of
these clades (blue cloud) consists of polytomy B and a smaller clade of Physcomitrella and Selaginella genes. Additional moss and tracheophyte

genes remain poorly resolved in polytomy A. The algal root (from P. margaritaceum) is within one of the polytomies.

pectin-modifying enzymes as well as interactions with
other HG chains. Thus, the amount and pattern of
methylation can affect wall dynamics in several ways. PMEs
remove methyl groups from pectin, rendering it more

two large unresolved polytomies, each containing several
monophyletic groups, four of which contain representa-
tives from mosses, lycophytes, monocots, and eudicots

(Figure 3). Although the placement of several of the
Physcomitrella genes is unresolved, the gene tree sug-
gests a minimum of five genes in the common ancestor.
Like the PGs, the pectin methylesterase (PME) family
is very large in Arabidopsis [42]. Galacturonic acid resi-
dues in the HG backbones of pectins often have attached
methyl ester groups at the C6 position that can prevent

prone to degradation by hydrolytic enzymes as well as to
calcium cross-linking, potentially either weakening or stift-
ening the wall. This is complicated by the tendency of
different PMEs to remove methyl groups in random or
block-wise patterns: lone de-methylated GalAs make the
polymer prone to enzyme degradation, whereas consecutive
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well-supported as being derived from within the GAUTs; due to a polytomy in the GATL family, clade relationships within this family are not well
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exposed carboxylate groups favor calcium-bridging [43].
Like the PGs, the PME gene tree we generated has two
large polytomies and two smaller resolved clades (Figure 4).
Unlike the PG tree, the algal root is a member of one of the
polytomies. Within this polytomy are two well-supported
land plant-wide monophyletic clades. Resolved from this
polytomy is a third land plant-wide clade. Several Physcomi-
trella and Selaginella genes are in a clade that is sister to
the second polytomy, which consists entirely of angiosperm
genes. This tree suggests that a minimum of five PMEs
existed in the common ancestor of the species examined.

Many pectin-related gene families appear to have had
only one or two members in the common ancestor of
land plants

Like the polygalacturonases, pectate lyase-like proteins
cleave the HG backbone of pectins (Additional file 8) [44].
Homogalacturonan methyltransferases are responsible for
methylating newly synthesized HG (Additional file 9) [13].
Both of these family trees indicate the existence of mul-
tiple members in the common ancestor by having mul-
tiple supported clades with members from every division of
the plant lineage. The final seven of the family trees have
Physcomitrella genes grouped sister to the other land
plants, indicating a single ancestral gene prior to the diver-
gence of Physcomitrella and the tracheophytes: the UDP-

GIcA epimerases, the UDP-rhamnose synthases, the pectin
acetylesterases, the pectin acetyltransferases, the RG-II
xylosyltransferases, the -1,4-galactan 3-1,4-galactosyltrans-
ferases, and the GATLs (Additional files 10, 11, 12, 13, 14,
15 and 16). These families are listed as having one sup-
ported common ancestral gene in Table 1. The UDP-
GlcA epimerase, UDP-rhamnose synthase, [3-1,4-galactan
B-1,4-galactosyltransferase, and GATL families all likely
expanded in Physcomitrella after its divergence from the
tracheophytes.

Discussion

Search and tree-building criteria for pectin-related genes
We adopted a relatively stringent set of criteria to identify
putative orthologs of Arabidopsis pectin-related genes in
Physcomitrella and other plant species, and used these
genes to build phylogenetic trees of pectin-related gene
families. Rather than simply using database searches and
overall sequence similarity to identify homologous genes,
we leveraged the network of global gene relationships in
the PlantTribes 2.0 database to identify clusters of ortho-
logous genes (orthogroups) from the other species for
analysis. Using BLAST to identify putative gene orthologs
is a common practice, but increases the number of false
positive sequences obtained because hits may only share
high similarity in a small portion of the gene (ie. a
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conserved domain), but may not be closely related and
align poorly across the full length of the sequence. In con-
trast to BLAST-based methods, the use of PlantTribes 2.0
orthogroups increases the probability of identifying genes
within the same evolutionary lineage, thus reflecting the
history of these gene families more accurately. In some
cases our search method detected fewer Physcomitrella
members than other analyses of these families [40,45,46].
In all of these cases the researchers used shared protein
domains or sequence homology to identify their genes
of interest. The search method we used was intended to
identify high-confidence candidate genes for further
experimental analysis that are more likely to share con-
served functions within other model systems. We there-
fore employed a higher-stringency approach at the cost of
missing more distantly related homologs.

Although our trees largely agree with previously pub-
lished phylogenies for some pectin-related gene families
[35,36,40,45-49], the larger number of species we used im-
proved our ability to resolve gene family topologies and to
detect basal branchpoints that have been obscured in ana-
lyses using genome data from fewer species [36,40,46-49].
An exception to this is the work of Wang et al., which
identified PMEs and PMEIs in the same land plant species
we examined, as well as Amborella trichopoda [45]. Wang
et al. searched for conserved PME and PMEI protein do-
mains and identified 35 putative Physcomitrella PMEs as
compared with our ten. They also produced a large PMEI
tree that included a putative Physcomitrella member. In
contrast to our approach, their domain-based approach
likely resulted in the detection of distantly related genes
not included in our results.

Several pectin-related gene families likely had multiple
members in the common ancestor of mosses

and tracheophytes

The topologies of the trees we generated provide clues
to the evolutionary relationships between known pectin-
related genes and their orthologs in other species. This
allows us to hypothesize about the state of the gene fam-
ilies in the last common ancestor of Physcomitrella and
vascular plants. In seven of the families we analyzed, the
paralogs in Physcomitrella are sister to all other genes in
vascular plants. On the other hand, several of the families
(GAUTs, HG methyltransferases, PMEs, PGs, pectate
lyase-like proteins) each appear to have had multiple mem-
bers in the common ancestor of land plants. Our analyses
suggest that the suite of genes for the production, modifi-
cation, and degradation of pectins had already diversified
prior to the radiation of land plants. This contrasts with
the cellulose synthase gene family (CESA), which likely
contained a single gene in the ancestor of land plants and
subsequently diversified after the divergence of mosses
and vascular plants [50]. Multiple members of a gene
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family often have different expression patterns, allowing
for tissue-specific regulation of the associated activity; for
example, PpCESAS5 is required only for gametophore de-
velopment, implying that other PpCESAs produce cellu-
lose in protonemal tissue [51]. Intriguingly, others have
hypothesized that pectin synthesis and modification might
originally have been central in wall production and modu-
lation, with the importance of cellulose arising later [52].
There is also evidence for further diversification of these
families before the flowering plant divergence in the form
of angiosperm-wide clades in the GAUTs, PMEs, PGs,
pectate lyase-like proteins, UDP-glucuronic acid epimer-
ases, UDP-rhamnose synthases, and pectin acetylesterases.

Some pectin-related gene families were not detected

in Physcomitrella

Since orthogroups in the PlantTribes 2.0 database gener-
ally represent narrowly defined gene lineages that typic-
ally align well across the whole length of the gene, we
are confident that distantly related genes have been ex-
cluded from our analyses. However, it is possible that we
failed to detect highly divergent members of some of these
gene families. Nevertheless, most of the searches yielded
at least one Physcomitrella gene per family. This was not
true of the XGA xylosyltransferases, the RG I arabinosyl-
transferases, the PGIPs, and the PMEISs. It is not surprising
that XGA xylosyltransferases were not detected in Physco-
mitrella given that a previous study using comprehensive
microarray polymer profiling (COMPP) did not detect
XGA in Physcomitrella cell walls [7]. On the other hand,
a(1-5)-arabinans characteristic of RG I were detected in
the pectic fraction of Physcomitrella walls, which com-
bined with the failure to detect Physcomitrella orthologs
of AtARAD genes in this study and others [49] raises
the possibility of the existence of other arabinan-
arabinosyltransferases that are only distantly related to
the currently known genes.

Although there are not any studies indicating that PGIPs
are absent in Physcomitrella, we also did not detect any
PGIP genes in Selaginella, suggesting that this gene family
may have evolved after the divergence of lycophytes and
euphyllophytes. PGIPs are thought to play a role in
pathogen defense by preventing foreign PGs from degrading
the plant cell wall [53], and it is interesting that none were
detected in either our representative moss or lycophyte,
given that Physcomitrella and other mosses are susceptible
to fungal pathogens [54]. The PMEI tree we generated only
contains genes from Arabidopsis and Medicago truncatula,
and might not adequately represent the diversity in this gene
family. This might be due to insufficient numbers of query
genes to allow for the detection of all the family members,
or because coding sequence information for some of the
species might have been incomplete. Importantly, the
Arabidopsis query genes were both contained within one
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orthogroup. Genome data for additional plant species
and/or future improvements in genome annotations
could potentially overcome this limitation.

Arabidopsis has an abundance of pectin-related genes,
whereas grasses appear to have fewer pectin-related
genes in some families

In nine of the 16 families analyzed, Arabidopsis had more
members than any of the other species (Additional file 3).
This might be the result of the more extensive annotation
of the Arabidopsis genome as compared to other species
in the database, or the unique genome duplication histor-
ies of the species analyzed [30]. We see a general trend of
more pectin-related genes in the eudicots than in the
monocots and more in the monocots than in the more
basal species such as Physcomitrella and Selaginella. This
may reflect the lower levels of pectin in the walls of
grasses compared to other flowering plants [55], as well as
the relatively high abundance of other acidic polymers such
as glucuronoarabinoxylans in grasses [56]. Further phylo-
genetic analyses of non-commelinid monocots, which have
Type I cell walls [57], might be informative in determining
the relationship between the elaboration of pectin-related
gene families and the abundance of pectins in the cell wall.

Conclusions

Pectins play a key role in the cell walls of plants. We an-
alyzed 16 gene families involved in the production,
modification, and degradation of pectins in nine land
plant species. Our analysis indicates that although many
of these families appear to trace back to a single gene in
the last common ancestor to the mosses and the vascu-
lar plants, several of the major families involved in pec-
tin regulation likely contained multiple genes. We did
not detect Physcomitrella or Selaginella genes in four of
the studied families, providing some evidence that they
might have evolved after the divergence of seed plants
from the lycophytes. This study has allowed us to identify
Physcomitrella orthologs related to known pectin-related
genes in Arabidopsis for in-depth experimental analysis.
Our results also shed light on the evolutionary history of
pectin biosynthesis and modification, suggesting that pec-
tins may have played an important role in the transition
from an aquatic to a terrestrial environment.

Methods

Identification of pectin-related gene families

We compiled a list of Arabidopsis genes with known and
predicted pectin-related functions using TAIR and Uniprot
annotations, as well as relevant literature (Additional file 1)
[1,34,42,53,58-64]. In total, we used 108 genes from Arabi-
dopsis to identify putative pectin-related gene families in
the PlantTribes 2.0 database [65]. PlantTribes 2.0 is an ob-
jective gene family classification of protein coding genes
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from ten sequenced green plant genomes that have been
clustered into orthogroups (putatively monophyletic gene
lineages) using OrthoMCL [28]. Orthogroups containing
pectin-related genes from Arabidopsis were extracted for
phylogenetic analysis. This approach enabled us to include
additional homologous genes from Arabidopsis not anno-
tated with pectin-related gene functions. In some cases,
the pectin-related query genes from Arabidopsis did not
belong to an orthogroup (i.e., they were singletons). The
closest Physcomitrella gene to each singleton Arabidopsis
gene was identified via TBLASTX and added to the family
alignment. Because PlantTribes 2.0 includes the Physcomi-
trella patens version 1.1 gene annotations from Phytozome
[66], we used a nucleotide BLAST+ search of a local data-
base of Physcomitrella patens version 1.6 annotated coding
sequences to identify the current gene annotations for ease
of reference (Additional file 2, which includes all of the
genes used in this paper). Although PlantTribes 2.0 does in-
clude the chlorophyte alga Chlamydomonas reinhardtii,
many of the gene families still lacked a non-land plant out-
group. To enhance the possibility of rooting our trees
using an outgroup, we also included homologous tran-
script sequences from three additional green algae
(Nitella hyalina, Penium margaritaceum, and Spirogyra
pratensis) where possible [67]. We searched each tran-
scriptome separately with coding sequences from Physco-
mitrella using TBLASTX with an E-value cutoff of 107*°,
Full-length coding sequences were identified for the
GAUT, pectin methylesterase, UDP-rhamnose synthase,
rhamnogalacturonan I arabinosyltransferase, and rhamno-
galacturonan II xylosyltransferase families.

Phylogenetic analysis

Sequences for each family were aligned by translation
in Geneious using MUSCLE (default parameters) [32],
manually curated, and saved as relaxed Phylip files
(Additional files 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32 and 33). In some cases this required remov-
ing non-homologous genes and gene fragments from
poorly annotated genomes. To generate trees (Additional
files 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49 and 50), maximum likelihood phylogenetic analysis was
performed using RAXML [33] with the following parame-
ters: rapid bootstrap analysis and search for best-scoring
maximum likelihood tree in one run, GTRGAMMA model
of nucleotide evolution, random seed 12345, 1000 boot-
strap replicates. Nodes with less than 50% bootstrap sup-
port were collapsed using TreeCollapserCL4 [68] and were
visualized using FigTree [69]. Figures were manually edited
for readability using Adobe Illustrator.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article and its additional files.
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Additional file 1: Table S1. Query Arabidopsis genes. A list of all the
Arabidopsis genes used as queries to the PlantTribes 2.0 database and the
sources for collecting them.

Additional file 2: Table S2. Pectin-related genes. This table contains all
of the genes examined in this study.

Additional file 3: Table S3. Species distribution by family. Plant
Tribes 2.0 species list, with the number of pectin-related genes found
in each.

Additional file 4: Figure S1. Xylogalacturonan xylosyltransferase
family tree. Physcomitrella and Selaginella genes were not detected in this
family.

Additional file 5: Figure S2. Rhamnogalacturonan |
arabinosyltransferase family tree. This tree contains no Physcomitrella
members and two algal members, one from Penium margaritaceum and
one from Nitella hyalina.

Additional file 6: Figure S3. Pectinmethylesterase inhibitor (PMEI)
family tree. This tree contains only Arabidopsis and Medicago trunculata
members and likely does not represent the whole family.

Additional file 7: Figure S4. Polygalacturonase inhibitor protein family
tree. Physcomitrella and Selaginella genes were not detected in this
family. Monocot and eudicot family members are contained in separate
clades that are well-resolved from each other.

Additional file 8: Figure S5. Pectate lyase-like (PLL) family tree. A
small land plant-wide clade is resolved from the rest of the tree (pink
cloud), indicating at least two genes in the common ancestor of land
plants.

Additional file 9: Figure S6. Homogalacturonan methyltransferase
family tree. This tree consists of three monophyletic clades, two of which
are land plant-wide. An algal root with reasonably homology was not
detected for this gene family, preventing the determination of whether
two or three ancestral genes were present in the common ancestor of
land plants.

Additional file 10: Figure S7. UDP-Glucuronic acid epimerase family
tree. This family appears to be land plant-wide and is rooted by a gene
from C. reinhardtii. However, the grouping of all the Physcomitrella genes
into one monophyletic clade implies that there was only one family
member in the common ancestor.

Additional file 11: Figure S8. UDP-Rhamnose synthase family tree. Not
only is this family land plant-wide, it includes members from the algae

C. reinhardtii, Spirogyra pratensis, and Penium margaritaceum, but the
grouping of all the Physcomitrella genes into one monophyletic clade
implies that there was only one family member in the common ancestor.

Additional file 12: Figure S9. Pectin acetyltransferase family tree. This
family appears to be land plant-wide and is rooted by a gene from

C. reinhardtii. The grouping of all the Physcomitrella genes into one
monophyletic clade implies that there was only one family member in
the common ancestor.

Additional file 13: Figure S10. Pectin acetylesterase family tree. This
family contains only one Physcomitrella and no Selaginella members.

Additional file 14: Figure S11. Rhamnogalacturonan I
xylosyltransferase family tree. This family appears to be land plant-wide,
with one member in the common ancestor of land plants. The algal root
gene is from Nitella hyalina.

Additional file 15: Figure S12. 3-14-Galactan -14-Galactosyltransferase
family tree. This tree has no algal root. The Physcomitrella genes are grouped
together in a well-supported clade separate from other species. There is no
evidence for more than one gene in the common ancestor.

Additional file 16: Figure S13. GATL family tree. This tree is poorly
resolved, with no root and large polytomies. The Physcomitrella genes
group together in one well-supported clade.

Additional file 17: galactangalactosyltransferasefamilyalignment.phy.
Phylip gene alignment, .phy. Raw 3-14-galactan 3-14-galactosyltransferase
alignment. 3-1,4-galactan -1,4-galactosyltransferase family alignment file,

Additional file 18: GATLfamilyalignment.phy. Phylip gene alignment,
.phy. Raw GATL alignment. GATL family alignment file.

Additional file 19: GAUTfamilyalignment.phy. Phylip gene
alignment, .phy. Raw GAUT alignment. GAUT family alignment file.

Additional file 20: GAUTsuperfamilyalignment.phy. Phylip gene
alignment, .phy. Raw GAUT superfamily alignment. GAUT superfamily
alignment file.

Additional file 21: homogalacturonanmethyltransferase
familyalignment.phy. Phylip gene alignment, .phy. Raw
homogalacturonan methyltransferase alignment. Homogalacturonan
methyltransferase family alignment file.

Additional file 22: pectatelyaselikefamilyalignment.phy. Phylip gene
alignment, .phy. Raw pectate lyase-like alignment. Pectate lyase-like
family alignment file.

Additional file 23: pectinacetylesterasefamilyalignment.phy. Phylip
gene alignment, .phy. Raw pectin acetylesterase alignment. Pectin
acetylesterase family alignment file.

Additional file 24: pectinacetyltransferasefamilyalignment.phy.
Phylip gene alignment, .phy. Raw pectin acetyltransferase alignment.
Pectin acetyltransferase family alignment file.

Additional file 25: PGIPfamilyalignment.phy. Phylip gene alignment,
.phy. Raw polygalacturonase inhibitor protein alignment.
Polygalacturonase inhibitor protein family alignment file.

Additional file 26: PMEfamilyalignment.phy. Phylip gene
alignment, .phy. Raw pectin methylesterase alignment. Pectin
methylesterase family alignment file.

Additional file 27: PMEIfamilyalignment.phy. Phylip gene
alignment, .phy. Raw pectin methylesterase inhibitor alignment.
Pectin methylesterase inhibitor family alignment file.

Additional file 28: polygalacturonasefamilyalignment.phy.
Phylip gene alignment, .phy. Raw polygalacturonase alignment.
Polygalacturonase family alignment file.

Additional file 29: RGlarabinosyltransferasefamilyalignment.phy.
Phylip gene alignment, .phy. Raw rhamnogalacturonan |
arabinosyltransferase alignment. Rhamnogalacturonan |
arabinosyltransferase family alignment file.

Additional file 30: RGlixylosyltransferasefamilyalignment.phy.
Phylip gene alignment, .phy. Raw rhamnogalacturonan Il xylosyltransferase
alignment. Rhamnogalacturonan Il xylosyltransferase family alignment
file.

Additional file 31: UDPGIcAepimerasefamilyalignment.phy. Phylip
gene alignment, .phy. Raw UDP-glucuronic acid epimerase alignment.
UDP-glucuronic acid epimerase family alignment file.

Additional file 32: UDPrhamnosesynthasefamilyalignment.phy.
Phylip gene alignment, .phy. Raw UDP-rhamnose synthase alignment.
UDP-Rhamnose synthase family alignment file.

Additional file 33: xylogalacturonanxylosyltransferase
familyalignment.phy. Phylip gene alignment, .phy. Raw xylogalacturonan
xylosyltransferase alignment. Xylogalacturonan xylosyltransferase family
alignment file.

Additional file 34: galactangalactosyltransferase.tree. Newick
tree, .tree. Raw B-1,4-galactan -1,4-galactosyltransferase tree.
-1,4-galactan B-1,4-galactosyltransferase family tree file with
bootstrap values.

Additional file 35: GATL.tree. Newick tree, .tree. Raw GATL tree.
GATL family tree file with bootstrap values.

Additional file 36: GAUT_superfamily.tree. Newick tree, .tree. Raw
GAUT superfamily tree. GAUT superfamily tree file with bootstrap values.
Additional file 37: GAUT.tree. Newick tree, .tree. Raw GAUT tree.
GAUT family tree file with bootstrap values.

Additional file 38: homogalacturonanmethyltransferase.tree.
Newick tree, .tree. Raw homogalacturonan methyltransferase
tree. Homogalacturonan methyltransferase family tree file with
bootstrap values.
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Additional file 39: pectatelyaselike.tree. Newick tree, .tree. Raw
pectate lyase-like tree. Pectate lyase-like family tree file with bootstrap
values.

Additional file 40: pectinacetylesterase.tree. Newick tree, .tree. Raw
pectin acetylesterase tree. Pectin acetylesterase family tree file with
bootstrap values.

Additional file 41: pectinacetyltransferase.tree. Newick tree, .tree.
Raw pectin acetyltransferase tree. Pectin acetyltransferase family tree file
with bootstrap values.

Additional file 42: PGIP.tree. Newick tree, .tree. Raw polygalacturonase
inhibitor protein tree. Polygalacturonase inhibitor protein family tree file
with bootstrap values.

Additional file 43: PME.tree. Newick tree, .tree. Raw pectin
methylesterase tree. Pectin methylesterase family tree file with bootstrap
values.

Additional file 44: PMELl.tree. Newick tree, .tree. Raw pectin
methylesterase inhibitor tree. Pectin methylesterase inhibitor family tree
file with bootstrap values.

Additional file 45: polygalacturonase.tree. Newick tree, .tree. Raw
polygalacturonase tree. Polygalacturonase family tree file with bootstrap
values.

Additional file 46: RGlarabinosyltransferase.tree. Newick tree, .tree.
Raw rhamnogalacturonan I arabinosyltransferase tree.
Rhamnogalacturonan | arabinosyltransferase family tree file with
bootstrap values.

Additional file 47: RGlIxylosyltransferase.tree. Newick tree, .tree. Raw
rhamnogalacturonan Il xylosyltransferase tree Rhamnogalacturonan Il
xylosyltransferase family tree file with bootstrap values.

Additional file 48: UDPGIcAepimerase.tree. Newick tree, .tree. Raw
UDP-glucuronic acid epimerase tree. UDP-glucuronic acid epimerase
family tree file with bootstrap values.

Additional file 49: UDPrhamnosesynthase.tree. Newick tree, .tree.
Raw UDP-rhamnose synthase tree. UDP-Rhamnose synthase family tree
file with bootstrap values.

Additional file 50: xylogalacturonanxylosyltransferase.tree. Newick
tree, .tree. Raw xylogalacturonan xylosyltransferase tree. Xylogalacturonan
xylosyltransferase family tree file with bootstrap values.
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