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Abstract

biosynthesis.

Background: Lignans are a class of diphenolic nonsteroidal phytoestrogens often found glycosylated in planta. Flax
seeds are a rich source of secoisolariciresinol diglucoside (SDG) lignans. Glycosylation is a process by which a
glycosyl group is covalently attached to an aglycone substrate and is catalyzed by uridine diphosphate
glycosyltransferases (UGTs). Until now, very little information was available on UGT genes that may play a role in
flax SDG biosynthesis. Here we report on the identification, structural and functional characterization of 5 putative
UGTs potentially involved in secoisolariciresinol (SECO) glucosylation in flax.

Results: Five UGT genes belonging to the glycosyltransferases’ family 1 (EC 2.4.x.y) were cloned and characterized.
They fall under four UGT families corresponding to five sub-families referred to as UGT74S1, UGT74T1, UGT89B3,
UGT94H1, UGT712B1 that all display the characteristic plant secondary product glycosyltransferase (PSPG) conserved
motif. However, diversity was observed within this 44 amino acid sequence, especially in the two peptide
sequences WAPQV and HCGWNS known to play a key role in the recognition and binding of diverse aglycone
substrates and in the sugar donor specificity. In developing flax seeds, UGT74ST and UGT94H1 showed a coordinated
gene expression with that of pinoresinol-lariciresinol reductase (PLR) and their gene expression patterns correlated
with SDG biosynthesis. Enzyme assays of the five heterologously expressed UGTs identified UGT74S1 as the only
one using SECO as substrate, forming SECO monoglucoside (SMG) and then SDG in a sequential manner.

Conclusion: We have cloned and characterized five flax UGTs and provided evidence that UGT74S1 uses SECO as
substrate to form SDG in vitro. This study allowed us to propose a model for the missing step in SDG lignan
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Background

Lignans are a class of diphenolic nonsteroidal phytoestro-
gens with a wide variety of purported health benefits [1-4].
Different types of lignans have been reported in various
plant species and include secoisolariciresinol diglucoside
(SDG) found mainly in flax (Linum usitatissimum L.)
[5-10]. Flax seeds are a rich source of SDG lignans that
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have been associated with positive roles in the prevention
of chronic metabolic diseases in human [11-14].

In planta, lignans are usually found glycosylated in
oligomeric chains [15]. Glycosylation is a key mechanism
that determines the chemical complexity and diversity of
plant natural products [16,17], ensures their chemical
stability and water solubility while reducing chemical re-
activity or toxicity [18], and facilitates their sorting, inter-
cellular transport, storage and accumulation in plant cells
[19,20]. Glycosylation is one of the key modifications in
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the secondary metabolite biosynthesis and is catalyzed by
carbohydrate active enzymes (CAZymes) which include
the superfamily of glycosyltransferases (GTs) [21]. The
specific glycosylation position in biologically active com-
pounds may serve to modulate their pharmacological
activity and/or to alter and optimize their potential use as
drugs [17]. Members of the GT superfamily have been
classified into 94 families where family 1 refers to the
uridine glycosyl transferases (UGTs) [22,23]. Plant UGTs
are often characterized by a 44 amino acid consensus sig-
nature motif, the plant secondary product glycosyltransfer-
ase (PSPG) box [15,23,24]. UGTs transfer UDP-activated
sugar moieties, including UDP-glucose, to specific ac-
ceptor molecules [25]. Based on sequence homology,
more than 120 UGTs have been reported in Arabidopsis
and were grouped into 30 sub-families classified as
UGT71 to UGT100 [22]. In the course of this study, the
flax draft genome was released [26]. Barvkar et al. [27]
probed this flax draft genome and reported 137 flax UGTs
but did not assign functions to any of these UGTs.

Pinoresinol-lariciresinol reductases (PLRs) are key
enzymes for the catalysis of the first biosynthetic steps
of lignans in many plant species, including flax. These
enzymes sequentially reduce pinoresinol formed by the
coupling of two molecules of coniferyl alcohol (Figure 1) in
the presence of dirigent proteins [28]. Recently, Noguchi
et al. [6] reported two UGTs, UGT71A9 and UGT94D1,
that sequentially glycosylated furofuran lignan (+)-
sesaminol in Sesamum indicum to form (+)-sesaminol
2—-0-B-D-glucosyl (1-2)-O-[B-D-glucosyl(1-6)]-p-D-
glucoside (STG). STG and SDG are structurally quite
different. In STG, the glucosyl moieties form a trisacchar-
ide side chain while in SDG, the sugars are attached at
two different hydroxyl groups of the secoisolariciresinol
backbone (Figure 1). Hence, the UGTs that glycosylate
sesamine into sesaminol are likely to differ from those gly-
cosylating secoisolaricresinol (SECO). Although cDNAs
encoding for PLRs that specifically convert pinoresinol
into (-) and (+) enantiomers of SECO have been cloned
and functionally characterized in flax [28-31], much less is
known about the UGTs that glucosylate SECO aglycones
into SDG in flax.

To gain insights into SDG lignan glucosylation with
potential applications in lignan metabolism engineering,
we attempted to identify and characterize flax UGTs re-
sponsible for SECO glucosylation. Using database mining,
molecular cloning, heterologous expression and enzyme
assays, we isolated five putative UDP-glycosyltransferases
from flax seeds and demonstrated that UGT74S1 glucosy-
lated SECO, forming sequentially SECO monoglucoside
(SMG) and then SDG. The findings, not only reported the
first functional characterization of a SECO specific UGT
in flax, but also pave the way for engineered SDG lignan
metabolite species in vitro and in planta.
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Results

Library mining and UGT cloning

Using 19 NAPGEN EST library-derived gene-specific
UGT primers and one degenerate (UGT-F2) primer, a
total of 16 combinations produced unique PCR products
of the expected sizes. The partial cDNA sequences were
analyzed using BLASTx which confirmed the identity of
each sequence as belonging to the UGT family. A ClustalW
multiple sequence alignment showed that some of them
were the same and a consensus phylogenetic tree revealed
that eight were unique (Additional file 1). Subsequently,
one representative sequence from each of the eight UGTSs
was selected for the design of gene-specific primers, and
full length cDNAs for five different UGTs were obtained
(Additional file 2A-C). CL5227 was 1.2 kb while CL809,
CL8584, RP131, and RP250 were all ~1.5 kb (Additional
file 2C). The unique UGT sequences were classified as be-
longing to four families and five sub-families as per the
nomenclature of the International Union of Biochemistry
and Molecular Biology and the IUPAC-IUBMB joint
committee responsible for UDP-glycosyltransferases [32]
and designated UGT74S1 (CL809), UGT94HI1 (CL5227),
UGT89B3 (CL8584), UGT74T1 (RP131) and UGT712B1
(RP250). Their sequences were submitted to GenBank
under accession numbers JX011632 to JX011636.

UGT structural gene organization

The structural organization of the 5 UGT genes was ob-
tained using the flax WGS sequence assembly (Figure 2).
The length of the UGT genes varied from 1597 bp to
2521 bp. Of the 5 flax genomic DNA regions correspond-
ing to each of the full length UGT cDNAs, 4 had one in-
tron, and one, UGT89B3, was intron free. All five were
predicted to encode proteins of 379—476 amino acids. The
intronic regions varied from 71 to 739 bp among the 5
UGTs whereas the exonic regions ranged between 237 to
1431 bp. The size of the amplified spliced cDNA for each
of the 5 UGT genes (Additional file 2C) matched very
closely with the exon size of the flax genomic DNA. The
length of the 5’ un-translated region (5" UTR) varied
between 46 bp and 313 bp while the 3" UTR ranged
from 172 bp to 442 bp. Although showing the shortest
spliced ¢cDNA, UGT94H1 appeared to be the largest
UGT, with a size of 2521 bp (Figure 2).

PSPG motif characterization

Using the ExPASy PROSITE scan tool, the position of
the PSPG conserved motif at the C-terminal of the open
reading frame (ORF) was determined. The ORF of all
five flax UGTs displayed the PSPG-box that is charac-
teristic of UGTs’ family 1 (Figure 3). The conserved motif
of 44 amino acids contains the tetra amino acid sequence
HCGW, the most conserved signature among all the fam-
ilies. The 12 amino acids flanking the HCGW region of
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Figure 1 Lignan biosynthesis pathways in sesame and flax starting from coniferyl alcohol. OX, oxidation, DP, dirigent protein; PLR,
pinoresinol-lariciresinol reductase; PSS, piperitol sesamin synthase; SDG, secoisoalariciresinol diglucoside. Stars indicate the hydroxyl groups glycosylated
in sesaminol and secoisolariciresinol. Adapted from Kim et al. [31] with the permission of Dr. Honoo Satake and the PCP editorial office.

flax UGT94H1 showed 75% identity (9/12 flanking amino
acids) with that of sesame lignan glycosylation UGT94D1
gene (BAF99027.1), and an overall 66% identity over the 44
amino acids of the PSPG. Similarly, the PSPG of the flax
UGT UGT89B3 shared an overall 64% identity with the
sesame lignan glycosylation gene UGT71A9 (BAF96582.1)
and a 66% identity among the 12 amino acids flanking the
HCGW region. The identity between 12 amino acids

flanking the HCGW region of UGT74S1 and that of the
sesame UGT71A10 (BAF96583.1) on one hand, and be-
tween UGT74S1 and UGT94D1 (BAF99027.1) on the
other hand was 75 and 42%, and with an overall identity of
52 and 43%, respectively. Among the UGTs, higher varia-
tions were observed at the N-terminal region than at the
C-terminal after a Clustal W multiple sequence alignment
of the deduced amino acid sequences (Additional file 3).
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Tissue-specific in silico EST analysis of UGTs

A BLASTn search against the flax EST database that in-
cludes libraries from 13 different tissues revealed a higher
level of expression in embryo and seed coat (Additional
file 4). UGT712BI expression was exclusively detected
in the globular and heart stage embryos (GE and HE)
whereas UGT94HI1 was expressed in the torpedo (TE)
and cotyledon stage embryos (CE), as well as in the tor-
pedo stage seed coat (TC) (Additional file 4). UGT74S1,
UGT74T1 and UGT89B3 were found exclusively in globu-
lar (GC) and torpedo stage seed coat (TC). UGT74S1 and
UGT74T1 were the most abundant with 25 EST hits each
in the TC EST library.

Quantitative expression of UGTs and PLR in developing
flax seed, leaf and stem tissues

Gene expression of the five UGTs and one PLR of flax
cultivar AC McDuff differed for the different genes,
amongst tissues and developmental stages (Figure 4A-H).
In developing seeds, UGT74S1 expression followed a

bell curve pattern with peak expression at 16 days after
anthesis (DAA) (Figure 4A). UGT94HI expression
peaked at 8 DAA, declined at 16 DAA, and maintained
a relatively stable expression afterwards until maturity
(Figure 4B). UGT89B3 showed an exponential increase
of expression from 0 DAA to maturity (Figure 4C).
UGT74T1 was expressed at a low level between 0-24
DAA followed by a sharp increase at 32 DAA and at
maturity (Figure 4D). UGT712B1 was expressed at low
and stable levels across all six seed developmental
stages (Figure 4E). Low levels of expression were ob-
served for UGT74S1 and UGT94H1 in the leaf and stem
tissues. In contrast, /GT89B3 was highly expressed in
both vegetative tissues as compared to 16 DAA seeds.
The expression of UGT74T1 was higher in stems while
that of UGT712B1 was higher in leaves compared to
other tissues (Figure 4G). The PLR expression pattern
was similar to that of UGT74S1 with peak expression
at 16 DAA and no expression in leaf and stem tissue
(Figure 4F and H).

SEQUENCE POSITION OF THE 44 AMINO ACID SEQUENCE OF THE 44 AMINO ACID CONSERVED UGT MOTIF CcDS PROTEIN
D CONSERVED UGT SIGNATURE MOTIF LENGTH (bp) LENGTH
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Figure 3 Amino acid sequence alignment of the UGT PSPG conserved motif for five flax and two sesame UGTs. The aldehyde
dehydrogenases glutamic acid active site at position 283-290 is indicated with a # symbol in S. indicum UGT84D1.
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Figure 4 Gene expression profile for the five UGT and one PLR genes in developing seed sampled at 0, 8, 16, 24, 32 DAA and at
maturity as well as in leaves and stems of flax cultivar AC McDuff. A-F, expression profile in developing flax seeds at six developmental
stages; A, UGT74S1; B, UGT94H1; C, UGT89B3; D, UGT74TT; E, UGT712B1; F, PLR; G, expression of UGT74S1, UGT94H1, UGT89B3, UGT74T1 and
UGT712B1 in flax seeds at 0 and 16 DAA, in leaves and in stems; H, expression of PLR at the same stages as G flax seed at two developmental
stages (0 and 16 DAA) and in flax leaf and stem. The expression data were normalized relative to the reference gene at a linear scale averaged
over three independent replicates and expressed as normalized fold change. Vertical bars represent standard deviation of the means.

SDG lignan profiling

SDG lignan biosynthesis was assessed at six seed devel-
opmental stages of flax cultivar AC McDuff. The SDG
lignan level was negligible between 0 and 8 DAA where
a coniferin-like compound constituted the major metabol-
ite observed at these stages (data not shown). The SDG
lignan steadily increased starting at 8 DAA until 24 DAA
when it started to plateau (Figure 5).

Heterologous expression of flax UGTs and enzyme
activities

To ascertain a functional role for each of the five UGTs in
SDG lignan biosynthesis, their full length ¢cDNAs were

expressed in yeast. All five proteins were highly expressed
after eight hours of induction with 2% galactose and the
molecular weight of the expressed proteins along with
the Histidine-Tag were 56.4 kDa for UGT74S1, 46.2 kDa
for UGT94H1, 559 kDa for UGT89B3, 56.4 kDa for
UGT74T1, and 56.5 kDa for UGT712B1, in agreement
with their predicted sequences (Figure 6A). Following the
release of the flax draft genome, a flax UGT (Gene-
Bank accession # JN088324.1) was reported [27]. This
UGT clone is 100% identical to UGT74S1 at the amino
acid and nucleotide levels but is predicted to be 150 nu-
cleotides (50 amino acids) shorter at the 5° end than
UGT74S1 (Lu-UGTCL809) reported here (Additional
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file 5). For functional comparison purposes, a cDNA de-
rived from UGT accession number JN088324.1 was also
cloned and expressed in yeast. As expected, a smaller pep-
tide of only 47 kDa was observed compared to 56.4 kDa
for UGT74S1 (Figure 6B). The gene corresponding to
JNO088324.1 is hereafter referred to as truncated UGT74S1
(TrUGT74S1).

Enzyme assays and reactions conditions
To identify the flax UGTs potentially involved in SECO
glycosylation, 50 pg of crude recombinant protein for
each of the 5 UGTs expressed in yeast was assayed with
different aglycones including secoisloariciresinol, sillibinin,
quercetin, kaempferol, coumaric acid, caffeic acid, sinnapic
acid, cinnamic acid and ferulic acid (data not shown).
Only UGT74S1 exhibited an activity by producing two
new peaks using only SECO as a substrate (Figure 7).
To confirm the identity of the observed peaks, the en-
zyme reaction was spiked with SDG and resolved along-
side various controls and standards (Figure 8). A negative

control without enzymes (Figure 8A), positive controls
with standard SDG (Figure 8D), positive controls with
standard SMG (Figure 8E) and standard SECO (Figure 8F)
were included. The detected SMG peak 2 was higher than
the detected SDG (peak 1) (Figure 8B). The identity of the
small peak 1 was confirmed by spiking a known amount
of standard SDQ to the reaction products prior to UPLC
analysis; the resulting peak increased in size and eluted
with an identical retention time as the standard SDG
(Figure 8C and D). Thus, glucosylation of SECO into
SMG primarily, and SDG to a smaller extent, occurred
in the presence of UGT74S1 (Figure 8).

To ascertain these observations, the five enzymes were
further purified using 6X His-tagged Nickel chelating
purification system and 50 pg of the purified proteins were
reacted with SECO. Similar to the crude protein, only
the purified UGT74S1 showed the same two new peaks
when SECO was used as a substrate (Figure 9A and B).
Contrary to the reaction with the crude protein, the
purified protein produced a higher SDG level compared

-
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Figure 6 Western blots of His Tag-purified proteins for (A) five UGTs and (B) UGT74S1 and a truncated form encoded by accession
number JN088324.1 (TrUGT74S1) [27] using antiXpressTM antibody. M, Western C precision plus protein marker mixed with conjugant
(BioRad).
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to SMG (Figure 9B). Thus, enzyme purification enhanced  The two new products exhibited a molecular ion at mass-
SECO glycosylation into SDG by UGT74S1. to-charge ratio (m/z) of 523 and 681 [M-H] ~ for SMG

Liquid Chromatography—Electrospray lonization—Mass and SDG, respectively, consistent with their known MW
spectrometry (LC-ESI-MS) analysis allowed a better cha-  (Figure 10). 'H, ">C correlation spectroscopy nuclear
racterization of the de novo synthesized SMG and SDG.  magnetic resonance (*H, *>*C COSY) NMR experiments
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of the LC purified peaks 1, 2 and 3 confirmed their
identities (data not shown), closely matching previous
reports for these compounds [33].

UGT74S1 biochemical parameters

Different pH ranges, temperatures, cofactors and enzyme
concentrations were assayed to optimize the UGT74S1
reaction with SECO. The optimal pH was determined
to be 8.0, with a low activity below pH 7.5 and at 9.0
(Figure 11A). Optimal temperature for UGT74S1 activity
was at 30°C (Figure 11B). All the cofactors evaluated in
this study activated the UGT74S1 enzyme at 1 mM, except
for FeSO, which activated at 10 mM (Figure 11C). A con-
centration of 10 mM MgCl, MnCl,, CaCl, or CuSO,
inhibited UGT74S1 activity. Of the cofactors tested, NaCl
was the most effective catalyst (Figure 11C). Increased
concentration of UGT74S1 from 10-120 pg increased
activity up to 80 pg, after which a saturation effect was
observed (Figure 11D). These optimal biochemical param-
eters (pH 8.0, 30°C, 1 mM NaCl, and 80 pg proteins) were
subsequently used in the rest of the study.

Because UGT94H1, UGT89B3, UGT74T1 and UGT712B1
did not glycosylate SECO into SMG, further tests were
conducted to determine if they were involved in the glu-
cosylation of SMG to form SDG. Since SMG is not
commercially available, SDG was hydrolyzed to SMG
[33]. Using this SMG as a substrate, the five UGTs were
assayed. But again, only UGT74S1 showed a peak corre-
sponding to SDG retention time (data not shown). There-
fore, UGT89B3, UGT74T1, UGT712B1, and UGT94H1
appeared not to be involved in SDG lignan glycosylation
and their biochemical function remains to be elucidated.

Thus, UGT74S1 was the only flax UGT cloned and identi-
fied in this study that used SECO as a substrate, first
producing SMG and then SDG in a sequential manner.
Its truncated version TrUGT74S1 was also assayed using
the optimal conditions set for UGT74S1 and was also
unable to glucosylate SECO (Additional file 6).

UGT74S1 kinetic parameters

By reacting UGT74S1 with SECO at pH 8.0 and 30°C, the
catalytic efficiency (kcat) for SDG production was deter-
mined to be 0.89 sec™!. The estimated apparent Km values
toward SECO and UDP-glucose for SDG production were
determined to be 79 and 1188 uM, respectively.

Discussion

UGTs are a large and complex family of enzymes that
catalyze glycosidic bond formation. To get a better un-
derstanding of UGTs that may play a role in the glyco-
sylation process of flax SDG lignan, we undertook the
cloning and characterization of flax UGTs. We identi-
fied and characterized five flax full length UGTs, namely
UGT74S1, UGT94H1, UGT89B3, UGT74T1, and UGT712B1.
We found that UGT74S1 and UGT94HI were highly
expressed in developing seed and their expression was co-
ordinated with that of PLR, the first-step lignan biosyn-
thetic gene [29], and well correlated with the SDG lignan
biosynthesis patterns in seed. By expressing each of the
five UGTs and reacting the purified proteins with SECO
and UDP-glucose, only UGT74S1 produced both SMG
and SDG metabolites. To our knowledge, this is the first
demonstration linking any flax UGT gene to SDG lignan
biosynthesis.
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Figure 10 LC-ESI-MS spectra of UGT74S1 enzyme reaction products with SECO. The observed molecular weight for each metabolite (SECO,
SMG and SDG) is shown next to its corresponding spectra. The expected molecular weights and [M-H]* pseudomolecule ions are also shown
under their respective structure.

The International Union of Biochemistry and Molecular
Biology and IUPAC-IUBMB joint committee responsible
for UDP-glycosyltransferase [32] classified the five UGTs
into four families and five sub-families, representing five
distinct genes. In the course of this study, Barvkar et al.
[27] probed the recently released flax genome ([26];
Deyholos, www.linum.ca) and reported 137 flax UGTs
including homologs to our reported UGT74S1 (CL809),
UGT94H1 (CL5227), UGT89B3 (CL8584) and UGT712BI1
(RP250). These were not, however, characterized with
regards to their functionality towards aglycones. More-
over, TrUGT74S1 (JN088324.1; [27]) was 50 amino acids
shorter than UGT74S1 described herein (Additional file 5).
We provided convincing evidence that TrUGT74S1 is un-
able to glucosylate SECO into SDG, and is thereby not
functional (Additional file 6). The 50 amino acids missing
in TrUGT74S1 seem to be essential for glucosyltransferase
activity.

The UGTs described in this study differed in their
structural organization, primary sequence, and in their

PSPG motifs. Coding sequence variation among plant
UGT family 1 members is generally high, varying from less
than 35% to more than 95% overall identity [34], with the
C-terminal regions that contain the PSPG box being more
conserved [24]. Although well conserved, diversity within
the PSPG motif of the five flax UGT genes was revealed.
At the structural level, one of the UGTs had no introns
while the remaining four had one intron each, which
varied in size from 71 to 739 bp. In Arabidopsis, more
than half of the UGTs have no introns [24] and those
with introns were much smaller (~100 bp), a difference
somewhat proportional to the genome size differences
of ~370 Mb for flax and 135 Mb for Arabidopsis. Differ-
ences were also observed in the spliced coding sequence
(CDS) sizes (379 to 476 amino acids), further emphasizing
the diversity within the UGT family and in agreement with
its recent origin hypothesis [22,23].

Although UGT family 1 is a very diverse gene super-
family, its members are usually classified based on their
sequence identity [35] and the presence of the conserved
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PSPG motif [34] that includes key conserved residues
for substrate recognition and catalysis [6]. The UGTs de-
scribed herein all possessed the conserved 44 amino acid
PSPG motif and the two peptide sequences, WAPQV
and HCGWNS, present in 95% of all B-group GTs ana-
lysed to date [34]. Amino acid variations were nonethe-
less observed (italized positions) in these two short
peptide motifs as well as in the C-terminal of the PSPG-
box [23]. Sugar donor specificity has been attributed to
the PSPG box [17]. For example, substitution of trypto-
phan (W) at position 355 (position 22 of PSPG) for ar-
ginine (R) sufficed to modify the sugar donor specificity
from UPD-glucose to UDP galacturonic acid in Lamiale
[36]. The domain involved in the recognition and binding
of the diverse aglycone substrates is purported to be lo-
cated towards the N-terminal end, whereas the C-terminal
region encodes a domain involved in binding the nucleo-
tide sugar substrate [37].

Transcriptome analyses revealed that the flax UGTs
reported here were expressed predominantly in embryo
and seed specific libraries [38]. These results were vali-
dated and quantified by qPCR. The expression of PLR,
UGT74S1, and UGT94HI1 appeared to be coordinated

and correlated with SDG lignan accumulation in the
seed. Despite the similar expression pattern of UGT7451
and UGT94HI and their correlations with SDG lignan
accumulation in developing seed, only UGT74S1 was
demonstrated to metabolize SECO, first into SMG and
then into SDG lignan. Because free SMG has not yet been
reported in planta, the occurrence of an enzyme that glu-
cosylates only SECO or SMG cannot be ruled out in flax
but would not be essential considering that UGT74S1 is
capable of catalyzing the last two steps. Hence, we propose
the following model for the sequential glucosylation of
SECO by UGT74S1 to form SDG via a SMG intermediate
(Figure 12).

The optimal enzyme conditions (pH, temperature, co-
factors) for UGT74S1 were established and fall within
the range of the majority of UDP-glycosyltransferases
[39]. UGT74S1 was found to be sensitive to increased
ionic strength of metal ions as reported for other UDP-
glycosyltransferases [39,40]. The UGT74S1 apparent
Km for UDP-glucose was higher than that for SECO,
and fall in the Km ranges previously reported [41-43].
The catalytic efficiency (ke,) of UGT74S1 for SECO was
close to that of UGT71A9 and UGT94D1 reported by
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(SMG) and the second glucosylation of SMG to SDG.
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Figure 12 Proposed model for secoisolariciresinol diglucoside (SDG) lignan biosynthesis in flax plants. Secoisolariciresinol (SECO)
undergoes sequential glucosylations by UGT74S1 that catalyzes both the first glucosylation of SECO to form secoisolariciresinol monoglucoside

monoglucoside diglucoside

Noguchi et al. [6]. None of the flavonoid or phenolic acid
aglycone substrates tested in this study served as good
substrates for UGT74S1.

Conclusions

Taken together, we have cloned five UGTs from flax
seeds and demonstrated through a comprehensive multi-
approach analysis that L/GT74S1 was a functional enzyme
capable of converting SECO into SDG. Our results suggest
that L/GT74S1 is involved in secoisolariciresinol glucosyla-
tion in planta to form flax SDG lignan. The findings shed
more clarity in flax lignan biochemistry and provide the
necessary background to conduct site directed mutagen-
esis studies.

Methods

Plant materials

Flax plants (Linum usitatissimum L. cv AC McDuff)
were grown at AAFC Harrington farm (Harrington, PEI,
Canada) in the 2008 to 2011 growing seasons. Plants
were grown in four replications each year. At anthesis,
referred to as 0 days after anthesis (0 DAA), individual
flowers were tagged. Developing bolls were harvested at 0,
8, 16, 24, 32 DAA and at maturity and immediately frozen
in liquid nitrogen as previously described in Arabidopsis
[44], soybean [45] and flax [46,47]. The 0 DAA samples
consisted of ovaries free of other flower tissues, whereas
the other boll samples (8-32 DAA and maturity) con-
tained seeds at different developmental stages (Additional
file 7). At the flowering stage, young leaf and stem tis-
sues were similarly collected. Developing bolls, leaves
and stems were stored at —80°C until use.

RNA isolation

Before RNA isolation, ovules (0 DAA) and developing
seeds were first extracted from the bolls. Total RNA was
isolated using Trizol (Invitrogen, Carlsbad, ON, Canada)
as previously described [46]. RNA samples were further

purified using the Invitrogen PureLink™ RNA Mini kit
(Invitrogen, Mississauga, ON, Canada) as per manufac-
turer’s instructions, quantified by spectrophotometry,
and the quality was verified by agarose gel eletrophoresis
and the Experion RNA analyzer (BioRad, Missisauga,
ON, Canada).

Library mining and UGT cloning

The flax NAPGEN EST database (Plant Biotechnology
Institute, NRC, Saskatoon) was mined using the key-
words UGT, glucosyltranferase and glycosyltranferase. A
total of 893 UGT hits were found amongst 178,656
ESTs. For primer design, we retained members of UGT
subclasses 71 (7 hits), 88 (3 hits) and miscellaneous (7 hits).
A set of 19 flax-specific and one degenerated primer pairs
were designed (Additional file 8).

Total RNA (2 pg) from all developmental stages was
used as template to create the cDNA using the first
strand ¢cDNA synthesis kit (Invitrogen, Mississauga, ON,
Canada) following manufacturer’s instructions. After
treatment with 2 U RNAse H (Invitrogen), the cDNA
samples were diluted 10-fold and 1 pL was used as tem-
plate. Each of the 20 primer pairs (Additional file 8) was
used in PCR reactions consisting of an initial denaturation
94°C for 2 min followed by 35 cycles of 94°C for 30 s, 60-
63°C for 30 s, and 72°C for 60 s prior to a final extension
at 72°C for 10 min. Aliquots of 10 uL of the PCR products
were resolved on 1% agarose gels stained with ethidium
bromide. The amplified fragments were purified using the
QIAquick gel extraction kit (Qiagen) for direct sequencing
and for TOPO cloning (Invitrogen) in E. coli prior to
sequencing.

The identities of the obtained partial sequences were
confirmed by BLASTx against the NCBI non-redundant
protein sequence (nr) database using a cut off value of
1e . The relationship between the partial sequences was
inferred by a phylogenetic consensus tree constructed using
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UPGMA method with 1000 bootstrap replicates as imple-
mented in MEGA4 [48].

To clone the full length UGTs, 5" and 3" gene specific
primers (GSP) and nested gene specific RACE PCR
primers were designed from representative sequences of
each group observed in the consensus tree (Additional
file 1) and were used in 5" and 3" ¢cDNA end amplification
reactions. Briefly, using the Gene Racer kit (Invitrogen,
Mississauga, ON, Canada), the purified total RNA was
dephosphorylated using a calf intestinal phosphatase,
and decapped with a tobacco acid pyrophosphatase.
The RNA oligos were ligated to the decapped mRNA by
T4 RNA ligase (Invitrogen, CA, USA) before reverse
transcription of mRNA using oligo-dT primers. The 5’
and 3° RACE PCR reactions were carried out using
eight pairs of GSP and nested primers (Additional file 9)
following the kit’s specifications. The expected 5" and
3" RACE PCR products of the putative UGTs CL809,
CL5227, CL8584, RP131, RP250 were gel-purified, cloned
in TOPO 4.0 vector (Invitrogen, Mississauga, ON, Canada)
and sequenced using M13 forward and reverse primers.
New primer sets containing restriction sites compatible
with the multiple cloning site of pYES2/NT C plasmid
vector (Invitrogen, Mississauga, ON, Canada) were de-
signed from the 5’ and 3’ ends (Additional file 10) for the
amplification of the full length cDNAs (Additional file 2).
The amplified full length cDNAs were gel-purified, restric-
tion digested and similarly cloned into pYES2/NT C. The
c¢DNA corresponding to one of the UGT clones reported
by Bavkar et al. [27] (accession J]N088324.1) was also cloned
as described above. The plasmids carrying the full length
c¢DNA clones were sequenced using T7 promoter primer x
(5'-TAATACGACTCACTATAGGG-3’) and CYC1 reverse
primer (5'-GCGTGAATGTAAGCGTGAC-3").

UGT structural gene organization

To characterize the structural organization of the flax
genomic DNA corresponding to each of the five UGTs,
a BLASTn search within the flax sequence assembly
(www.linum.ca) was performed to identify the 5" and 3’
untranslated regions (UTRs), and the intron and exon
structure of the coding regions. The PROSITE scan tool
of the ExPASy web interface (www.expasy.org) was used
to determine the position of the conserved motifs char-
acteristic of plant UGTs such as the PSPG box.

In silico analysis of UGTs

To characterize the relative abundance of the cloned
UGTs, an in silico EST analysis was performed. The five
full length UGT sequences were compared to 13 flax
tissue-specific EST libraries (globular embryo, heart em-
bryo, torpedo embryo, cotyledon embryo, mature embryo,
pooled endosperm, globular stage seed coat, torpedo stage
seed coat, etiolated seedling, leaves, stem, stem peel and
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mature flower) previously described [38] and the number
of EST hits corresponding to each query UGT in each
library was recorded and plotted.

UGT real time gene expression analysis

To assess the gene transcript expression levels of the puta-
tive cloned UGTs in developing flax seed, leaf and stem
tissue, real-time PCR primers were designed from the five
flax UGTS, one PLR and one ribosomal (EU307117) RNA
sequence (Additional file 11). The rRNA primers were
used for data normalization. Total RNA was extracted
from three separate biological replicates for each seed de-
velopmental stage (0, 8, 16, 24, 32 DAA, and mature seed).
First strand cDNA was obtained as described earlier. The
¢DNA samples were quantified by spectrophotometry or
Qubit (Invitrogen) and diluted to 100 ng/pL. Real-time
PCR reactions were performed using the SYBR Green
PCR Master Mix (BioRad Laboratories, Canada) on a
CFX96 Real Time system (BioRad). For each sample, three
biological and three technical replicates, for a total of 9
data points, were obtained. The 25 pL Real Time amplifi-
cation reactions consisted of 1x SYBR Green Master Mix,
300 nM of each primer, 100 ng of first strand synthesis
c¢DNA obtained from ovaries (0 DAA), developing seeds
(8, 16, 24, 32 DAA), mature seeds, leaves, stems and water
controls. Real-time PCR reactions were performed as fol-
lows: denaturation at 95°C for 10 min followed by 40 cycles
of 95°C for 30 s, 60°C for 30 s. Following the final amp-
lification cycle, a melting dissociation curve was gener-
ated to ensure specificity of the primers and to confirm
the uniqueness of the amplification product. The output
data was determined following the 2"*“T method de-
scribed by Livak and Schmittgen [49] and it is reported
as fold changes of relative expression.

SDG lignan profiling in developing flax seeds

To assess the SDG lignan biosynthesis in developing flax
seeds, 250 mg of ovary or seed at six developmental
stages was used as starting material following modifica-
tions to a protocol described by Popova et al. [50]. Devel-
oping flax seed tissue was ground to a fine powder in
liquid nitrogen using mortar and pestle. The powder
(200 mg) was transferred into a glass centrifuge vial and
defatted with 2 mL hexane (1:10 w/v) on a Wrist Action
Shaker (Burrell Scientific, PA, USA) for 2 h at room
temperature. After centrifugation at 1500 rpm for 15 min,
the supernatant was discarded. The pellet was rinsed with
2 mL hexane, centrifuged and air-dried for 15 min. The
defatted material was extracted with 2 mL of 70% (v/v)
methanol/water at 55°C for 2 h using rotation in an oven,
with intermittent manual shaking 2—3 times. A final vigor-
ous shaking was performed for 15 min on a Wrist action
shaker (Burrell Scientific, Pittsburgh, PA, USA) at room
temperature. The samples were centrifuged at 1500 rpm
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for 15 min and the supernatant (S1) was collected in new
capped vial. The residue was rinsed again with 0.5 mL
70% methanol, centrifuged and the supernatant (S2) was
collected and pooled with S1. The total supernatant vol-
ume was recorded before hydrolysis. The combined
samples (S1 + S2) were hydrolysed for 1 h at 60°C with
0.5 N NaOH at a ratio of 3:5 (v/v). After hydrolysis, the
samples were immediately neutralized using 0.5 N HCl
at a ratio of 0.4 mL for every 0.5 mL extract. The
hydrolysate was cooled and purified via solid phase ex-
traction using 10 mL Waters HLB columns (Waters,
Mississauga, ON, Canada). The eluted lignan fractions
were collected in glass vials and dried using a rotary
evaporator (Heidolph instrument Gamborg, Germany).
The dried material was dissolved in methanol:water
(50:50), filtered and injected for UPLC-MS analysis using
a commercially available SDG standard (Chromadex,
Irvine, CA, USA) as reference.

An Acquity H-Class, quaternary pump UPLC system
(Waters, Mississauga, ON, Canada) equipped with in-
line degassing, diode array detector (DAD), robotic auto-
sampler, sample and column temperature controls and
tandem quad mass spectrometer (TQD) was used for
lignan profiling analysis. A ternary solvent system for
UPLC-MS analysis consisting of water, acetonitrile and
10% formic acid in water was used for UPLC-MS ana-
lysis. UV—vis spectra were recorded from 210-600 nm,
and the MS was run in ESI mode, 3000 V capillary volt-
age, in scanning mode from 100-2000 a.m.u., with a
fragmentation setting of 150 V, 13.0 L/min carrier gas
(N,) flow at 350°C and 60 psi to ensure identity of the
profiled metabolites. The post-hydrolysis SDG lignan
peak was identified and quantitated through comparison
(UV-VIS absorption, retention time) to a commercial
standard. Other phenolic compounds, including hydro-
xycinnamic acids liberated by the base hydrolysis were
present but were not quantified. A standard curve for
SDG was created, relating integrated peak area (mAU*s)
(Y) versus concentration of SDG (mg/mL) (X). In brief,
1 mg of authentic standard was dissolved in 50% metha-
nol and a serial dilution was created in triplicate, halving
the concentration each time. The resulting standard
curve was linear from 0.5 mg/mL to 0.00781 mg/mL
(R*=0.9901) and was used to determine SDG content in
relation to developmental stage (DAA). For each of the
six developmental stages, three extractions and HPLC
analyses were performed from three biological replicates
and the values were presented as the mean of the three
data points.

Heterologous expression of flax UGTs in yeast

The pYES2/NT C plasmid constructs harbouring the
c¢DNA of the five UGTs described in this study were
used to transform yeast INVScl strains using S.c
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EasyComp transformation™ kit (Invitrogen, CA, USA).
The flax UGT ¢cDNA of Genebank accession JN088324.1
[27] was similarly transformed for functional compara-
tive analyses. Single transformant INVScl yeast colonies
were inoculated into 15 mL of Saccharomyces cerevisiae
minimal media without uracil (SC-U, prepared as rec-
ommended by Invitrogen) supplemented with 2% raffi-
nose and grown for 3 days under shaking at 30°C until
the ODgqo reached 2.0. The culture was diluted in 50 mL
of induction medium (SC-U supplemented with 1% raf-
finose and 2% galactose) to achieve an initial ODggy of
0.4. The culture was further incubated under shaking at
30°C for 24 hours, with 5 mL sub-sample collection at
0, 4, 8, 12 and 24 h to monitor the protein expression.
The ODgq for each time point was recorded. The in-
duced vyeast cells were harvested by centrifugation at
1,500 ¢ for 5 min at 4°C. The cells were washed using
500 pL cold sterile distilled water and centrifuged. The
pellets were washed again at 4°C in 500 pL of lysis buf-
fer (50 mM sodium phosphate, pH 7.4 supplemented
with 5% glycerol and 1 mM PMSF). After centrifuga-
tion, the cells were mechanically disrupted by vortexing
for 30 seconds in the presence of an equal volume of
425-600 pm acid-washed glass beads (Sigma Aldrich,
Canada). After vortexing, the sample was incubated on
ice for 30 seconds. The vortexing and incubation cycle
was repeated 4 times to ensure complete cell lysis. The
lysates were centrifuged at 18,620 ¢ for 10 min at 4°C
and the supernatant was collected. The optimum induc-
tion time for all the UGTs was monitored by western blot
using equal amount of proteins and antibodies raised
against the anti-ExpressTM epitope present between the
6x Histidine tag and the multiple cloning site of the con-
struct. The polyhistidine containing recombinant proteins
was purified using the ProBond™ (Invitrogen, CA, USA)
purification system following manufacturer’s instruction.
The purified enzymes were concentrated using 0.5 mL
Ultracel®-10 k Amicon membrane column (Millipore,
Ireland). Protein concentrations were determined using
the Bradford protein assay kit (BioRad Laboratories,
Canada).

Enzyme assays

The crude and purified recombinant protein extracts
obtained from the yeast cultures harboring the five dif-
ferent UGT cDNAs reported in this study and the one
derived from JN088324.1 [27] were reacted with differ-
ent aglycone substrates including SECO (Chromadex,
Irvine, CA, USA), sillibinin, quercetin, kaempferol and
the phenolic acids coumaric acid, caffeic acid, sinnapic
acid, cinnamic acid, and ferulic acid (Sigma Aldrich,
Canada). The 100 pL reaction mixture consisted of a re-
action buffer (50 mM sodium phosphate, 1 mM PMSF,
5% glycerol, pH 7.4), 280 uM aglycone substrate
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(acceptor for glycosylation), and 1.64 mM UDP-glucose
(sugar donor) (Sigma Aldrich, Canada). The reaction
mixtures were pre-incubated at 30°C for 10 min and the
reactions were initiated with the addition of 50 pg of en-
zyme. After incubation at 30°C for 30 min, the reactions
were stopped with 100 pL of 0.5% trifluoroacetic acid in
acetonitrile. The reaction mixtures were purified using
0.2 pm filters (Pall Life Sciences, Mississauga, ON,
Canada) to remove any particulates that might form
during the reaction. The separation and identification of
the reactants and products derived from the enzyme as-
says were carried out using a Waters H-Class Acquity
UPLC system (Waters, Missisauga, ON) equipped with
a TQD tandem mass spectrometer. The formation of
glycosylated products was monitored by examining the
masses and the principle fragments of eluted peaks via
ESI-mass spectrometry. Two parallel MS2 scans were
performed ranging from 120-800 a.m.u., using 15 and
45 V cone voltages. Selected ion recording (SIR) spectra
were also collected to enhance the sensitivity of detec-
tion of SECO, SMG and SDG. The capillary voltage was
3 kV, the extractor set to 3 V, and RF lens at 0.1 V.
Chromatographic conditions consisted of a binary gra-
dient system composed of 3% formic acid in water (A)
and acetonitrile (B), varied according to the following
gradient: t0, A =68%; t1 =4.4 min, A =0%; t2=6 min,
A =0% isocratic; t3 =7 min, A =68%; t4=8 min, A=
68% isocratic. Peaks detected at 280 nm, indicative of
phenolic compounds, were validated using authentic
standards (SECO and SDG) purchased from Chromadex
(Chromadex, Irvine, CA, USA). A standard curve for SDG
was created as detailed above. Standard purified SMG was
prepared as described by [33].

Kinetic and biochemical characterization of UGT74S1

Ranges of pH from 6.0 to 9.0, temperature from 25°C to
50°C, enzyme concentration from 10 to 120 pg and two
concentrations (1 and 10 mM) of seven metal cofactors
(NaCl, KCI, MgCl,, MnCl,, CaCl,, FeSO4 and CuSO,)
were tested in 100 pL reaction mixture for determining
the optimal pH, temperature, enzyme concentration and
metal cofactor effect on the enzyme activity. To determine
the initial velocity of the recombinant LUGT74S1 enzyme, a
time course (5, 10, 15, 30, 45, 60 min) study using the
optimum enzyme concentration and fixed excess substrate
(280 uM SECO; 1.67 mM UDP-glucose) concentration
was conducted at 30°C, pH 8. The linearity was main-
tained in assays up to 30 min at 30°C. The initial velocity
of the reaction was measured at 10 min, where no more
than 10% of SECO was converted to SDG at this time
point. Then, the assays were carried out using various sub-
strate concentrations (70-1400 puM SECO with UDP-
glucose fixed at 1.67 mM; 0.82-6.56 mM UDP-glucose
with SECO fixed at 280 uM), under optimum conditions,
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for 30 min, for the determination of kinetic parameters.
The apparent Vmax and Km value for the glucosyl donor
and acceptor substrate in the presence of 80 pg of the en-
zyme were determined from Lineweaver-Burk plots. The
kcat was determined by dividing Vmax by the enzyme
concentration.

Additional files

Additional file 1: Phylogenetic consensus tree of 16 partial flax
UGT cDNA depicting 8 clusters as inferred by the UPGMA method
using 1000 bootstrap replicates. Bootstrap values (%) are indicated on
the branches.

Additional file 2: Isolation of five full length UGT cDNAs using 5’
and 3’ RACE PCR. A, Amplicons of the 5' cDNA ends by RACE PCR; B,
Amplicons of the 3" cDNA ends by RACE PCR; C, Amplicons of the full
length UGT cDNAs. M, 1 Kb Plus DNA ladder (Invitrogen, ON, Canada).

Additional file 3: ClustalW multiple amino acid sequence alignment
of five flax UGTs. Consensus amino acids, conservation and quality of
conservation are shown. The PSPG motif is boxed in red and the HCGW
tetra amino acid residues within the PSPG motif are underlined.

Additional file 4: EST abundance of five flax full length UGT cDNAs
in 13 tissue-specific EST libraries.

Additional file 5: Multiple sequence alignment of the nucleotide
sequences for UGT74S1 cDNA (from this study), the genomic
sequence of TrUGT74S1 (JN088324.1, [27]), and g6781 the genomic
region corresponding to UGT74S1 cDNA in the flax genomic
database (http://linum.ca; [26]). The two-headed red arrow indicates
the 150 bp missing at the 5' region of TrtUGT74S1. The two-headed blue
arrow indicates the 104 bp present at the 5' region of UGT74S1 but
absent from the other two UGTs. The two-headed green arrow indicates
the position of the intron. The two-headed pink arrow indicates the 3'
untranslated region.

Additional file 6: Comparative UPLC chromatograms of UGT74S1
and TrUGT74S1 (JN088324.1, [27]) showing absence of SDG and
SMG peaks in TrUGT74S1 reaction products. A, enzyme reaction
including reaction buffer, SECO, UDP-glucose, and 80 g of His tag-
purified UGT74S1 enzyme. B, enzyme reaction including reaction buffer,
SECO, UDP-glucose, and 80 pg of His tag-purified TrUGT74S1 enzyme.
Peaks 1, 2, and 3 refer to the SDG, SMG and SECO peaks, respectively.

Additional file 7: Morphological changes of flax seed at different
days after anthesis (DAA). Changes in size, shape and color are shown.
8 days after anthesis (DAA), the seeds are usually white/green, flat and
soft; 16 DAA, the seeds are greenish, flat to ovoid, soft to slightly hard; 24
DAA, the seeds are green to yellow, flat to ovoid, slightly soft to hard; 32
DAA, the seeds are usually yellow to brown, flat to ovoid, hard; mature
seeds (60 DAA), usually brown or yellow, flat to ovoid, dry and hard.

Additional file 8: List of gene specific and degenerated primers
used for generating partial UGT sequences.

Additional file 9: List of gene specific primers (GSP) used for 5" and
3' RACE amplification reactions of UGTs.

Additional file 10: List of gene specific primers carrying restriction
sites used for expression cloning of the full length UGTs in yeast.

Additional file 11: List of gene specific primers for UGTs, PLR, and
rRNA used in real time PCR reactions.
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