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Abstract
Background: Calcium is commonly involved as intracellular messenger in the transduction by
plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi.
Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal
phytopathogens and are able to colonize plant roots. Early molecular events underlying their
association with plants are relatively unknown.

Results: Here, we investigated the effects on plant cells of metabolite complexes secreted by
Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free
Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing
the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis
cinerea, and then separated in two fractions (>3 and <3 kDa). When applied to aequorin-expressing
soybean (Glycine max L.) cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were
distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics,
specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death.
Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out
mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase.

Conclusion: New insights are provided into the mechanism of interaction between Trichoderma
and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular
Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal
partner interaction and modulate defense responses.

Background
Trichoderma spp. are ubiquitous free-living soil fungi
which act as biocontrol agents against several fungal phy-

topathogens. They are commercially applied as biopesti-
cides, thus limiting the abuse of chemical fungicides [1,2].
The antagonist activity of Trichoderma depends on multi-
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ple synergistic mechanisms, including a direct interaction
with the pathogenic partner (mycoparasitism), as well as
indirect mechanisms based on competition for space and
nutrients [3,4]. Trichoderma strains are rhizosphere com-
petent, i.e. able to grow in association with plant roots,
and can actually penetrate the first few layers of plant tis-
sues [5,6]. The effects of Trichoderma colonization on
plants include an improvement of plant growth and
metabolism, as well as the induction of systemic and
localized resistance to phytopathogenic fungi, bacteria
and viruses (reviewed by [4]). Even though the physiolog-
ical changes concerning the plant as a whole and induced
by Trichoderma spp. have been relatively well investigated,
there are only few reports on the mechanisms through
which plant cells perceive fungal metabolites secreted dur-
ing biocontrol. These fungal molecules, which include
proteins, peptides, oligosaccharides and antibiotics, act
naturally in mixtures. The presence in the Trichoderma
exudates of many classes of chemical components poten-
tially acting as elicitors may explain the ability of this fun-
gus to activate induced systemic resistance (ISR) virtually
on any plant variety [7].

During plant-fungal interactions an extensive exchange of
molecular messages occurs. Variation in cytosolic free
Ca2+ concentration ([Ca2+]cyt) is a well-known early com-
ponent of signal transduction pathways involved in plant-
pathogen interactions [8,9]. Plants respond to pathogen
attack through a rapidly induced [Ca2+]cyt elevation, which
in turn initiates a cascade of reactions leading to activation
of defense responses. No information is still available on
the possible involvement of Ca2+ as second messenger in
the mechanism of Trichoderma perception by plants.

In this paper we investigated plant cell responses, includ-
ing intracellular Ca2+ variations, to Trichoderma metabo-
lites released in the culture media of the fungus grown
alone or in direct antagonism with a Botrytis cinerea strain
susceptible to mycoparasitic attack by T. atroviride P1. In
addition, we compared the effect of metabolite mixtures
from both T. atroviride strain P1 wild type and a knock-out
mutant of it, defective in the production of an endochiti-
nase found to be important for biocontrol [10]. Our
results indicate that plant cells are able to selectively per-
ceive through Ca2+ messages macromolecule components
of the fungal culture filtrates, released in the different
experimental conditions. Specific [Ca2+]cyt changes and
levels of intracellular accumulation of reactive oxygen spe-
cies (ROS), reduction in cell viability and occurrence of
programmed cell death (PCD)/necrosis were detected.

Results
Trichoderma metabolite mixtures activate a Ca2+-
mediated signalling in soybean cells
Fungal culture filtrates obtained from T. atroviride strain
P1 wild type were tested on soybean cells stably expressing
in the cytosol the bioluminescent Ca2+ indicator aequorin.
In the Ca2+ measurement experiments fungal metabolite
mixtures were applied to cells at a dose (4-fold concen-
trated culture medium) corresponding to that commonly
used for in vivo bioassays of physiological effects (i.e. ISR
and elicitor activity) on plants [10]. In preliminary dose-
response experiments, the above concentration was found
to induce about half of the maximum effect on [Ca2+]cyt
increase (data not shown). The whole culture filtrate of
Trichoderma elicited a strong Ca2+ elevation that was gen-
erated without an evident lag phase after the metabolite
mixture application. A Trichoderma "Ca2+ signature" could
be identified, which was characterized by a maximum of
[Ca2+]cyt (6.09 ± 0.11 µM), reached after about 1 min, fol-
lowed by a decrease within 20 min to 0.75 ± 0.06 µM,
without returning to resting values (~100 nM) (Fig. 1a).
No [Ca2+]cyt change was observed in control cells treated
with the non-inoculated fungal culture medium (Fig. 1a).
The Trichoderma metabolites were fractionated by using a
3 kDa cut-off and the two separated fractions were applied
to soybean cells. The resulting Ca2+ transients showed,
after a first Ca2+ peak nearly superimposable in time, very
different kinetic trends characterized by a slow and mod-
ulated pattern of signal dissipation with the >3 kDa frac-
tion, and a rapid decline of the Ca2+ concentration to the
basal level with the <3 kDa one (Fig. 1b). The combina-
tion of these two Ca2+ traces plus a plausible synergistic
effect of the molecular components of the two fractions
may account for the kinetics of the Ca2+ change observed
with the unfractionated metabolite mixture (Fig. 1a).

In order to determine whether the Trichoderma Ca2+ signa-
ture is modified when the fungus is cultured with the
pathogen B. cinerea, we tested metabolite mixtures pro-
duced by B. cinerea grown alone and during the coculture
of these two fungi. Size-fractionated culture filtrates from
the pathogenic fungus triggered in soybean cells Ca2+

changes characterized by special features, such as an
exceptionally high Ca2+ elevation (7.53 ± 0.15 µM) caused
by the <3 kDa metabolites, and a final long-lasting sus-
tained Ca2+ level recorded with both <3 kDa (0.66 ± 0.04
µM) and >3 kDa (0.47 ± 0.03 µM) fractions (Fig. 1c). The
Ca2+ transients observed upon cell treatment with both
the fractions derived from Trichoderma cultured in the
presence of Botrytis showed a single main Ca2+ peak occur-
ring at different time values and, with the <3 kDa fraction,
the persistence of a very high sustained plateau (about 9-
fold higher than the basal level) (Fig. 1d). It is noteworthy
that different kinetics of the Ca2+ signals were generated in
soybean cells by the co-application of the filtrates (both
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>3 and <3 kDa) from the two separately-grown fungi (Fig.
1d, inset) in comparison to the traces induced by those of
the cocultured fungi (Fig. 1d). These results suggest that
the antagonism condition modifies the quality/quantity
of the molecules accumulated in the culture media and
indicate that the presence of the phytopathogenic host
may significantly affect the Ca2+ response of plant cells to
Trichoderma.

The lack of a Trichoderma specific endochitinase 
modifies the kinetics of the Ca2+ changes
The >3 kDa metabolite mixture from an endochitinase
gene knock-out Trichoderma mutant, unable to produce
the 42 kDa endochitinase (CHIT42) [10], induced a Ca2+

transient clearly different from that of the wild type, both
in the occurrence and level of the peaks. In addition, the
Ca2+ signal dissipated almost completely within 10 min
(Fig. 2a, compare with Fig. 1b). These findings suggest
that CHIT42 is among the Trichoderma metabolites that
may be perceived as elicitor by plant cells, and is likely to
account for the sustained [Ca2+]cyt level over the time. The
<3 kDa mixture produced by the Trichoderma ∆ech42

mutant grown alone induced a Ca2+ trace that did not sig-
nificantly differ from the wild type (Fig. 2a, compared
with Fig. 1b). On the other hand, when the ∆ech42 mutant
was cocultivated with B. cinerea, also the <3 kDa metabo-
lite mixture generated a Ca2+ profile quite different from
the corresponding wild type fraction and more closely
resembling the Botrytis-induced Ca2+ change (Fig. 2b,
compared with Fig. 1c, d).

Trichoderma metabolite mixtures elicit defense reactions 
in plant cells
Intracellular ROS accumulation
One of the earliest plant responses at the cellular level to
fungal pathogen infection is an increased production of
intracellular ROS [11]. Preliminary tests indicated that a
time interval between 5 and 10 min after the treatment
was optimal to measure intracellular ROS accumulation
by using dichlorofluorescein diacetate (DCF) [12] (data
not shown). Compared to control cells, that showed no
fluorescence at all (Fig 3a'), both >3 and <3 kDa Trichode-
rma metabolite fractions induced a faint detectable signal
(Fig. 3b' and 3f'). As expected in the case of a necrotrophic
pathogen, Botrytis filtrates, mainly <3 kDa, induced a level
of fluorescence markedly higher (Fig. 3c' and 3g') than
that of the biocontrol agent. ROS accumulation was very
low when metabolites from Trichoderma cocultured with
Botrytis were applied (Fig. 3d' and 3h'). In particular, in
the case of the <3 kDa Trichoderma+Botrytis fraction (Fig.
3h') the significant reduction in DCF fluorescence may be
attributed to the high percentage of dead cells (60.4 ± 1.8
% after 10 min) (see also below). No evident differences
were found when cells were treated with filtrates of the
∆ech42 mutant compared to the wild type (see for exam-
ple Fig. 3e'), unless the <3 kDa fraction of ∆ech42 + Botrytis
was applied (Fig. 3i', compared with 3h'). These findings
indicate that, besides the generation of specific Ca2+ signa-
tures, other processes are differentially affected by metab-
olites secreted by the phytopathogen and the biocontrol

[Ca2+]cyt responses of soybean cells to metabolite mixtures secreted by the Trichoderma ∆ech42 mutantFigure 2
[Ca2+]cyt responses of soybean cells to metabolite 
mixtures secreted by the Trichoderma ∆ech42 
mutant. Cells were treated with >3 kDa (black trace) or <3 
kDa (grey trace) fractions of the metabolite mixtures 
secreted by the ∆ech42 mutant, grown alone (a) or in the 
presence of Botrytis (b).
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Monitoring of [Ca2+]cyt in soybean cells challenged with fungal metabolite mixturesFigure 1
Monitoring of [Ca2+]cyt in soybean cells challenged 
with fungal metabolite mixtures. Cells were treated 
with: the whole culture filtrate of Trichoderma (black trace) or 
non-inoculated culture medium (grey trace) (a); >3 kDa (black 
trace) and <3 kDa (grey trace) fractions from culture filtrates 
of Trichoderma (b), Botrytis (c), and Trichoderma grown in the 
presence of Botrytis (d). In c, the first peak of the Ca2+ tran-
sient induced by the >3 kDa metabolites is represented out 
of scale. In d, the inset shows the [Ca2+]cyt changes induced 
by the simultaneous application of the metabolite fractions 
(>3 kDa, black trace; <3 kDa, grey trace) from separately 
grown Trichoderma and Botrytis. Fungal filtrates were applied 
to cells after 100 s. These and the following traces have been 
chosen to best represent the mean results from at least 
three repetitions.
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agent. It can be speculated that the induction of ROS does
not play a major role in the plant cell response to Trichode-
rma metabolite mixtures.

Reduction in cell viability
Intracellular Ca2+ overload may determine cytotoxicity
and cause either apoptotic or necrotic cell death [13]. In
view of the high levels of [Ca2+]cyt induced by some of the
fungal culture filtrates, their effect on cell viability was
determined. Based on Evans Blue staining, all metabolite
mixtures significantly increased after 30 min the percent-
age of dead cells in comparison with untreated controls,
except the >3 kDa culture filtrate from the ∆ech42 mutant
(Fig. 4). The reduction in cell viability was more remarka-
ble with <3 kDa mixtures (Fig. 4b) than >3 kDa (Fig. 4a),
suggesting a major toxic effect played by low MW metab-
olites.

Induction of programmed cell death
Detection of caspase activation, a strictly PCD-related
event ([14] and references herein), was used to determine
whether cell death induced by the fungal metabolite mix-
tures occurred via PCD rather than a necrotic event. In
soybean control cells a low level of caspase 3-like activity,
measured by quantification of free p-nitroaniline (0.018 ±
0.002 mM pNA), and probably due to normal cell turno-
ver, was detected (Fig. 5a). In agreement with the results
of the cell viability test, a significant increase of caspase 3-
like protease activity was caused by 30 min application of
both >3 and <3 kDa metabolite mixtures obtained from
Trichoderma wild type grown alone (Fig. 5a and 5b). This
indicates that PCD is part of the plant cell response to Tri-
choderma metabolites. Interestingly, the <3 kDa fraction
obtained from the Trichoderma-Botrytis coculture,
although generating the maximal cell death percentage
(Fig. 4b), was not found to trigger a significant caspase 3-
like activation (Fig. 5b), suggesting the induction of a dif-
ferent mode of cell death.

When cells were treated with the corresponding fraction
of the ∆ech42 Trichoderma mutant cocultured with Botrytis,
a statistically significant activity of caspase 3-like protease
was recorded, and this value (0.038 ± 0.004 mM pNA)
approached that obtained with the <3 kDa Botrytis filtrate
(0.034 ± 0.003 mM pNA). In all experiments, the addition
of a caspase 3 specific inhibitor (Ac-DEVD-CHO) lowered
the amount of free pNA released from the substrate to the
level of the control (data not shown), thus confirming the
validity of the test for caspase 3-like activity.

Changes in cell viability in response to fungal culture filtratesFigure 4
Changes in cell viability in response to fungal culture 
filtrates. Exponentially growing cells were incubated with 
>3 kDa (a, black boxes) and <3 kDa (b, grey boxes) fractions of 
the secreted fungal metabolite mixtures. Control cells (Co, 
white boxes) were incubated with culture medium only. All 
the abbreviations used for the treatments (wt Tr, Bo, ∆ 
ech42) are as in Fig. 3. The 100% value correspond to cells 
treated for 10 min at 100°C. Data are means ± SD of three 
independent experiments. Bars labeled with a different letter 
differ significantly (P < 0.05) by Student's t test.
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Detection of intracellular ROS accumulation in soybean cells treated with fungal culture filtratesFigure 3
Detection of intracellular ROS accumulation in soy-
bean cells treated with fungal culture filtrates. Intrac-
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images of the same field are presented. All images were 
acquired with the same exposition time gauged to the higher 
fluorescence emission intensity obtained with the Botrytis <3 
kDa fraction. Pictures represent typical examples after 10 
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Chromatin condensation and morphological cell alterations
Hoechst 33342 (HO)/Propidium Iodide (PI) staining fol-
lowed by morphological analysis provided additional
information on the type of cell death caused by the fungal
metabolite mixtures produced in all the considered exper-
imental conditions. Fig. 5c shows the staining pattern of
soybean cells incubated with the plasma membrane-per-

meable DNA-binding agent HO and with the impermeant
dye PI in the presence or absence of the <3 kDa fraction of
the different fungal mixtures. Control cells had a faint or
not detectable HO staining, with no evidence of chroma-
tin condensation, and nuclei that did not stain with PI,
indicating integrity of the plasma membrane. Electron
microscope observations validated the healthy state of the
cells (Fig. 5d). Cells treated with filtrates from Trichoderma
wild type grown alone showed the prevalence of HO pos-
itive/PI negative nuclei, indicative of early PCD-like
stages, characterized by chromatin condensation and an
intact plasma membrane (Fig. 5c). Ultrastructural analy-
ses confirmed these findings, showing small lumps of
condensed chromatin close to an intact nuclear envelope
and plasma membrane stuck to the cell wall in about 70%
of the cells (Fig. 5d).

Most cells incubated with <3 kDa Botrytis metabolite mix-
ture were HO positive/PI positive (late PCD stages), with
both condensed chromatin and a functionally altered
plasma membrane (Fig. 5c). Electron microscope observa-
tions indicated an evident chromatin condensation just
beneath the nuclear envelope, chloroplasts and mito-
chondria altered in their organization, and plasma mem-
brane detached from the cell wall (Fig. 5d).

The HO negative/PI positive staining pattern obtained
with the <3 kDa metabolite mixture secreted in the cocul-
ture medium of the two fungal strains (Fig. 5c) revealed
the absence of chromatin condensation and the break-
down of the plasma membrane, both characteristics of a
necrotic status of the cells. The induction of a necrotic
pathway was also supported by the lack of caspase 3-like
activation (Fig. 5b). In the majority of the cells, the
ultrastructure appeared deeply affected, with the plasma
membrane completely detached and nuclei with a disor-
ganized or absent nucleoplasm and heterogeneous resid-
ual chromatin clumps. Chloroplasts and mitochondria
looked remarkably altered in their structure (Fig. 5d). Cell
necrosis was somehow expected since during antagonism/
mycoparasitism T. atroviride strain P1 typically releases tri-
chorzianines, <3 kDa secondary metabolites capable of
directly killing cells by destructing the plasma membrane
[15]. However, both the induction and effectiveness of
these antibiotics require the action of endochitinases and
other cell wall degrading enzymes on the host tissues,
which explains the results obtained when the ech42 dele-
tion mutant was used in the coculture instead of the wild
type. In this case, the lack of the major chitinase activity
may have reduced the induction and accumulation of the
necrogenic metabolites, which resulted in a typical late
PCD-like staining (HO positive/PI positive) (Fig. 5c). This
is confirmed by electron microscope observations, which
likewise suggest a change in the induced cell death path-
way (necrosis versus PCD) when wild type Trichoderma is

Effect of the fungal metabolite mixtures on caspase 3-like activity, chromatin condensation and ultrastructure of soy-bean cellsFigure 5
Effect of the fungal metabolite mixtures on caspase 
3-like activity, chromatin condensation and 
ultrastructure of soybean cells. Panel a and b: caspase 3-
like activity in cells treated for 30 min with >3 kDa (a, black 
boxes) and <3 kDa (b, grey boxes) fractions of the metabolite 
mixtures. Control cells (Co, white boxes) were incubated 
with culture medium only. All the abbreviations used for the 
treatments (wt Tr, Bo, ∆ech42) are as in Fig. 3. Data are 
means ± SD of three independent experiments. Bars labeled 
with a different letter differ significantly (P < 0.05) by Stu-
dent's t test. Panel c: cells were treated with <3 kDa culture 
filtrates, stained with HO and PI, and observed under a fluo-
rescence microscope. Pictures represent typical examples. 
nu, nucleus. Bars: 5 µm. Panel d: ultrastructural observations 
of control cells and cells incubated for 15 min with <3 kDa 
fungal metabolites. cc, chromatin condensation, chl, chloro-
plast, cw, cell wall, nu, nucleus, v, vacuole. Bars: 1 µm.
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replaced by the mutant strain in the dual coculture (Fig.
5d). No ultrastructural differences were found between
treatments with <3 kDa metabolites produced by either
Trichoderma wild type or ∆ech42 mutant grown alone (Fig.
5d).

Discussion and Conclusion
The aim of this study was to investigate how plants can
sense the presence of a fungus able to effect plant disease
control in the rhizosphere. As experimental system we
used plant cell cultures which were challenged with Tri-
choderma metabolite mixtures. Moreover, possible modi-
fications in the pattern of the secreted molecules were
analysed by testing the effects of culture filtrates of Tri-
choderma growing in direct antagonism with the phy-
topathogenic fungus Botrytis. The use of suspension
cultured plant cells as a simplified approach, although not
closely mimicking the natural situation, offers several
advantages in the dissection of complex cellular responses
at a molecular level. These in vitro studies may represent a
valuable starting point for future experiments to be carried
out in planta.

The molecular nature of the elicitors produced by Tri-
choderma strains has been at least partially unravelled (see
[3,4] for reviews). Some of these compounds have been
tested in purity for their ability to induce expression of
plant defense genes and disease resistance [16,7]. How-
ever, the most direct way to have an overview of the com-
plex reactions and effects caused by the fungal metabolites
in plants is to assay the natural mixtures. Plants have been
found to be actually penetrated and colonized by the fun-
gus at the root level [5,6], and thus the secreted fungal
molecules directly interact with living plant cells. It is at
the plant-fungus interface that the first steps of the molec-
ular interaction occur and generate the multiple effects
observed both in vitro and in agriculture conditions.

Our results highlight the induction of Ca2+-mediated sig-
nal perception as an early step during the interaction of
soybean cells with Trichoderma metabolites. Although the
involvement of Ca2+ in pathogen sensing by plants has
been frequently claimed [17], to our knowledge a Ca2+-
mediated perception by plant cells of a fungal biocontrol
agent has not yet been reported. Since Ca2+ has been
recently demonstrated to be involved also in the molecu-
lar communication between plant cells and mycorrhizal
fungi [18], a transient variation in [Ca2+]cyt proves once
again to be the most general way for plants to open a dia-
logue with their fungal partners. The specificity of the Ca2+

changes that we recorded in the single and two-fungal
partner interactions (pathogenic and antagonist fungus
alone and in combination) guarantees that this intracellu-
lar messenger delivers to cells different messages, which
are progressively decoded into definite downstream

responses. A specificity of the perception mechanism by
plant cells is confirmed by the fact that different patterns
of intracellular ROS accumulation and cell death induc-
tion were determined by the application of the various
fungal mixtures. This does not necessarily imply that the
cascade of events leading to the physiological responses
follows separate, independent pathways, but rather that a
network of overlapping pathways may be activated
[19,20]. In view of the complexity of signalling crosstalks,
firm causal links among Ca2+, ROS and cell death are not
easy to assess.

The fungal growth conditions used in this work are well-
known to induce the accumulation in the Trichoderma cul-
ture filtrates of specific compounds including enzymes,
oligosaccharides and secondary metabolites. Separation
of fungal culture filtrates by a 3 kDa cut-off let us discrim-
inate differential cell responses to the active molecules
recovered in the two fractions.

The larger MW (>3 kDa) fraction is known to contain a
battery of hydrolytic enzymes, released by Trichoderma
[21-23] as well as Botrytis [24,25], capable of digesting the
plant cell wall. Increasing evidence indicates that the elic-
itor function of fungal lytic enzymes is unrelated to their
enzymatic activity, but instead due to the direct percep-
tion by plant cells of the protein per se, rather than just
through their hydrolysis products [26-28].

The <3 kDa Trichoderma fraction includes, as major sec-
ondary metabolites, peptaibols such as trichorzianines A1
and B1 [15], which are known to form oligomeric voltage-
dependent ion channels in the plasma membrane of fun-
gal hosts and plant cells, thus affecting membrane perme-
ability [29,30]; cell death may occur as a consequence of
cytoplasmic leakage through these ion channels [31]. Oli-
gosaccharides, gradually released by the action of Tri-
choderma hydrolytic enzymes on the fungal host cell wall,
may also be active components of the small MW fraction
generated in the two-way interaction (Trichoderma-Botry-
tis). They are perceived by both the biocontrol agent as
mycoparasitism/antagonism inducers [32] and by plant
cells as elicitors [33,7]. Chitooligomers have been demon-
strated to activate in plant cells an increase in [Ca2+]cyt
[34,35] and defense responses [33,36]. All the <3 kDa
fractions tested were found to induce in plant cells effects
on both Ca2+ changes and physiological parameters more
remarkable than the higher MW mixtures. The enhance-
ment of the cellular responses that we recorded upon cell
treatment with the Trichoderma-Botrytis coculture filtrates
cannot be attributed to the mere co-presence of elicitors
released by the two fungi alone. Instead, qualitative/quan-
titative differences in the secreted compound mixture may
arise when the biocontrol agent and the pathogen are
grown together in direct antagonism, due to competition
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for nutrients and/or a direct effect of mycoparasitism
[7,38]. Isolates of T. harzianum have been previously
shown to reduce the activity of hydrolytic enzymes pro-
duced by B. cinerea [37]. Furthermore, the activity of Tri-
choderma hydrolytic enzymes gradually releases
oligosaccharides from the Botrytis cell wall, which accu-
mulate in the coculture medium. Our results indicate that
plant cells are able to sense different elicitors that Trichode-
rma mainly addresses to its fungal host and consequently
activate their own signal transduction pathway. This
notion is also supported by recent findings concerning the
activation in plants of a specific pattern of gene expression
by the same Trichoderma strain [38].

Reduction in cell viability was recorded with all the
metabolite mixtures of either Trichoderma or Botrytis. This
result is expected for the pathogen, for which a Ca2+- and
caspase-mediated hypersensitive response (HR) has
already been reported [39-41], but also not surprising for
the biocontrol agent. It is a common finding that plant
roots and seeds treated with Trichoderma are dotted with
small necrotic spots probably caused by a HR, which
results in localized callose deposition that limits the colo-
nization of plant tissues by the fungus to the first few lay-
ers of cells [5,3].

The lack of the 42 kDa endochitinase in the high MW frac-
tion of the deletion mutant culture medium [10] deter-
mined a Ca2+ transient clearly different from that of the
wild type. This result indicates that the knock-out of the
ech42 gene and its effect on the molecules secreted in the
culture medium deeply modifies the fungal signal which
is perceived by plant cells through Ca2+. Furthermore, the
inactivation of the ech42 gene seems to produce, during
the two-way interaction (∆ech42-Botrytis), a <3 kDa
metabolite mixture less necrogenic (in terms of ROS accu-
mulation, activation of caspase 3-like protease and mode
of cell death) than in wild type Trichoderma-Botrytis. This
fraction is also able to induce a PCD pathway instead of a
necrotic cell death, probably because of a reduced secre-
tion of toxic secondary metabolites by the biocontrol
agent. It has been demonstrated that the knock-out of the
42 kDa endochitinase alters the biocontrol ability of Tri-
choderma virens [42] and reduces the mycoparasitic and
disease control efficacy in vivo of T. atroviride strain P1
[10]. In addition, the ISR-inducing ability of the ∆ech42
mutant is also lower than the wild type in assays where
bean roots treated with Trichoderma are leaf-inoculated
with B. cinerea (M. Lorito, unpublished). It has been pre-
viously demonstrated that complementation of the
mutant culture filtrate with the purified 42 kDa endochi-
tinase fully recovers the Trichoderma biocontrol activity
[10]. Application to plant cells of the unfractionated Tri-
choderma culture filtrate complemented with CHIT 42
may provide a useful validation of the results obtained in

this paper. Nevertheless, in view of possible pleiotropic
effects of the endochitinase deletion on the fungal metab-
olism, this experimental approach may lead to an over-
simplification of the complex network of synergistic
interactions between the Trichoderma bioactive molecules
[43].

The changes in [Ca2+]cyt triggered by Trichoderma metabo-
lites in plant cells, although monitored only in vitro, pro-
vide new insight into the mechanisms by which these
beneficial fungi affect plant physiology and resistance to
stress. Our findings suggest the chance of using the Tri-
choderma secreted molecules, in mixtures or purified, as
elicitor treatments against phytopathogens. This possibil-
ity is particularly intriguing, since a recognition of the bio-
control agent metabolites would allow the plant to
perceive the presence of Trichoderma, thus pre-activating
defense mechanisms against different pathogens [44], and
also inducing a variety of other beneficial effects (i.e. pro-
motion of plant growth, nutrient uptake, seed germina-
tion, resistance to abiotic stresses).

Methods
Fungal strains, growth conditions and preparation of 
culture filtrates
The wild type Trichoderma atroviride strain P1 [45] and its
ech42 gene (encoding CHIT42 endochitinase) disruption
mutant [10] were maintained at 25°C on potato dextrose
agar (PDA) and as spore suspension in 10% glycerol at -
40°C. The Botrytis cinerea strain 319 was isolated from
tobacco, grown at 25°C on malt extract agar and kept as a
spore suspension in 10% glycerol at -40°C. Fungal starter
cultures were obtained in potato dextrose broth at 25°C,
150 rpm for 3 days with light, collected by centrifugation,
rinsed with sterile distilled water, and used to inoculate a
salt medium [46] containing 0.1 % (w/v) sucrose and 0.1
% (w/v) peptone. The cultures were grown at 25°C, 150
rpm, with light, for 3 days. Culture filtrates and the sub-
strate alone, used as a control, were filter sterilized (0.22
µm), concentrated by roto-evaporation approximately 20-
fold and fractionated with YM-3 MW (3000 Da cut-off)
(Amicon Centriprep, Millipore) at 4000 rpm 6°C. The
samples used as metabolite mixtures were: the whole con-
centrated filtrate, the fraction >3000 Da and that <3000
Da for each single fungus (Trichoderma, ∆ech42 mutant,
Botrytis), plus the extracts of P1, or the ∆ech42 mutant,
grown in the presence of Botrytis. For plant cell treatments,
fungal culture filtrates were lyophilized and resuspended
in plant cell culture medium. The final dose applied to
cells corresponded to 4-fold concentrated fungal medium.

Plant cell cultures
Cell suspension cultures of soybean (Glycine max L., line
6.6.12) stably expressing cytosolic aequorin were main-
tained as described by [34]. Cell treatments with fungal
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culture filtrates were performed two weeks after reinocula-
tion, during the exponential growth phase of the cells.

Aequorin-dependent Ca2+ measurements
In vivo reconstitution of aequorin and Ca2+ measurements
were carried out as previously described [18].

Intracellular ROS detection
Intracellular production of reactive oxygen species (ROS)
was measured according to [12], by loading the cells with
15 µM 2',7'- dichlorodihydrofluorescein diacetate
(H2DCF-DA, Molecular Probes, Leiden, The Nether-
lands). This non polar compound is actively taken up by
cells and converted by esterases in H2DCF, a non fluores-
cent molecule, which is rapidly oxidized to the highly flu-
orescent DCF by intracellular peroxides. Treatments with
fungal culture filtrates were carried out 10 min after dye
loading and extensive washing. DCF was excited at 488
nm and emitted fluorescence was detected through a 520
bandpass filter. Cells were observed within 10 min.

Cell viability
Cell viability was determined, after 30 min treatment with
the fungal culture filtrates, by the Evans Blue method [47].

Caspase 3-like activity
Caspase 3-like activity was measured, after 30 min cell
treatment, using the "caspase-3 colorimetric activity assay
kit" (Chemicon International, Inc., Temecula, CA), as pre-
viously described [26] by quantification of free p-
nitroaniline (pNA) released by the enzymatic cleavage of
the caspase 3 synthetic substrate Ac-DEVD-pNA.

Hoechst 33342 (HO) and Propidium Iodide (PI) staining
After 30 min treatment with the different fungal culture
filtrates, cells were incubated for 10 min in darkness with
8 µg/ml HO and 5 µg/ml PI (Sigma-Aldrich, St. Louis,
USA) at room temperature. Cells were observed using a
fluorescence microscope with an excitation light of 350
nm and 570 nm for HO and PI, respectively.

Transmission electron microscopy
Cells were collected after 15 min treatment and processed
as previously described [48].

Statistical analysis
Data were expressed as mean ± S.D. The statistical signifi-
cance of differences (P < 0.05) between means was evalu-
ated using Student's t test.
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