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Abstract

Background: Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic
factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused
by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the
isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite
indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic
lines, expressing ASAL, showed explicit resistance against major sap-sucking pests.

Results: Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL)
from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking
insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH).
Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSBI | | super-binary vector
comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of
CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the
genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different
transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked
immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect
bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH
insects, as evidenced by significant decreases in the survival, development and fecundity of the insects.

Conclusion: In planta insect bioassays were carried out on asal transgenic rice lines employing standard
screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL
expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against
three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal
exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice
lines appear promising for direct commerecial cultivation besides serving as a potential genetic resource in
recombination breeding.
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Background

Globally, more than 3 billion people from Asia and other
countries depend on rice (Oryza sativa, L.) as their staple
food, and by 2025 about 60% more rice must be pro-
duced to meet the needs of the growing population [1].
Productivity losses resulting from herbivorous insects
have been estimated between 10-20% for major crops
grown worldwide [2]. Rice productivity is adversely
impacted by numerous biotic and abiotic factors. An
approximate 52% of the global production of rice is lost
annually owing to the damage caused by biotic factors, of
which ~21% is attributed to the attack of insect pests [3].
Furthermore, insects are known to show widespread
occurrence with wide variation in their intensity and feed-
ing habits. Insects belonging to Delphacidae and Cicadel-
lidae contain a large group of sap-sucking planthoppers
and leathoppers, respectively. As such, they are difficult to
control and manage, resulting in huge yield losses occur-
ring in most of the rice growing areas. Insects not only
cause direct losses to the agricultural produce but also act
as vectors for various plant pathogens [4,5]. Three major
sap-sucking pests of rice, viz., brown planthopper (Nila-
parvata lugens, BPH), green leafhopper (Nephotettix vires-
cens, GLH) and whitebacked planthopper (Sogatella
furcifera, WBPH) are known to cause severe damage to the
rice plant besides acting as vectors for major viral diseases.

Although chemical control of insect pests is an effective
option, most often it is expensive and depends mainly on
the weather conditions. Extensive application of chemical
pesticides not only builds up resistance in insect pests but
also proves deleterious to the beneficial organisms such as
pollinators, nutrient cyclers and natural pest-controlling
agents owing to their non-selective properties. Moreover,
indiscriminate usage of pesticides exerts harmful effects
on the environment and human health through food
chain. As such, adoption of insect resistant cultivars has
been considered as the most economic and eco-friendly
strategy for pest management. Genetic enhancement of
rice through conventional methods is often constrained
by narrow gene pools besides strong barriers to crossabil-
ity. In this context, transgenic technology can be adopted
as an alternative approach for evolvement of insect resist-
ant varieties by introducing exotic resistance genes into
leading rice cultivars.

In recent times, successful attempts have been made to
prospect for novel candidate genes that convey tangible
resistance against major insect pests from various sources
such as microbes, plants and animals. Different versions
of Bacillus thuringiensis endotoxin encoding genes (cry)
have been introduced into diverse crop plants to protect
against the damages caused by lepidopteran and coleop-
teran insects which feed by chewing [6-12]. Furthermore,
plants are known to serve as sources of non-Bt insecticidal
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proteins such as lectins, protease inhibitors as well as
ribosome-inactivating proteins [13]. However, protease
inhibitors showed little success in controlling major sap-
sucking pests [14]. Recent reports provide detailed
accounts on the economic, environmental and health
benefits of wvarious insect-resistant transgenic crops
[15,16].

Lectins are carbohydrate-binding proteins that specifically
recognize diverse sugar structures and thus mediate vari-
ous biological processes, viz., cell-cell and host-pathogen
interactions, and serum glycoprotein turnover besides
innate immune responses [17]. Lectins are known to
occur in most of the organisms ranging from viruses and
bacteria to plants and animals [18]. They represent a het-
erogenous group of oligomeric proteins that vary widely
in size, structure and molecular organization besides con-
stitution of combining sites with respective receptors on
gut epithelial cells of insects. The possible mechanism of
lectin toxicity in insects seems to involve the binding of
lectin to the gut surface, leading to local lesions in the gut
[19]. The insecticidal activity of carbohydrate-binding
plant lectins against insects belonging to coleoptera, dip-
tera, lepidoptera and homoptera have been amply inves-
tigated [20-25].

A wide range of lectins exhibiting either mannose or man-
nose/glucose sugar binding affinity, including Galanthus
nivalis agglutinin (GNA), Concanavalin A (Con A) and
Pisum sativum agglutinin (PSA), revealed palpable
antimetabolic effects towards members of the homop-
teran insects both under in vitro [26-28] as well as in planta
conditions [27,29,30]. Among the mannose-binding
lectins, G. nivalis agglutinin (GNA) has been widely stud-
ied and introduced into different plants, viz., rice, wheat
and tuber crops [20,31,32,23,24]. Transgenic plants
expressing GNA showed significant entomotoxic effects as
evidenced by insect bioassays under controlled conditions
[33,31,30,34,32,5,35,23,24]. Similarly, bioassays based
on artificial-diet-feeding system, using mannose-specific
lectin from Allium sativum agglutinin (ASA), showed
antimetabolic effects towards BPH and GLH insects
[29,25]. Expression of garlic lectins, ASAL and ASA-II in
tobacco conferred resistance against tobacco aphid and
cotton leaf worm, respectively [36,37]. Saha et al. [38]
reported that transgenic rice lines expressing garlic lectin
gene (asal) exhibit increased resistance against GLH and
BPH pests. In three subspecies of rice, significant advances
made in the regeneration protocols and gene delivery
methods have facilitated introduction of beneficial genes
for various agronomic traits. In the recent past, it has been
established that Agrobacterium-mediated transformation is
an efficacious method for transferring novel candidate
genes into elite indica rice varieties [39-41,23,12].
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The present investigation deals with the isolation, cloning
and characterization of lectin (asal) gene from A. sativum,
and its expression in elite indica rice cultivars using Agro-
bacterium-mediated genetic transformation method.
Molecular evidences suggest stable integration of asal and
bar genes into the genomes of rice plants, and their varia-
ble expression at RNA and protein levels. The stable trans-
genic lines, expressing ASAL, showed explicit resistance
against major sap-sucking insects, viz., BPH, GLH and
WBPH.

Results

The observations described herein pertain to the isolation
of asal gene from garlic plants and its overexpression in
two elite indica rice cultivars. The presence and expression
of transgenes (asal and bar) in rice plants has been dem-
onstrated through Southern, northern and western analy-
ses. The various ASAL-expressing rice lines furnished
marked resistance against three major sap-sucking pests,
viz., BPH, GLH and WBPH.

Isolation of A. sativum agglutinin gene (asal) and
construction of pSBI | I-bar-asal plant expression vector
Coding sequence of the asal was isolated from garlic
plants through the synthesis of cDNA followed by PCR
using gene specific primers. The PCR product contained
546 bp coding sequence (Genbank accession no:
DQ525625) that codes for a polypeptide of 181 amino
acids (ABF70332), containing a signal peptide of 30 a.a.
The ASAL protein showed maximum identity of 98% with
the mannose specific lectins isolated from the leaf
(AAW48531) and bulbs (AAB64238) of garlic plants. The
plant expression cassette, comprising CaMV35S pro-
moter, asal and nos terminator, was cloned at HindIII site
of pSB11 bar intermediate vector of the Agrobacterium con-
taining bar gene expression cassette (Fig. 1). The recom-
binant clone was then introduced into Agrobacterium
strain LBA4404 by triparental mating and the resultant
super-binary vector was designated as pSB111-bar-asal

(Fig. 1).

Genetic transformation and production of transgenic rice
plants

To insert asal gene into rice plants, embryogenic calli of
rice (cvs. Chaitanya and BPT5204) was co-cultivated with

HindIIL

EcoR1  HindIIl EcoRI

Figure |
Restriction map of T-DNA region of pSBI 11 contain-
ing bar and asal expression units.
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the Agrobacterium strain LBA4404 harbouring Ti-plasmid
pSB111-bar-asal. A total number of 47 and 29 putative
transformants were obtained from 2116 calli of Chaitanya
and 4381 calli of BPT5204, respectively. From these, 14
transformants of Chaitanya and 3 of BPT5204 were
selected for further analyses based on their high tolerance
to herbicide (0.25%) BASTA (Fig. 2).

Molecular analysis of primary (T,) transgenic plants

Genomic DNA was isolated from the BASTA tolerant
transgenic rice plants as well as from the untransformed
control plants. PCR analysis of transgenic rice plants
showed amplification of 560 bp and 546 bp products,
representing bar and asal coding sequences, while control
plants failed to show such amplification (data not
shown). Southern blot analysis was carried out using
BASTA and PCR positive plants. When genomic DNA of
transgenic plants was digested with HindIIl and probed
with asal coding sequence, it showed hybridizable band of
~1.6 kb (Fig. 3A). Similarly, EcoRI digested DNA of trans-
genics probed with bar sequence showed ~1.9 kb band
(Fig. 3B). Genomic DNA of different transgenic plants,
digested with EcoRI and probed with the asal, showed a
distinct hybridizable band of >3 kb (Fig. 3C). These bands
correspond to the expression units of bar and asal trans-
genes introduced into the transgenic rice plants. Con-
versely, the untransformed control plants failed to show
any hybridizable band with both the probes. Northern
blot analysis was performed using the RNA from Southern
positive plants to assess the expression of asal gene in dif-

uc 1 2 3 4 5 6 7 8 9 10 1

2 13 14

Figure 2

Basta treated leaves of putative transformants show-
ing complete tolerance to the herbicide. Lane. UC:
Untransformed control plant showing complete damage to
the herbicide Basta,. Lanes |- |: Different transformants of
Chaitanya showing herbicide tolerance,. Lanes 12—14: Trans-
formants of BPT5204 showing herbicide tolerance.
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Figure 3

Southern blot analysis of genomic DNA from the
leaves of transgenic rice lines and control plants. (A)
Genomic DNA digested with Hindlll and probed with asal
coding sequence; (B) Genomic DNA digested with EcoRI and
probed with bar coding sequence; (C) Genomic DNA
digested with EcoRI and probed with asal coding sequence;
Lane UC: DNA from untransformed control plant, Lanes |-
6: DNA from Tj,, T4z, T4e, Ts), Tseand T transgenic lines of
Chaitanya, Lanes 7-8: DNA from T;,and T,; transgenic lines
of BPT5204.

ferent transgenic rice lines; presence of a >600 bp hybrid-
izable band of varied intensity was visualized in diverse
transgenic lines (Fig. 4). Western blot analysis of leaf
extracts from transgenic plants showed the presence of a
polypeptide of >12 kDa corresponding to the purified asal
protein when treated with anti-asal antibodies (Fig. 5).
Whereas, no such protein was observed in the untrans-
formed control plants. The level of ASAL expression in
transgenic plants was determined by the enzyme-linked
immunosorbent assay (ELISA), and the amount of ASAL
among transformants ranged between 0.74% and 1.45%
of the total soluble proteins.

Inheritance pattern of asal and bar genes in T, generation
To investigate the inheritance pattern of the transgenes,
selfed seed collected from the primary (T,) transformants
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Figure 4

Northern blot analysis for the expression pattern of
asal in different transgenic rice lines. Lane UC: RNA
from untransformed control plant, Lanes 1-6: RNA from Tj,,
T4 T49 Ts) Tseand Tgg transgenic lines of Chaitanya, Lanes
7-8: RNA from T3 and T, transgenic lines of BPT5204.
Ethidium bromide stained 28S rRNA band is shown under
northern blot for amount of RNA loading.

were germinated and T, progenies were grown to maturity
in the glass house. Eight T,lines of Chaitanya, viz., Ts,,
T4z, Tyor Tsyr Tsg Tsor T3 and Tgg, and three T, lines of
BPT5204, viz., T3, Ts, and Ty, were tested with the herbi-
cide BASTA and were also subjected to insect bioassays. In
T, progenies, both the transgenes bar and asal showed a
monogenic segregation of 3 resistant: 1 susceptible
plant(s) besides co-segregation in a normal Mendelian
fashion for BASTA tolerance as well as for insect resistance
(Table. 1). These transgenic lines were healthy and were
found similar to that of untransformed control plants for
various morphological characters with normal seed fertil-

ity.

Impact of ASAL on BPH, GLH and WBPH pests

Comprehensive in planta bioassay experiments were per-
formed to test the insecticidal activity of the asal gene, on
T, and T, (homozygous) transgenic lines, for three major

+—12kDa
T49 T51 T56 T63 P

Fig §

Uuc T47

Figure 5

Western blot analysis of leaf extracts of transgenic
lines along with controls. Lane UC: Protein extract (5 pg)
from untransformed control plant, Lanes 1—4: Protein
extract (5 pg) from Ty, Ty, Ts, and T, transgenic lines of
Chaitanya, Lane 5: Protein extract (5 pg) from T transgenic
line of BPT5204, Lane 6: Purified ASAL protein (50 ng).
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Table I: Inheritance pattern of transgenes, and insect bioassays for brown planthopper (BPH), green leafhopper (GLH) and

whitebacked planthopper (WBPH) in T, generation

T, progenies Test/Bioassay No of plants tested No. of plants resistant No. of plants susceptible ~Segregation ratio y 2 value p-value
T32 Chaitanya Basta 41 29 12 3:1 0.380 0.537
T47 Chaitanya Basta 35 19 6 31 0.013 0.909
T49 Chaitanya Basta 29 21 8 3:1 0.096 0.756
T51 Chaitanya Basta 50 37 13 3:1 0.026 0.871
T56 Chaitanya Basta 41 29 12 3:1 0.380 0.537
T59 Chaitanya Basta 40 29 Il 3:1 0.130 0.718
T63 Chaitanya Basta 36 29 7 3:1 0.273 0.601
T68 Chaitanya Basta 27 20 7 3:1 0.012 0.912
T43 BPT5204 Basta 49 36 13 3:1 0.055 0.814
T54 BPT5204 Basta 54 39 15 31 0.216 0.642
T63 BPT5204 Basta 29 21 8 3:1 0.096 0.756
T32 Chaitanya BPH 60 45 15 3:1 0.000 -
T47 Chaitanya BPH 35 26 9 3:1 0.010 0.920
T49 Chaitanya BPH 43 32 11 3:1 0.007 0.933
T51 Chaitanya BPH 30 22 8 3:1 0.041 0.839
T56 Chaitanya BPH 31 23 8 3:1 0.010 0.920
T59 Chaitanya BPH 39 29 10 3:1 0.059 0.808
T68 Chaitanya BPH 31 23 8 3:1 0.010 0.920
T63 BPT5204 BPH 40 30 10 3:1 0.130 0.718
T32 Chaitanya GLH 43 32 I 3:1 0.007 0.933
T47 Chaitanya GLH 46 34 12 3:1 0.028 0.867
T49 Chaitanya GLH 38 29 9 3:1 0.036 0.849
T51 Chaitanya GLH 36 27 9 3:1 0.273 0.601
T56 Chaitanya GLH 39 29 10 3:1 0.059 0.808
T59 Chaitanya GLH 35 26 9 3:1 0.009 0.922
T68 Chaitanya GLH 46 34 12 3:1 0.028 0.867
T63 BPT5204 GLH 39 29 10 3:1 0.059 0.808
T32 Chaitanya WBPH 43 32 I 3:1 0.007 0.933
T47 Chaitanya WBPH 50 37 13 31 0.026 0.871
T49 Chaitanya WBPH 28 21 7 3:1 0.000 -
T51 Chaitanya WBPH 49 36 13 3:1 0.055 0.814
T56 Chaitanya WBPH 50 37 13 31 0.026 0.871
T59 Chaitanya WBPH 38 28 10 3l 0.036 0.849
T68 Chaitanya WBPH 39 29 10 3l 0.059 0.808
T63 BPT5204 WBPH 41 31 10 3:1 0.380 0.537

sap-sucking pests of rice. Transgenic rice lines (30-day-
old) expressing ASAL showed significant resistance
towards BPH, GLH and WBPH insects with minimal plant
damage (Fig. 6A, B and 6C). Transgenic plants exhibited
varied levels (1-2 score on a 0-9 scale) of resistance to
BPH, GLH and WBPH on a par with those of BPH-resist-
ant var. PTB33, GLH resistant var. Vikramarya and WBPH
resistant var. MO-1, respectively. On the other hand, sus-
ceptible var. TN-1 and untransformed control plants
showed complete damage (9 score on a 0-9 scale) caused
by these insects (Fig. 6A, B and 6C). Among eight T, trans-
genic lines tested, two lines T, and Ts; of Chaitanya, and
Te; of BPT5204, showed higher levels of resistance when
compared to all other transgenic lines. The selected trans-
genic lines were further subjected to insect bioassays for
mortality, developmental delay, fecundity and feeding
behaviour of insects. ASAL-plants from selected lines,

infested with BPH/GLH/WBPH nymphs, survived the
infestation and could grow to maturity with normal seed
set. The survival of BPH, GLH and WBPH nymphs fed on
transgenic rice plants was reduced by ~74- 83%, ~79-
84% and ~64-77%, respectively, as compared to that of
susceptible control plants (Fig. 7A, B and 7C). During the
entire 24-day bioassay period, the survival of BPH on
transgenic rice plants was significantly reduced to 3.5 *
1.1, 3.1 £ 1.6 and 2.8 * 1.3 insects/plant on T, T5; and
T4 lines, respectively, compared to 12.4 + 1.3, and 16.4 +
1.6 insects/plant on untransformed control plants (Fig.
7A). Likewise, the survival of GLH on transgenic rice was
significantly reduced to 2.4 + 1.1,2.4 + 1.6 and 2.2 + 1.1
insects/plant on T,,, Ts; and T, lines, respectively, com-
pared to 11.4 + 1.3 and 13.4 # 1.5 insects/plant on control
plants (Fig. 7B). The survival of WBPH fed on transgenic
plants was also reduced to 4.7 + 1.1, 4.1 + 1.3 and 3.9 *
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Figure 6

Brown planthopper (BPH), green leafthopper (GLH)
and whitebacked planthopper (WBPH) bioassays on
T, transgenic plants of Chaitanya and BPT5204
plants. (A) 30-day old transgenic lines along with respective
controls infested with BPH; (B) 30-day old transgenic lines
along with respective controls infested with GLH; (C) 30-day
old transgenic lines along with respective controls infested
with WBPH; (D) Honeydew excretion by female BPH (R1:
Row I), GLH (R2: Row 2) and WBPH (R3: Row 3) insects
after 24 hours of feeding on controls and transgenic rice
plants; Rows | and 12: (var.TN-I) plants showing complete
damage, Rows 2, 3, 4, 5, 7, and 8: Chaitanya transgenic lines
showing resistance against BPH, GLH and WBPH, Row 6 A:
Resistant check for BPH (var. PTB33), Row 6 B: Resistant
check for GLH (var. Vikramarya), Row 6 C: Resistant check
for WBPH (var. MO-1I), Rows 9 and 10: BPT5204 transgenic
lines showing resistance against BPH, GLH and WBPH, Row
I I: Untransformed Chaitanya control plants. Photographs
were taken after 14 days of infestation. D) | and 2 represent
untransformed controls of Chaitanya and BPT5204, 3 and 4
represent T, and Ts, transgenic rice lines of Chaitanya, 5
represent Tgstransgenic rice line of BPT5204.

1.1 insects/plant on T,,, Ts;, and T, lines, respectively, in
comparison with 11.9 + 1.1 and 17.5 + 1.2 insects
observed on control plants (Fig. 7C).

Entomotoxic effects of ASAL on sap-sucking pests

First instar nymphs of BPH, GLH and WBPH were released
onto transgenic and control rice plants and were moni-
tored for the effect of ASAL on their growth and develop-
ment. Insects fed on transgenic plants revealed ~10 to 12
days delay for reaching adulthood, as compared to the
insects fed on untransformed control plants. Among BPH
survivors, 10 to 27% could reach the adult stage on differ-
ent transgenic lines, compared to 73 to 90% adults
observed on control plants (Fig. 8A). From GLH survivors,
only 10 to 15% could reach the adult stage on transgenic
lines while 85 to 90% adults were found on control plants
(Fig. 8B). In case of WBPH survivors, 18 to 30% could
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Figure 7

Survival of BPH, GLH and WBPH insects on trans-
genic rice lines expressing ASAL. Twenty |5t instar
nymphs of BPH (Figure A), GLH (Figure B) and WBPH (Fig-
ure C) were released on each plant on day 0. Homozygous
transgenic lines T4, T, and T,; are depicted by triangle, rec-
tangle and square, respectively. Control plants are depicted
by diamond and line. Bioassays were carried out on 20 plants
sampled from each transgenic line and two controls. Differ-
ences between control and transgenic plants were significant
at p < 0.005 from 6-24 days (ANOVA). Bars indicate mean +
SE.

develop into adults on transgenics compared to 70 to 82%
adults on control plants (Fig. 8C).

Effect of ASAL on the fecundity of BPH, GLH and WBPH
was assessed by estimating the total number of nymphs
produced by the insects fed on transgenic rice plants. A

AL B, C oy
S mmature

= @ Immarare
141 T B I O Aduls . e
O Adulls 1

Mean insec g lant

M TSI T8 cc BC T TSI T63 ¢ BC T
Fig. 8
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Figure 8

Effect of ASAL on the development of BPH, GLH
and WBPH insects. Twenty |5t instar nymphs of BPH (Fig-
ure A), GLH (Figure B) and WBPH (Figure C) were released
on untransformed controls and transgenic plants on day 0,
after 24 days the number of nymphs which reached adult
stage and the number of nymphs which remained immature
because of delay in development on control and transgenic
lines were plotted on the graph. Bioassays were carried out
on 20 plants sampled from each transgenic line and two con-
trols. Differences between control and transgenic plants
were significant at p < 0.005 (ANOVA). Bars indicate mean +
SE. CC: Chaitanya control plants, BC: BPT5204 control
plants, T,9and Tg;: Chaitanya homozygous lines, T;:
BPT5204 homozygous line.
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mean number of 103 + 3.9, 124 + 2.7 and 137 + 3.2 BPH
nymphs/plant were recorded on T, Ts; and T4; plants
compared to 315 + 4.5 and 379.9 + 15.6 nymphs/plant on
untransformed controls (Fig. 9A). In case of GLH, a mean
number of 112 + 1.4, 121 + 0.9 and 136 + 2.2 nymphs/
plant were observed on T,q, T5;, and Tg; plants in compar-
ison with 348 + 5.01 and 378 + 4.7 nymphs/plant on con-
trols (Fig. 9B). Similarly, for WBPH a mean number of
104 +1.55,128 + 1.28 and 157 + 2.21 nymphs/plant were
noticed on T,,, Ts5; and T¢; plants as compared to 380 +
5.2 and 438 + 7.9 nymphs/plant produced on untrans-
formed controls (Fig. 9C).

Effect of ASAL on the feeding behaviour of BPH, GLH and
WBPH insects

The feeding ability of insects was assessed based on the
amount of honeydew excreted by the insects. After a lapse
of 24 h of feeding on transgenic rice/untransformed con-
trol plants, the number of honeydew units (blue spots)
developed on the bromocresol green paper was counted
to estimate the feeding capacity of the insects. A mean
number of ~8 + 1.36, ~21 + 2.12 and ~25 + 4.06 honey-
dew units/plant were excreted by BPH, GLH and WBPH,
respectively, when fed on different transgenic rice plants
compared to~162 + 6.7,~173 + 6.32 and ~189 + 7.3 hon-
eydew units/plant observed on control plants (Fig. 10A, B
and 10C). Honeydew assay revealed significant reduc-
tions of ~92 to 94% and ~80 to 83% and ~60-68% in the
feeding ability of BPH, GLH and WBPH, respectively, on
transgenic plants as compared to the insects fed on con-
trol plants (Fig. 10A, B and 10C).

A B C
e -« 00
e 00 a0 T
e 0 i
5|

rymphs producedip at
-
4

w b

Mean symphs producedip lant

cc BC T4 1 T8 (=4
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Figure 9

Effect of ASAL on the fecundity of BPH, GLH and
WABPH insects. Total number of nymphs produced by a
pair of adult BPH (Figure A), GLH (Figure B) and WBPH (Fig-
ure C) insects on controls and transgenic plants were
counted and were plotted on the graph. Bioassays were car-
ried out on 20 plants sampled from each transgenic line and
controls. Differences between control and transgenic plants
were significant at p < 0.005 (ANOVA). Bars indicate mean *
SE. CC: Chaitanya control plants, BC: BPT5204 control
plants, T,9and Tg,: Chaitanya transgenic lines, T,3: BPT5204
transgenic line.
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Figure 10

Effect of transgenic plants expressing ASAL on feed-
ing behaviour of BPH, GLH and WBPH insects. A).
Semi-quantitative estimation of honeydew excretion by BPH
insects; B). Semi-quantitative estimation of honeydew excre-
tion by GLH insects; C). Semi-quantitative estimation of hon-
eydew excretion by WBPH insects; CC: Chaitanya control,
BC: BPT5204 control, T4gand Ts,;: Chaitanya transgenic lines,
T,3: BPT5204 transgenic line. Bars indicate mean * SE.

Discussion

In our ongoing efforts to clone and introduce different
plant lectin genes into rice genome against homopteran
pests, we have been evaluating the potential usefulness of
A. sativum agglutinin (asal) gene to provide resistance
against major sap-sucking insects of rice, viz., BPH, GLH
and WBPH which cause severe damage to rice plant affect-
ing crop productivity. Earlier, we reported that transgenic
rice engineered with the gna gene from G. nivalis could
confer substantial resistance against major sap sucking
pests [23,24]. An approximate 14% of the global cereal
crop production is lost annually by the infestation of
diverse insects. Among major cereals, about 83% of rice,
52% of wheat and 59% of maize crop production are lost
owing to the damages caused by insect pests [42]. It has
been estimated that >200 million tons of rice are being
lost annually due to pests, despite intensive applications
of chemical sprays to combat the menace [43]. Damages
caused to various crops by sucking pests have become a
serious concern, as they are difficult to control owing to
their unique feeding strategy. Furthermore, after the intro-
duction of Bt genes into various crops, the damages
caused by sucking pests steadily increased as they failed to
convey resistance against these pests. Several plant lectins
have proved insecticidal against a wide array of pests
belonging to lepidoptera, coleoptera, diptera and homop-
tera [20,21,23-25,37]. This study deals with the isolation
of A. sativum lectin gene (asal) and its constitutive expres-
sion in two high-yielding indica rice cultivars. Further,
strong entomotoxic effects of ASAL transgenics against
major sap-sucking pests has been demonstrated employ-
ing standard screening techniques that reflect situations
prevailing in the field.
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The deduced amino acid sequence of ASAL protein dis-
closed maximum similarity (~98%) with that of previ-
ously reported garlic lectin protein [38,44]. Employing
the protocols optimized in our laboratory, the co-inte-
grated super-binary vector pSB111-bar-asal has been used
to transform the elite indica rice cultivars. PCR and South-
ern analyses of BASTA tolerant plants confirmed the stable
integration of bar and asal genes into the indica rice
genome. Presence of ~1.6 kb hybridizable band with the
asal probe in HindllIl digested DNA, and ~1.9 kb hybridiz-
able band with the bar probe in EcoRI digested DNA of
transformants indicate the existence of two intact expres-
sion units of bar and asal in the rice genome (Fig. 3A and
3B). Similarly, EcoRI digested genomic DNA, when
probed with asal, revealed a specific hybridizable band of
>3.0 kb in different transformants (Fig. 3C), thereby sug-
gesting the independent nature of transgene integration in
primary transformants. These observations further suggest
that the T-DNA is integrated into rice genome as a single
copy without any rearrangement. It has been established
that multiple copies of transgene(s) often result in co-sup-
pression and gene silencing [45,46]. Single copy integra-
tion of transgene(s) is essential to achieve predictable
patterns of inheritance and to eliminate the problem of
gene silencing in transgenic plants [47]. Moreover, an
inverse co-relation has been found between transgene
copy number and their expression levels [48,45,49].
Northern blot analysis clearly showed the variable expres-
sion of asal gene in the primary transgenic plants as evi-
denced by varied intensity of the hybridizable band of
>600 bp (Fig. 4). Western blot analyses of transgenic
plants confirmed the stable expression of the asal gene at
the protein level (Fig. 5). Marked variation observed in the
amount of ASAL (0.74% to 1.45%), in different trans-
formants by ELISA analysis, amply suggests that the trans-
gene is integrated randomly at different transcriptionally
active sites in the rice genome. The amount of ASAL
expressed in different transgenic plants is distinctly higher
as compared to the expression levels of GNA [32,23] and
ASAL [38] proteins reported earlier.

To establish the definitive transgenic nature of primary
transformants, the inheritance pattern of transgenes was
analyzed in the T, generation. BASTA test and Southern
analysis indicated that bar and asal are transmitted in a
Mendelian fashion. Segregation analyses of transgenes in
T, progenies revealed a monogenic ratio of 3 resistant: 1
susceptible plant(s) for both herbicide tolerance and
insect resistance, affirming that these genes are stably inte-
grated into the rice genome (Table. 1). The co-segregation
of transgenes further confirms that both bar and asal are
integrated and manifest as a single locus.

In planta insect bioassays amply indicate that expression
of ASAL in transgenic rice lines imparts substantial resist-
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ance against BPH, GLH and WBPH insects, as evidenced
by decreased insect feeding and declined insect survival,
thereby minimizing the damage caused by hopperburn.
The T, progenies of eight independent homozygous trans-
genic lines (Fig. 6), subjected to insect bioassays, exhib-
ited high-level resistance (1-2 score on a 0-9scale),
testifying that ASAL affords ample protection against sap-
sucking insects. The 1stinstar BPH/GLH/WBPH nymphs,
when fed on selected T, transgenic lines, viz., T4y, Ts; and
T, expressing 1.45%, 0.98% and 1.22% ASAL, respec-
tively, disclosed ~50% mortality within 10-12 days of
infestation (Fig. 7A, B and 7C). After 24 days of infesta-
tion, insects surviving on transgenic plants varied from 2
to 4/plant (Fig. 7) which exhibited delayed moulting and
prolonged life cycle (~10 days) as compared to the insects
present on susceptible control plants. The survival of BPH
was reduced by ~74% on Chaitanya transgenic lines and
~83% on BPT5204 transgenic lines compared to the con-
trol plants (Fig. 7A). Similarly, GLH survival was
decreased by ~79% on Chaitanya transgenic lines and
~84% on BPT5204 transgenic lines when compared to the
controls (Fig. 7B). However, the survival of WBPH was
declined by ~64% on Chaitanya transgenic lines and
~77% on BPT5204 transgenic lines in comparison with
susceptible control plants (Fig. 7C). The accrued results
amply indicate that the ASAL expressing transgenic rice
exhibit a distinctly higher-level of resistance against both
BPH and GLH pests as compared to that of GNA [23] and
ASAL [38] expressing rice lines. It was reported that over-
expression of ASAL and GNA in rice reduced the survival
of BPH by 36% [38] and 32% to 59%, respectively
[32,50,51,23,12]. Similarly, the GLH survival was
decreased by 49% to 53% on GNA transgenics [5,23,12]
and by 32% on ASAL expressing plants [38]. Whereas,
WBPH nymphs fed on ASAL transgenic rice showed ~64-
77% mortality as compared to 90% mortality observed on
GNA transgenics [24]. Furthermore, fecundity assays con-
ducted on ASAL rice lines revealed significant decline in
the nymphal production of BPH, GLH and WBPH insects
by ~68%, ~73% and ~67% on Chaitanya transgenic lines
and ~64%, ~65% and ~64% on BPT5204 transgenic
plants, respectively (Fig. 9A, B and 9C), indicating marked
decreases in the fecundity of BPH, GLH and WBPH
insects. These results suggest the high antifeedant and
entomotoxic effects of ASAL on these insects. A clear cor-
relation has been observed between the amount of garlic
lectin in transgenic plants and its entomotoxic effects on
three sap-sucking insects. Earlier, it was reported that BPH
and GLH nymphal production was reduced by 59% and
70.5% when fed on ASAL expressing transgenic rice [38].
However, transgenic rice expressing GNA showed a strik-
ing decrease in the fecundity (~90%) of WBPH [24] as
compared to the ASAL transgenics (~66%) employed in
this study. Also, marked decreases of ~92 to 94% and ~80
to 83% were observed in the honeydew production of
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BPH and GLH insects, respectively, when fed on ASAL
transgenic plants (Fig. 10A, B and 10C), compared to the
honeydew produced by the insects fed on GNA transgen-
ics [23]. Conversely, GNA transgenics showed ~90%
reduction in the honeydew production of WBPH [24]
compared to ~60-68% reduction observed on ASAL trans-
genics. An overview of insect bioassays amply establish
that ASAL is more toxic to both BPH and GLH insects
compared to GNA; whereas, GNA showed higher toxicity
to the WBPH than ASAL under similar bioassay condi-
tions. The variable entomotoxic effects of GNA and ASAL
on three sap-sucking pests may be attributed to their dif-
ferential binding affinities to receptor proteins on gut epi-
thelial cells of the insects. As it is imperative to identify
eco-friendly and potent insecticidal proteins, the asal may
be preferred for genetic engineering of diverse crops
against sucking pests. The overall results of in planta insect
bioassays establish that asal transgenic rice plants could
express functionally active ASAL protein, which is compa-
rable to the native form of garlic lectin(s) used in artificial
diet bioassays against sucking insects [29,25].

Although the precise mechanism of lectin toxicity to
insects is unclear, yet it probably involves binding of
lectins to the receptors present on the gut epithelial cells
of various insects [52]. Immunohistochemical studies of a
wide range of mannose or mannose/glucose specific
lectins such as GNA, Con A and PSA suggest the binding
to the midgut epithelial cells of insects thereby contribut-
ing to the insecticidal effect [53]. Furthermore, the bound
lectins might inhibit the absorption of nutrients or disrupt
the midgut cells through endocytosis of lectin and other
toxic metabolites [19]. The toxicity of mannose binding
lectins towards sucking insects is not clear, but it has been
shown to bind to the mannose moiety of brush border
membrane vesicle (BBMV) receptors of gut epithelial cells,
thereby causing disruption of cell function and mortality
[54,55]. Banerjee et al. [56], using ligand blot analysis of
the mustard aphid (BBMV), demonstrated that ASAL pro-
tein binds to symbionin (Sym L) receptor involved in the
transmission of viruses by sucking pests.

Conclusion

In planta insect bioassays, reported herein, were carried
out on asal transgenic rice lines adopting standard screen-
ing techniques followed in the conventional rice breeding
for selection of insect resistant plants. The ASAL express-
ing plants, bestowed with high antifeedant and antimeta-
bolic effects, afforded high-level resistance against three
major sap-sucking insects. T, transgenic lines of Chaitanya
and BPT5204 varieties are being evaluated in limited
open-field trials in the hopper-prone areas. To our knowl-
edge, none of the rice cultivars thus far developed by con-
ventional methods could show worthwhile resistance
against three major sap-sucking pests. The overall results
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amply indicate that asal transgenic rice lines exhibit sur-
passing resistance against BPH, GLH and WBPH insects.
The prototypic transgenic rice harbouring exotic asal
appear promising for direct commercial cultivation
besides serving as a novel genetic resource in recombina-
tion breeding.

Methods

RNA extraction from garlic plants

Four-week-old garlic plants (var. Godavari) grown in the
net house, at CPMB, O.U., were used for total RNA isola-
tion. Plant material was ground in the liquid nitrogen and
homogenized in an equivalent volume (w/v) of denatur-
ing buffer (4 M guanidium thiocyanate, 25 mM sodium
citrate (pH 7.0), 0.5% SDS, 0.1 M B-mercaptoethanol, 2 M
sodium citrate pH 4.0, water saturated phenol and chloro-
form) [57]. The RNA was extracted with water saturated
phenol, and was precipitated with 2 M sodium acetate
and 2.5 volumes of ethanol. Later, RNA was dissolved in
DEPC-treated water and reprecipitated with 4 M LiCl, and
the same was redissolved in DEPC-treated water. The
quality of RNA was checked on denaturing 1.4% agarose
gel and quantified using spectrophotometer. From the
total RNA, mRNA was obtained using the mRNA purifica-
tion kit [58] as per manufacturers' instructions.

Synthesis of cDNA and isolation of garlic lectin encoding
gene (asal)

First strand cDNA was synthesized with Super Script 1I
RNase H- reverse transcriptase (200 U/ul, GIBCO-BRL)
according to the manufacturer's protocol. The coding
sequence of asal was obtained by PCR using primers 5'-
GGA TTC ATG GGT CCT ACT ACT TCA TCT CCT-3', and
5'-GAA TTC TCA AGC AGC ACC GGT GCC AAC CIT-3/,
employing first strand cDNA as the template. The 25 pl
PCR reaction mixture containing template DNA (100 ng),
primers (10 uM), buffers, ANTPS (0.5 mM) and pfu DNA
polymerase, was subjected to initial denaturation (94°C)
for 5 min; followed by repeated denaturation (94°C) for
45 s, annealing (63°C) for 45 s, and elongation (72°C)
for 1 min for a total of 35 cycles on PTC-200 Peltier Ther-
mal Cycler. Final elongation was carried out at 72°C for
10 min. Amplified products were analyzed by gel electro-
phoresis on 1.0% agarose gel. PCR product was digested
with BamHI and EcoRI then ligated into pGEM-4Z [59] at
BamHI and EcoRI sites using the rapid ligation kit [60] and
transformed into E. coli (Top10) cells. The recombinant
clones were subjected to DNA sequencing using auto-
mated DNA sequencer.

Construction of Ti-super binary vector containing asal and
bar expression cassettes

The asal gene was excised with BamHI and EcoRI enzymes
from pZEM4Z vector, and cloned between CaMV35S pro-
moter and nos terminator of intermediate vector pSB11
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bar constructed earlier in our laboratory. The binary vector
contains bar (CaMV35S-bar-nos) gene as a plant selection
marker [61]. The recombinant vector, pSB11bar-
CaMV35S-asal-nos, was maintained in HB101 cells and
mobilized into A. tumefaciens strain LBA4404 by triparen-
tal mating [62] using the helper vector pRK2013 and the
resulting co-integrate vector was designated as pSB111-
bar-asal.

Agrobacterium-mediated transformation and regeneration
of transgenic plants

Agrobacterium-mediated genetic transformation experi-
ments were carried out using LBA4404 strain harbouring
pSB111-bar-asal super-binary vector. Two leading indica
rice cultivars, Chaitanya and BPT5204, obtained from the
Directorate of Rice Research (DRR), Hyderabad, were
employed for genetic transformation. Mature seeds were
manually dehusked and surface-sterilized with 0.1% (w/
v) HgClL, for 7 min followed by three washings with auto-
claved distilled water, and kept at 29°C for germination.
After 24 h of incubation, sprouted embryos were cut asep-
tically and placed on MS [63] medium (3MN62; MS basal
+ 30 g/l maltose + 2 mg/l 2, 4-D + 1 g/l casaminoacids +
50 mg/1 tryptophan +100 mg/I Inositol + 0.3% gelrite) for
callus induction. After 3 weeks of incubation, the scutel-
lum-derived calli were used for transformation experi-
ments. Agrobacterium  cultures were initiated by
inoculating a single colony of the bacterium into 6 ml YEP
medium containing 50 mg/] spectinomycin and 10 mg/1
tetracycline at 225 rpm and 29°C for 24 h. The bacterial
culture was pelleted at 3500 rpm and resuspended in 10
ml of PIMII medium [39] supplemented with 100 uM ace-
tosyringone, and incubated for 16 h at 29°C. Before co-
cultivation, the embryogenic calli were cut into small
pieces, and were treated with MS basal medium supple-
mented with 100 mM acetosyringone for 30 min. Later,
calli were transferred into the Agrobacterium culture and
left on the shaker at 225 rpm for 30 min. These calli were
placed on the co-cultivation medium and 20 pl of Agro-
bacterium culture was added on each callus for infection
[12]. Infected calli were incubated for 72 h at 29°C in dark
and washed thrice in MS basal supplemented with 250
mg/l cefotaxime and 100 mg/l carbenicillin, and kept in
3MN62 medium containing the above antibiotics for 2
weeks. Proliferated calli were subjected to two rounds of
selection containing 8 mg/l and 10 mg/l phosphi-
nothricin for four weeks [23,12]. After 4 weeks of incuba-
tion on selection medium, the surviving calli were
selected and cultured on the proliferation medium [12]
for 2 weeks. Later, actively growing calli were transferred
to the regeneration medium containing BAP (3-4 mg/l)
and NAA (0.1-0.5 mg/l). Subsequently, the regenerated
shoots were transferred onto the 1/2 MS rooting medium,
and rooted plants were transferred into pots and grown to
maturity in the glasshouse. Transgenic plants (30-40 day-
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old) along with untransformed controls were tested for
their tolerance to the herbicide BASTA [61].

Southern blot analysis

Genomic DNA was isolated from the BASTA tolerant and
untransformed control plants using the method of [64].
PCR analysis was carried out using the primers corre-
sponding to the genes asal (5'-ATG GGT CCT ACT ACT
TCA TCT CCT-3'; 5'-TCA AGC AGC ACC GGT GCC AAC
CIT-3') and bar (5'-CTA CCA TGA GCC CAG AAG G-3;
5'-TCA GAT CTC GGT GAC GGG-3'). The DNA from the
untransformed control plants was used as negative con-
trol and the intermediate vector was used as positive con-
trol. For Southern blot analysis [57], approximately 10-
12 pg of genomic DNA was digested with EcoRI and Hin-
dlIll separately, electrophoresed on a 0.8% agarose gel and
subsequently transferred to an N* Nylon membrane [58]
and fixed by exposing to UV (1200 pJ for 60 s) in an UV
cross linker. DNA blot was pre-hybridized with sodium
phosphate buffer (pH 7.2) containing 7% SDS and block-
ing reagent (Salmon sperm DNA) at 65 °C for 6 h. Hybrid-
ization was carried out with the same buffer at 65°C for
18-20 h. The 546 bp asal and 560 bp bar coding regions
were used as probes after labelling with «-32P dCTP
employing ready to go random primer DNA labelling kit
[58]. The membrane was washed at room temperature
(37°C) twice in buffer 1 (2 x SSC+0.1%SDS) for 20 min
each, followed by once in buffer 2 (1 x SSC+0.1% SDS)
for 15 min at 65°C and once in buffer 3 (0.1 x
SSC+0.1%SDS) for 10 min at 65°C. Later, membranes
were exposed to X-ray film for 24-48 h at -70°C.

Northern blot analysis

Northern blot analysis was carried out according to [57].
About 20 pg of total RNA was separated on 1.4% denatur-
ing agarose gel and was blotted onto nylon membrane
and fixed by exposing to UV (1200 pJ for 60 s) in an UV
cross linker. Pre-hybridization, hybridization and wash-
ing steps were carried out as described above for Southern
blot analysis.

Western blot analysis

Samples of transgenic and untransformed control leaf tis-
sue were homogenized in 50 mM Tris-HCI buffer pH 9.0.
The extract was centrifuged at 5000 g for 20 min at 4°C,
and the supernatant was collected. Protein samples (5 ug)
were subjected to 15% SDS-PAGE according to [65]. Fol-
lowing electrophoresis, the separated proteins were trans-
ferred onto nitrocellulose N- membrane [58] by
electroblotting [66]. After protein transfer, the membrane
was blocked by incubating in PBS solution containing
10% non fat dried milk and 0.1% Tween 20 for 2 h at
room temperature. The membrane was probed with poly-
clonal rabbit anti-asal serum (1:10000 dilution) and goat
anti-rabbit IgG horse-radish peroxidase conjugate [67] as
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secondary antibody (1:10000 dilution). The membrane
was washed and revealed with saturated benzidine solu-
tion containing 20% ammonium chloride and 0.1%
H,0,.

ELISA analysis

Wells of the microtitre plate were coated with 1 ug of
crude protein extract of transgenic plants and kept for
overnight at 37°C and at 4°C for 1 h. The wells were
washed thrice with 20 mM PBS containing 0.05% Tween
20 and were blocked with 10% non-fat dried milk for 2 h
at 37°C, subsequently washed six times with PBS-T. The
primary antibody (1:10000) was added to the wells and
incubated for 2 h at 4°C. After incubation, the wells were
washed thrice with PBS and incubated with secondary
antibody (1:10000) for 1 h at room temperature. The
plates were washed thrice with PBS and 0.001% TMB sub-
strate in 0.05 M phosphate citrate buffer was added along
with 0.1% H,0, and kept in dark for 10 min. The reaction
was stopped by 1 N H,SO, and the absorbance was
recorded on ELISA reader at 450 nm.

Insect bioassays

Insect bioassays of brown planthopper (BPH), green leaf-
hopper (GLH) and white backed planthopper (WBPH)
were carried out on both T; and T, asal transgenic plants
along with their respective controls as well as susceptible
control Taichung Native 1 (TN-1) and resistant checks
PTB33, Vikramarya and MO-1 at the Directorate of Rice
Research, (DRR), Rajendranagar, Hyderabad. All bio-
assays were carried out at 25°C under an approximate 16
h/8 h light/dark photoperiod regime. The BPH, GLH and
WBPH insects were maintained on 25-30 day old TN-1
plants under controlled conditions in the glass house. Pre-
mated gravid females of BPH, GLH and WBPH were
allowed to ovi-posit separately on TN-1 plants for two
days and the freshly hatched nymphs or the nymphs after
attaining the desired age were utilized for various experi-
ments. The degree/level of resistance exhibited by trans-
genic rice plants was scored based on a scale of 0-9, as
used in the International rice testing programme [23].
Homozygous transgenic lines T,,, Ts; of Chaitanya, and
Te; of BPT5204, expressing high levels of ASAL were
employed for developmental and fecundity assays of
BPH, GLH and WBPH insects. In these experiments each
plant was confined in an insect proof clean plastic cylin-
der (50 cm in length and 15 cm in diameter) around the
stem of the plant and top of the plastic cylinder was sealed
with fine nylon mesh. For developmental assay each of
the 20 BPH, GLH and WBPH first instar nymphs were
introduced separately on each plant confined in an insect
proof cage and mortality of insects was monitored at 3 day
intervals for 24 days [23]. Twenty replicates were kept for
each treatment. For the fecundity assay, the male and
female insects were confined together in a 1 male: 1
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female ratio to avoid differences in the nymphal produc-
tion based on sex ratio. The number of nymphs produced
from the eggs was counted until no new nymphs were
found emerging. Data were analyzed using the sigma plot
software, version 5.0, for windows (SPSS, Richmond,
Calif., USA). Differences between the mean values were
subjected to unpaired t-test or ANOVA.

Honeydew (liquid excreta) assay

The extent of insect feeding was also estimated by semi-
quantitative assay of the honeydew produced [68]. What-
man no.1 filter paper dipped in a solution of bromocresol
green (2 mg/ml in ethanol) was used for honeydew esti-
mation. The filter paper was placed at the base of each
plant and covered with a plastic cup. On each plant five
female adult insects of BPH, GLH and WBPH pre-starved
for 2 h, were released separately and allowed to feed for 24
h. GLH feeding was confined to the leaf blades by placing
the filter paper at the base of leaves. Insect excreta (honey-
dew) react with the bromocresol green on the filter paper
resulting in blue colour spots. The area of blue spots that
developed on the filter paper was measured using millim-
eter graph paper and expressed in units (1 unit = 1 mm?2)
as per [23].
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