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Abstract

Background: Banana is one of the most important crop plants grown in the tropics and sub-tropics. It is a climacteric
fruit and undergoes ethylene dependent ripening. Once ripening is initiated, it proceeds at a fast rate making postharvest
life short, which can result in heavy economic losses. During the fruit ripening process a number of physiological and
biochemical changes take place and thousands of genes from various metabolic pathways are recruited to produce a
ripe and edible fruit. To better understand the underlying mechanism of ripening, we undertook a study to evaluate
global changes in the transcriptome of the fruit during the ripening process.

Results: We sequenced the transcriptomes of the unripe and ripe stages of banana (Musa accuminata; Dwarf Cavendish)
fruit. The transcriptomes were sequenced using a 454 GSFLX-Titanium platform that resulted in more than 7,00,000 high
quality (HQ) reads. The assembly of the reads resulted in 19,410 contigs and 92,823 singletons. A large number of the
differentially expressed genes identified were linked to ripening dependent processes including ethylene biosynthesis,
perception and signalling, cell wall degradation and production of aromatic volatiles. In the banana fruit transcriptomes,
we found transcripts included in 120 pathways described in the KEGG database for rice. The members of the expansin
and xyloglucan transglycosylase/hydrolase (XTH) gene families were highly up-regulated during ripening, which suggests
that they might play important roles in the softening of the fruit. Several genes involved in the synthesis of aromatic
volatiles and members of transcription factor families previously reported to be involved in ripening were also identified.

Conclusions: A large number of differentially regulated genes were identified during banana fruit ripening. Many of
these are associated with cell wall degradation and synthesis of aromatic volatiles. A large number of differentially
expressed genes did not align with any of the databases and might be novel genes in banana. These genes can be
good candidates for future studies to establish their role in banana fruit ripening. The datasets developed in this study
will help in developing strategies to manipulate banana fruit ripening and reduce post harvest losses.
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Background

Banana fruit is the staple food for an estimated 400 mil-
lion people. The banana plant is a large herbaceous,
evergreen, flowering monocot belonging to the genus
Musa (family Musaceae order Zingiberales). The major-
ity of the cultivated banana is derived from the cross be-
tween Musa acuminata and Musa balbisiana. The fruit
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development and ripening is a complex process influ-
enced by numerous factors including light, hormones,
temperature and genotype. Ripening associated events in
climacteric fruits, including banana, leads to develop-
mentally and physiologically regulated changes in gene
expression which ultimately bring changes in color, tex-
ture, flavor, and aroma of fruit [1-3]. Fruit ripening and
softening involves irreversible physiological and bio-
chemical changes which contribute to the perishability
of the banana fruit. Premature ripening brings significant
losses to both farmers and consumers alike. Therefore,
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there is an urgent need to develop tools to delay ripen-
ing and softening process through genetic engineering
approaches.

Recently, the genome of banana was sequenced using
DH-Pahang a double haploid (523 Mb) derived from a
seedy diploid of the subspecies M. malaccensis, which led
to the identification of 36,542 protein coding genes [4]. To
support and accelerate genetic and genomic studies of ba-
nana, the banana genome hub was recently developed [5].
It has been commonly observed that ripening of banana
involves extensive changes in the cell wall [6]. Earlier
studies with banana identified multiple families of genes
associated with cell wall degradation [7-11]. Apart from
softening associated genes, a few genes have been identi-
fied in banana that relate to ethylene biosynthesis, signal
transduction and transcription factors [12,13]. Approaches
like subtractive hybridization and differential library
screening have been employed [11,14-16] to identify dif-
ferentially expressed genes during banana fruit ripening.
However, apart from these genes, ripening likely involves
the up and down-regulation of hundreds of genes not yet
identified in banana.

Expressed Sequence Tags (ESTs) can be a useful tool for
the purposes of gene discovery especially in non-model
plants for which limited genomic information is available
[17,18]. The in-depth generation of EST datasets and
comparison provide information about all the expressed
regions of a genome and can be used to characterize pat-
terns of gene expression during fruit ripening. Using
Next-Generation Sequencing (NGS) such databases have
been developed and used for discovery and prediction of
genes involved in fruit development and ripening. Tran-
scriptome analyses in Curcumas’ melo [19,20], citrus
[21,22] blueberry [23], capsicum [24], Chinese bayberry
[25], sweet orange [26], kiwi fruit [27], grape [28,29] to-
mato [30], watermelon [31] and many others have pro-
vided insight into genes and pathways involved in fruit
development and ripening [32]. These databases are also a
rich source of gene-derived molecular markers (e.g. simple
sequence repeat, SSR) which can be used for germplasm
breeding or physical mapping.

The primary objective of our study was to add to a
basic understanding of banana fruit ripening at molecu-
lar level. In this study, we established a transcriptome
datasets of unripe and ripe banana fruit using NGS tech-
nology based on 454 GS FLX Titanium platform. We
identified genes involved in ethylene biosynthesis and its
perception, fruit softening and other processes that initi-
ate the ripening process to produce an edible banana
fruit. The analysis has provided new information about
many genes not previously identified that are expressed
during banana fruit ripening. Some of these genes may
be potential candidates that can be manipulated to in-
crease the postharvest shelf life of banana and reduce
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economic losses. As a part of this study, we identified
molecular markers for EST-SSRs that will facilitate
marker-assisted breeding of banana. In addition, we
mapped our reads to the Musa acuminate banana gen-
ome, as well as de novo assembly to account for the var-
ietal difference in the species sequences. The contigs
obtained were then mapped again to the banana genome
to identify members of different gene families.

Results and discussion

Sequencing, annotation and mapping to the banana
genome

To examine global changes occurring during ripening in
the banana fruit, cDNA libraries from unripe and ripe ba-
nana fruit pulp (cultivar Harichhal) were sequenced using
half plate run for each on a 454-GS FLX Titanium plat-
form. Each transcriptome produced more than 7,00,000
high quality (HQ) reads (Table 1), which were assembled
using the GS Assembler program as described in Material
and methods.

To study the differential expression of genes during ba-
nana fruit ripening, the total number of reads of unripe
and ripe fruit transcriptomes were tagged, pooled and
assembled using parameters described in material and
methods using the GSAssembler program. A total of
14,83,544 reads were assembled into 19,410 contigs and
92,823 singletons. Within this assembly, 10,715 contigs
were considered as large contigs with average size of
914 bp. The average contig length of all contigs was 642 bp
with contig depth of 80 reads. These contigs and singletons
were pooled together and are referred to here as the com-
parative transcripts. The total number of comparative tran-
scripts was 1,12,233. As many gene families have multiple
members, partially assembled transcipts could lead to
erroneous results for differential analysis. To rule out this
possibility, the combined assembly of unripe and ripe
transcriptomes was preferred over the individually assem-
bled transcripts of ripe and unripe transcriptomes. To
annotate the comparative transcripts, transcripts were
queried against the NCBI NR database, TAIR proteins,
MSU Rice proteins using the BlastX program and against
CDD using the rpsblast programme. The information about
total number of comparative transcripts annotated by the
different databases is provided in the Additional file 1,
Additional file 2, Additional file 3, Additional file 4.

The assembled contigs were also mapped to the Musa
genome to annotate the genes and also to study the
differential expression in the two libraries. The 19,410
contigs and 92,823 singletons obtained were mapped to
the 36,542 genes currently identified in the Musa gen-
ome. Of the total contigs and singletons, 15,978 contigs
and 59,410 singletons mapped to 21,298 genes in the
musa genome, and 8,490 of the mapped genes were
common to both contigs and singletons. The remaining
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Table 1 Summary of Musa acuminata transcriptome
sequencing, assembly and mapping

Sequencing details Unripe Ripe

HQ Reads (bases) 763119 720456
(197435772 bp) (186149403 bp)

Average length of Reads 258 bp 258 bp

Combined assembly details

Total number of supercontigs 19410

Total number of singletons 92823

Number of bases 12460249

Average contig size 642 bp

N50 974

Mapping details

Total supercontigs mapped on 15978

DS

Novel transcripts 3186

Annotation details Contigs +
Singletons

TAIR 9 pep 43337

NR 23560

TIGR 45022

CDD 17959

3,432 contigs that did not match the Musa genome were
annotated using the NCBI NR database, TAIR proteins,
MSU?7 version Rice proteins using the BlastX program
and against CDD using the blastx programme. Of these,
247 contigs were annotated and the remaining 3,185 con-
tigs were unique to the banana transcriptome. The 3,432
contigs which did not match the Musa genome may be
due to differences between the genomic sequence of DH-
Pahang and Harichhal varieties or transposable elements,
experiment artefacts, or mis-prediction of genes in DH-
Pahang. In addition, possibilities of post-transcriptional
events like alternative splicing of the transcripts during
ripening process leading to unique transcripts cannot be
ruled out. Such alternative splicing during plant growth
and development have been reported in other plants
[33,34]. The 15,978 contigs matched to 12,315 Musa
genes. Of these, 9,809 contigs had one CDS match in the
Musa genome; whereas 6,169 contigs matched to 2,506
Musa CDS indicating that more than one contig mapped
to the CDS sequences. This could be due to the partial
contigs or due to alternative splicing of the transcript. To
identify the alternative spliced transcripts, these 6,169 con-
tigs and 2,506 Musa CDS were analysed as described in
Material and Methods to identify alternatively spliced
transcripts. It was found that 1,243 contigs that mapped
to 402 CDS were alternatively spliced transcripts and
4,926 contigs that mapped to 2,104 Musa cds were partial
transcripts.
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Comparative transcriptome analysis and differential gene

expression

The number of reads in a particular contig is in general
a measure of the transcript abundance of that particular
contig, however this could also be due to sampling er-
rors rather than genuine gene expression differences. To
rule out this possibility, we applied three statistical tests
P-value, FDR and the R statistical test. In the R statistical
test [35] only R value > =8 was filtered that gave a believ-
ability of >99%. In this test, the singletons were statisti-
cally insignificant and hence discarded since the contigs
were assembled from reads of unripe and ripe libraries.
Using this statistic from 19,410 contigs, only 1,921 con-
tigs were significantly differentially regulated. Of these,
653 genes were up-regulated (more than 2-fold) and 837
were down-regulated (more than 2-fold) in ripe fruit in
comparison to unripe fruit (Additional file 5). Of these,
107 up-regulated and 83 down-regulated genes did not
give hits in any of the databases analysed and could be
novel genes that may be involved in different pathways
or molecular networks during ripening in banana fruit.
When analysis was carried out using differentially ex-
pressing genes during ripening in DH Pahang cultivar by
D'Hont et al. [4], 353 genes showed differential expres-
sion. A large number of genes (98%) had similar expres-
sion pattern between our analysis and by D'Hont et al.
(2012) [4]. A set of 569 differentially expressed genes
had CDS counterpart in the Musa genome but were not
significantly expressed in the earlier study [4]. These 569
differentially expressed genes may be playing an import-
ant role in the ripening of the banana variety Harichhal.
To further annotate genes and study metabolic pathways
and functional annotation, the KEGG description of
TIGR and TAIR gene ids were transferred to the ortho-
logous banana transcripts in our study.

Genes involved in banana ripening

During banana fruit ripening, the pulp tissue losses its
turgidity, softens and produces aromatic volitiles. To
bring about these changes, a repertoire of genes is differ-
entially expressed to regulate these processes. In the fol-
lowing sections, we have summarized changes in gene
expression based on their predicted role in softening and
aroma and flavor.

Up-regulated genes during banana fruit ripening
Softening of the banana tissue

Cell wall hydrolysis plays an important role in plant
growth and development that includes ripening as well
as stress responses. Most of the genes involved in cell
wall hydrolysis are members of multigene families and
many have highly specialized functions in cell wall me-
tabolism [36]. The process of softening begins with the
onset of ripening. The stage at which the ripe tissue was
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collected for this study was fruit that had already begun to
soften. It has been previously reported that the gene fam-
ilies responsible for softening of banana include expansins,
pectate lyases and xylogulcan endotransglycosylases [6-9].
In the present study, several members of these gene fam-
ilies showed significantly higher expression in the ripe fruit
compared to unripe fruit with some members of each
family exhibiting more than a 12 fold increase in expres-
sion (Table 2). In our study, we analysed the expression
of genes annotated as cellulase, polygalacturonase (PG),
pectin esterase, pectate lyase (PL), XTH and expansin
(Figure 1). We observed that the greatest increase in gene
expression was associated with the gene families PL, XTH
and expansin.

Five different expansin genes were identified in this
study, and four of these were significantly up-regulated in
the ripening fruit. From the XTH gene family, 13 mem-
bers were identified of which several were significantly up-
regulated in the ripening fruit. Since xyloglucan forms a
major component of the cell wall in non-graminecious
monocot plants, its role during ripening in banana is quite
understandable. Members of XTH gene family have also
been demonstrated to play important role in the ripening
of other fleshy fruits like tomato and peach [37]. Similarly,
5 members were identified for the PL gene family and all
of these were highly expressed during ripening.

Polygalacturonases and cellulases are also present as
multigene families in banana. Some members of these
families showed significantly up-regulation during ripen-
ing; however, it was generally not as high as members of
the expansin, XTH and PL gene families. A few mem-
bers of the PME gene family were also up-regulated;
however, since one of the functions for PME is to modify
pectins to make them more accessible to PL and PG, the
transcripts for PME may have already declined in the
ripe fruit (4-days post ethylene) used in the study. It has
been reported that the highest PME activity is observed
at 2 days post ethylene exposure and declined signifi-
cantly by day 3 [6]. Details on the fold change of each
gene family are provided in Additional file 6.

The beta glucosidases (GH family 17) are also known
to play an important role in the softening of the banana
fruit. As many as 7 beta glucosidases genes showed more
than two fold enhanced expression in the ripe banana
fruit as compared to unripe fruit in our analysis. Apart
from its role in the cell wall degradation, beta glucosi-
dases are also known to participate in the hydrolysis of
phytohormones (i.e. glucosides of gibberellins, abscisic
acid and cytokinins) and in the metabolism of cyano-
genic glucosides. In graminae, these glucosides have
been shown to be involved in the shikimate as well as
aromatic acid biosynthesis pathways [38]. Genes related
to the cell wall softening were among the top up-
regulated genes indicating that softening of fruit as a
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major process during banana fruit ripening at molecular
level.

Genes related to aroma and flavor compounds

The aroma of the banana fruit is attributed to the pres-
ence of various volatiles like isoamyl alcohol, isoamyl
acetate, butyl acetate, elemecine and several others [39].
These volatiles are produced primarily by the phenylpro-
panoid pathway, fatty acid biosynthesis pathway and iso-
leucine biosynthesis pathway [40]. Since the major
components of the aroma and flavor volatiles are esters,
the expression of genes involved in biosynthesis of esters
from amino acids, fatty acids and unsaturated fatty acids
were analysed here. The genes involved in each step
were identified (Figure 2) and differential expression was
examined. The conversion of sugars to alcohol is medi-
ated by ADH which is further converted to esters by
AATs. At least 10 contigs annotated as ADH genes
showed more than 2-fold up-regulation in the ripe fruit
as compared to unripe fruit. Similarly, the lipoxygenases
genes were also significantly up-regulated in the ripe
fruit as compared to unripe fruit. A large number of
transferases were up-regulated in the ripe sample, which
could be playing a putative role in the production of the
aroma volatiles.

Our analysis also suggested that genes for the butyl-
transferases, acetyltransferases, O-methyltransferases were
significantly up-regulated in the ripe fruit as compared to
unripe fruit (Table 3). The members of BAHD acyltrans-
ferases gene family are known to be involved in the acetyl
CoA dependent acylation of secondary metabolites result-
ing in the formation of esters and amides. Hoffmann et al.,
[41] categorised these in four different groups namely (A)
Taxus acyltransferase involved in taxol biosynthesis (B)
anthocyanin acyltransferases involved in anthocyanin
biosynthesis (C) enzymes with un-related substrates and
(D) hydroxycinnamoyl acyltransferase. In the present
study, at least 30 acyltransferases were significantly up-
regulated in the ripe fruit. One of the gene annotated as 3-
N-debenzoyl-2-deoxytaxol N-benzoyltransferase was one
of the most highly up-regulated genes (10-fold) in the ripe
fruit. This enzyme family is involved in the acylation of
the final step in the taxol biosynthesis pathway. The
hydroxycinnamoyl acyltransferase also showed a signifi-
cant increase (5.8-fold) in the ripe fruit (Additional file 6).
The significatly higher expression of these genes in the
ripe fruit suggests their involvement in the production of
banana volatile esters that may contribute to the ripe fruit
aroma. The role of AAT has already been established in
the ester formation [42]. A set of other genes including
4-coumarate--CoA ligase 1, peroxisomal-coenzyme A
synthetase involved in the formation of aromatic vola-
tiles were also up-regulated in ripe fruit (Table 2 and
Additional file 6). Our analysis indicates that volatile
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Table 2 Top 50 up-regulated genes during fruit ripening process

Contigs Fold change Musa_ID Description

contig08558 9.78 GSMUA_Achr5P07470_001 Expansin-A2
contig05638 9.7 GSMUA_Achr5P07470_001 Expansin-A2
contig03660 12.29 GSMUA_Achr11P22960_001 Expansin-A8

contig00739 8.09 GSMUA_Achr1P20310_001 Polygalacturonase QRT3

contig19315 123 GSMUA_AchrUn_randomP04250_001 Probable pectate lyase 15

contig16570 822 GSMUA_AchrUn_randomP04250_001 Probable pectate lyase 15

contig06876 10.91 GSMUA_Achr6P28260_001 Probable pectate lyase 22

contig07346 9.88 GSMUA_Achr6P28260_001 Probable pectate lyase 22

contig18390 8.87 GSMUA_Achr6P28260_001 Probable pectate lyase 22

contig12687 967 GSMUA_Achr3P28030_001 NBS-LRR disease resistance protein, putative, expressed
contig08749 8.78 GSMUA_Achr3P15660_001 Putative Pathogenesis-related protein 1

contig06502 11.13 GSMUA_AchrUn_randomP06130_001 Probable xyloglucan endotransglucosylase/hydrolase protein 32
contig17908 9.87 GSMUA_AchrUn_randomP06130_001 Probable xyloglucan endotransglucosylase/hydrolase protein 32
contig00854 9.57 GSMUA_Achr5P14190_001 expressed protein

contig02218 846 GSMUA_AchroP25300_001 expressed protein

contig00248 10.05 GSMUA_Achr2P03950_001 Formate dehydrogenase, mitochondrial

contig17026 9.74 GSMUA_AchroP30640_001 Germin-like protein 12-1

contig00301 8.88 GSMUA_Achr11P06230_001 Glucan endo-1,3-beta-glucosidase 6

contig14270 802 GSMUA_Achr11P06790_001 Hydrolase, hydrolyzing O-glycosyl compounds, putative
contig17603 8.25 GSMUA_Achr5P28160_001 Hypothetical protein

contig06303 8.15 GSMUA_Achr2P08720_001 Non-symbiotic hemoglobin 2

contig01929 8.15 GSMUA_Achr2P05370_001 Nucleobase-ascorbate transporter 6

contig00487 9.95 GSMUA_Achr7P05830_001 Phototropin-1A

contig14617 9.23 GSMUA_AchroP02950_001 Pleiotropic drug resistance protein 3

contig02025 9.65 GSMUA_Achr6P24140_001 Probable purple acid phosphatase 20

contig16011 9.16 GSMUA_Achr6P17340_001 Probable purple acid phosphatase 20

contig07941 10.09 GSMUA_Achr1P25050_001 Putative 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase
contig06446 837 GSMUA_Achr1P25050_001 Putative 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase
contig19360 10.34 GSMUA_Achr3P11750_001 Putative 3-oxoacyl-[acyl-carrier-protein] reductase
contig16157 10.12 GSMUA_Achr3P11750_001 Putative 3-oxoacyl-[acyl-carrier-protein] reductase
contig19172 9.94 GSMUA_Achr3P11750_001 Putative 3-oxoacyl-[acyl-carrier-protein] reductase
contig14749 9.68 GSMUA_Achr3P11750_001 Putative 3-oxoacyl-[acyl-carrier-protein] reductase
contig14752 9.65 GSMUA_Achr3P11750_001 Putative 3-oxoacyl-[acyl-carrier-protein] reductase
contig16111 9.02 GSMUA_Achr3P11750_001 Putative 3-oxoacyl-[acyl-carrier-protein] reductase
contig04351 8.79 GSMUA_Achr7P15630_001 Putative Avr9/Cf-9 rapidly elicited protein 132

contig10721 792 GSMUA_Achr5P03490_001 Putative Dihydroflavonol-4-reductase

contig13393 8.16 GSMUA_AchroP00610_001 Putative expressed protein

contig17350 9.64 GSMUA_Achr4P16570_001 Putative O-methyltransferase ZRP4

contig17111 943 GSMUA_Achr4P16570_001 Putative O-methyltransferase ZRP4

contig17353 8.96 GSMUA_Achr3P11740_001 Putative Predicted protein

contig14200 857 GSMUA_Achr3P11740_001 Putative Predicted protein

contig00874 8.97 GSMUA_Achr5P28140_001 Putative Probable gibberellin receptor GID1L2

contig08936 8.01 GSMUA_Achr8P30810_001 Putative Probable receptor protein kinase TMK1

contig17237

10.21

GSMUA_Achr5P28140_001

Pyruvate decarboxylase isozyme 2
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Table 2 Top 50 up-regulated genes during fruit ripening process (Continued)
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contig00472 8.1 GSMUA_AchroP02950_001 Serine carboxypeptidase 3
contig00892 9.36 GSMUA_Achr2P20550_001 Zinc transporter 2

contig07019 10.22 GSMUA_Achr4P26810_001 14 kDa proline-rich protein DC2.15
contig04469 8.82 GSMUA_AchrUn_randomP23970_001 Cytochrome P450-1

contig06853 8.72 GSMUA_Achr6P03560_001 Putative Cytochrome P450 71B35
contig12549 an GSMUA_Achr3P09170_001 Early nodulin-93

esters are generally synthesized from amino acids and not
the fatty acid degradation pathway (Figure 2).

Down-regulated genes during banana fruit ripening
As the fruit matures for ripening, the genes which are re-
quired for the growth and development are not required
and are therefore down-regulated. We carried out analysis
to identify such genes using comparative transcriptome
data. The vacuolar ATP transporters play an important
role during the development of fruit and are known to be
helpful in creating a proton gradient across the tonoplast
membrane, which is effective in transport of nutrients, me-
tabolites and proteins. As the process of softening starts,
these proteins are no longer required and hence the gene
encoding V-ATPases, showed a significant decline in their
expression in ripe fruit as compared to unripe fruit. In the
present study, the most significantly down-regulated
genes were the trans-membrane transporters and anti-
porters. Out of these expression of AVP1, a gene encoding
an ATPase/hydrogen-translocating pyrophosphatase, de-
creased in ripe fruit compared to unripe fruit by 12-fold,
the greatest decline of any transcript in our analysis
(Table 3). These genes are mainly involved in maintaining
the pH balance and transport of important metabolites.
As ripening proceeds, the fruit vacuolar membrane starts
to degenerate as these types of transporters may not be re-
quired. As many as 112 genes annotated as transporters in
various families were down-regulated (Additional file 5).
In our analysis, many of the genes responsible for RNA
processing and protein synthesis were down-regulated in

ripe fruit. In addtion, a large number of transcription fac-
tors and genes associated with flower and fruit develop-
ment were down-regulated. We observed a decline in
expression of the several floral homeotic genes, FT genes,
auxin responsive genes in ripe fruit. These regulatory pro-
teins may no longer be required at ripening stage hence,
showed a significant reduction in gene expression in ripe
fruit as compared to unripe fruit.

Modulated pathways during banana fruit ripening

The KO ids of all the contigs that matched with TAIR ids
were extracted and involvement of genes in different
pathways was analysed using KEGG pathway database.
Analysis suggested that the transcriptomes of both the un-
ripe and ripe fruit pulp included genes associated with
many different KEGG pathways. The genes from banana
were mapped onto the KEGG pathway under metabolism,
genetic information processing, environmental informa-
tion processing, cellular processes and organisms systems.
Metabolic pathways identified included carbohydrate, lipid,
amino-acid, nucleotide, energy metabolisms. The KEGG
pathways database for the rice genome has 120 pathways
and genes for each of these pathways were identified in ba-
nana (Additional file 7), indicating the complete coverage
of the transcriptomes in our study. GO analysis of differ-
entially expressed genes indicated that most of the ripen-
ing asscociated gene expression was assigned to funtional
groups for transcription factors, nucleic acid activity and
receptor binding activity. More than 50 percent the tran-
scripts in the transcriptomes were involved in energy
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Figure 1 Members of cell wall hydrolase gene families and change in expression in ripe and unripe fruit. The color scale (representing
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pathways, hydrolase activity, response to abiotic and biotic
stimulus and other biological processes. These are some of
the pathways that were active during ripening and this
data might provide a platform to explore ripening related
genes (Additional file 8).

As ethylene biosynthesis and perception is essential to
banana fruit ripening, a comprehensive analysis for the
genes involved in ethylene synthesis and signal transduci-
ton was carried out. Several contigs were identified as gene
related to ethylene biosynthesis including SAM, ACS and
ACO (Figure 3). Various members of the each gene family
showed differential gene expression in ripe and unripe fruit.
As each of these gene families has several members, ex-
pression of some genes was up-regulated while others was
either down-regulated or remained unchanged. It might be
assumed that the genes that were up-regulated were associ-
ated with system 2 ethylene biosynthesis whereas those that
were down-regulated were linked to system 1 ethylene bio-
synthesis or other biological processes [43]. In addition, a

large number of genes associated to the ethylene signal
transduction were also identified in our analysis. Many of
these genes have been identified for the first time in banana
as well. As many as 14 members related to CTR1 and
CTRI1-like are identified in our study. Similarly, genes re-
lated to ETR1, ERS, EIN2, EIN3, EIN4, EIL were also iden-
tified in the transcriptome database. In another study,
through genome-wide analysis, 25 members of MAPK
were also identified. Of these, many were differentially reg-
ulated [44] and could hold the key to finding the missing
members of the ethylene signal transduction pathway
during fruit ripening.

Transcription factors and their role in ripening

Gene regulation through transcription factors (TFs)
plays an important role in biological and cellular pro-
cesses. To study a potential role for the transcription
factors in banana fruit ripening, all the genes in the plant
transcription factor (TF) database [45] were downloaded
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Table 3 Top 50 down-regulated genes during fruit ripening process
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Contigs Fold change Musa_ID Description

contig00798 6.48 GSMUA_Achr5T15680_001 Putative Cytochrome P450 86B1

contig02008 881 GSMUA_Achr6T33140_001 Putative Ethylene-responsive transcription factor RAP2-7
contig02568 7.81 GSMUA_Achr6T33140_001 Putative Ethylene-responsive transcription factor RAP2-7
contig08797 949 GSMUA_Achr6T27190_001 Glucose-1-phosphate adenylyltransferase large subunit 2,
contig16906 10.11 GSMUA_Achr4T33530_001 Glucose-6-phosphate/phosphate translocator 2, chloroplast
contig04246 933 GSMUA_Achr4T33530_001 Glucose-6-phosphate/phosphate translocator 2, chloroplast
contig03057 6.4 GSMUA_Achr8T07300_001 Glucose-6-phosphate/phosphate translocator 2, chloroplast
contig00800 8.89 GSMUA_Achr10T29580_001 40S ribosomal protein S3-3

contig01027 6.39 GSMUA_Achr6T31150_001 60S ribosomal protein L15

contig04831 6.62 GSMUA_Achr3T31330_001 60S ribosomal protein L18a-2

contig16188 6.8 GSMUA_Achr2T16990_001 ADP,ATP carrier protein 1, chloroplastic

contig00923 6.97 GSMUA_Achr5T07760_001 ADP-ribosylation factor 2

contig00295 72 GSMUA_Achr9T15680_001 Alpha-glucan water dikinase 2

contig02907 854 GSMUA_Achr9T06260_001 Aquaporin TIP4-4

contig01324 6.34 GSMUA_Achr10T18110_001 Aspartate-semialdehyde dehydrogenase

contig01110 638 GSMUA_Achr10T00360_001 Calmodulin

contig00548 737 GSMUA_Achr9T06150_001 CCT motif family protein, expressed

contig01960 6.82 GSMUA_Achr9T06150_001 CCT motif family protein, expressed

contig10082 8.11 GSMUA_Achr1T01000_001 expressed protein

contig05110 6.46 GSMUA_Achr2T15930_001 expressed protein

contig16640 9.95 GSMUA_Achr10T01990_001 Hypothetical protein

contig00120 7.66 GSMUA_Achr7T00770_001 Hypothetical protein

contig06596 749 GSMUA_Achr2T14210_001 Hypothetical protein

contig07709 732 GSMUA_AchrUn_randomT28490_001 Hypothetical protein

contig04324 6.46 GSMUA_Achr1T01050_001 integral membrane transporter family protein

contig16958 6.46 GSMUA_Achr1702850_001 Monosaccharide-sensing protein 2

contig03813 634 GSMUA_Achr1T02850_001 Monosaccharide-sensing protein 2

contig02994 632 GSMUA_Achr7T21780_001 NAC domain-containing protein 68

contig03243 6.6 GSMUA_Achr8T12920_001 Probable aquaporin TIP1-1

contig00764 7.77 GSMUA_Achr3T24740_001 Putative Cathepsin B

contig03213 6.37 GSMUA_Achr3T06220_001 Putative expressed protein

contig01856 6.39 GSMUA_Achr4T16020_001 Putative Levodione reductase

contig00940 853 GSMUA_AchrUn_randomT26730_001 Putative Pathogenesis-related protein 1

contig00222 7.1 GSMUA_Achr11T00570_001 Putative Protein disulfide-isomerase

contig00491 859 GSMUA_Achr2720210_001 Putative Pyruvate kinase, cytosolic isozyme

contig01098 6.39 GSMUA_Achr7T14740_001 Putative Receptor-like protein kinase HSL1

contig07118 7.54 GSMUA_AchropP20500_001 Putative uncharacterized protein

contig08848 802 GSMUA_AchroP22830_001 Putative Zinc finger protein 2

contig17826 1041 GSMUA_Achr6T02890_001 Pyrophosphate-energized vacuolar membrane proton pump
contig17777 10 GSMUA_Achr7T20850_001 Pyrophosphate-energized vacuolar membrane proton pump
contig10985 7.24 GSMUA_Achr7720850_001 Pyrophosphate-energized vacuolar membrane proton pump
contig02678 6.71 GSMUA_Achr8T34150_001 Rhodanese-like domain containing protein, putative
contig00812 6.68 GSMUA_Achr3T11670_001 RNA polymerase | specific transcription initiation facto
contig11125 6.52 GSMUA_AchrUn_randomT07990_001 SNF1-related protein kinase regulatory subunit beta-1
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Table 3 Top 50 down-regulated genes during fruit ripening process (Continued)
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Ubiquitin-60S ribosomal protein L40

YT521-B-like family domain containing protein, expressed

contig04585 643 GSMUA_Achr11T04500_001 S-norcoclaurine synthase 1
contig00394 6.77 GSMUA_Achr2T12390_001 Tubulin alpha-3 chain
contig01434 776 GSMUA_Achr9T30160_001

contig01831 7.88 GSMUA_Achr1728140_001 Vacuolar-processing enzyme
contig00321 6.39 GSMUA_Achr4128430_001

contig08692 6.37 GSMUA_Achr4T24460_001

70S2-16 - C2H2 zinc finger protein

and queried against the supercontigs in banana tran-
scriptome using the blastx program. The plant TF data-
base has 29,473 sequences classified in 74 TF gene
families. Using a lower limit for an acceptable e-value of
107", we identified 74 different TF gene families repre-
sented in our combined transcriptome (Table 4). The
most abundant TFs were related to the C3H, MADS,
MYB-related, bZIP, NAC, WRKY gene families. These
TFs are encoded by multigene families in plants and it is
likely that these are present as multigene family in ba-
nana. Some of the MADS, bHLH, WRKY, AP2-EREBP,

MYB-related and NAC domain TF families were highly
expressed in ripe fruit. The MADS domain transcription
factors are reported to be involved in various processes
of fruit ripening [3,12,43,46]. At the ripe fruit stage we
collected, the most important processes are of cell wall
degradation and synthesis of aromatic volatiles. The
MADS and NAC domain proteins are known to interact
with each other and other cell wall related gene pro-
moters like expansin and others [43]. Since most of
these TFs belong to multigene families, many TFs
were down regulated during ripening, indicating their
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Figure 3 Selected members of gene families involved in ethylene biosynthesis and perception and their differential expression during
banana fruit ripening. The color scale (representing log fold change values) is shown at each step.
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Table 4 Transcription factor gene families and their members in banana fruit transcriptomes
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TF family Unripe  Ripe TF family  Unripe  Ripe  TF family Unripe  Ripe  TF family Unripe  Ripe
ABI3VP1 34 31 CAMTA 18 16 LFY 0 0 SBP 43 54
Alfin-like 20 16 CCAAT 45 39 LIM 4 5 Sigma70-like 12 13
AP2-EREBP 98 89 CPP 5 0 LOB 14 15 SRS 2 1
ARF 76 29 csb 5 MADS 191 166 TAZ 5 8
ARR-B 2 2 DBP 53 71 mTERF 80 77 TCP 10 17
BBR/BPC 10 7 E2F-DP 10 12 MYB 54 43 Tify 34 42
BES1 22 12 EIL 20 24 MYB-related 155 168 TIG 0 5
bHLH 172 192 FAR1 140 135 NAC 120 154 Trihelix 38 39
BSD 23 35 FHA 85 120 NOZZLE 0 0 TUB 35 26
bZIP 144 119 G2-like 58 63 OFP 5 9 ULT 0 1
C2C2-CO-like 16 6 GeBP 12 7 Orphans 119 133 VARL 0
C2C2-Dof 30 23 GRAS 79 63 PBF-2-like 4 9 voz 3
C2C2-GATA 27 39 GRF 5 3 PLATZ 6 4 WRKY 93 89
C2C2-YABBY 6 3 HB 170 128  RWP-RK 21 30 zf-HD 1
C2H2 133 157 HRT 5 3 S1Fa-like 0 1 Zn-clus 0 0
C3H 331 340 HSF 22 14 SAP 0 0

Other Transcriptional regulators:

TF family Unripe  Ripe  TF family  Unripe  Ripe  TF family Unripe  Ripe  TF family Unripe  Ripe
ARID 20 13 IWS1 2 1 PHD 218 203 SOH1 2 0
AUX/IAA 67 73 Jumonji 25 17 Pseudo ARR-B 0 0 SWI/SNF-BAF60b 25 21
Coactivator p15 0 0 LUG 21 18 RB 2 3 SWI/SNF-SWI3 11 4
DDT 9 13 MBF1 4 2 Rcd1-like 4 6 TRAF 80 96
GNAT 80 88 MED6 0 4 SET 136 120

differential role during various stages of ripening and fruit
development.

Novel genes with modulated expression during banana
fruit ripening

A large number of genes that did not show any hits to
any of the databases but were significantly and differen-
tially regulated were identified in this study (Additional
file 9). These genes could be involved in the various pro-
cesses like cell-wall softening, production of aromatic
volatiles, changes in colour of the peel and development
of flavour compounds. A total of 3185 genes did not
show any hits to any of the databases (NR, AGIprot,
Rice, CDD) of these 548 and 648 genes were 2-fold up-
and down-regulated respectively.

Validation of differential gene expression

The differential expression of a few selected genes was
confirmed by RT-qPCR. These genes were randomly se-
lected from three categories including genes related to
the ethylene signalling, aroma and softening. The ex-
pressions for each gene was examined in unripe fruit (0)
and 2, 4, 6 and 8 days post ethylene treatment (Figure 4).

In regard to genes related to ethylene signalling, of the
ethylene receptor genes examined, expression of an
ERS1-like gene and an EIN4-like gene increased mark-
edly (>10-fold) during ripening. The CTR1 gene, which
is downstream from the ethylene-receptors, initially
showed a reduction in expression in the early stages of
ripening, but had a significant increase in expression at
6 days post ethylene exposure (Figure 4). Similarly, the
ETR1 gene showed a reduction in expression at day 2,
which later increased at 6 days post ethylene exposure.
Out of all the genes selected for analysis, one of the
ERS1 genes did not show significant change in expres-
sion and the EIN4 gene showed a down-regulation dur-
ing ripening process. The differential expression of these
genes as analysed through quantitative real time PCR
was similar to that observed in the comparative tran-
scriptome analysis. The aroma related GTs and MTs
showed a significant increase in expression as the ripen-
ing progressed, and this increase in expression generally
began at day 4 and reached a maximum at day 6 of rip-
ening. Expression of the aroma genes appears to corre-
lated with the stage when the fruit emits a characteristic
aroma and after this senescence and over-ripening sets
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Figure 4 The expression profiles for selected members of gene families associated with (A) Ethylene perception and signaling (B) cell wall
modification and (C) aroma formation. Quantitative real time PCR of the gene families was carried out using total RNA isolated from fruit tissues. O
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in resulting in a less palitable fruit. The aroma volatiles
are no longer needed and hence the expression of these
genes starts to decrease.

For the softening related genes the expression of se-
lected members of PE, PL XTH, Cellulase and PG gene
families were studied. As observed in comparative tran-
scriptome data, quantitative-RT analysis also suggested
significantly higher expression of XTH and PL genes as
the ripening progressed. The expression of these genes
started increasing drastically at the 4 day stage and contin-
ued till senescence of the fruit. The expression of one
member of cellulase and 2 members of PG gene families
were also studied through quantitative-RT analysis. The
expression of these genes increased during the progress of
ripening, however, it was not as significant as the increase
in the XTH, PL and PE genes. The results obtained
through quantitative-RT analysis verified and extended dif-
ferential expression as observed in the comparative tran-
scriptome analysis between ripe and unripe fruit.

SSR markers

EST derived SSR markers are an important tool for gene
mapping. SSR marker studies have been done in banana
earlier and a banana SSR database is available; however,
identification of SSRs was done using the publicly avail-
able ESTs, which was somewhat limited for banana. To
enrich the SSR markers in Banana, we identified SSRs
using the Misa pipeline in the combined assembly data
of the ripe and unripe transcriptomes (Table 5). The
combined transcriptome was screened for the presence
of di-, tri-, tetra-, penta- and hexa- nucleotide SSR mo-
tifs and 1,042 SSRs were identified in the Supercontigs
for the unripe and ripe fruit transcriptomes. The Di- and
tri- repeats formed the major part of SSRs and were
around 70% of the total SSRs identified. The annotation
of the contigs associated with different SSRs was ex-
tracted using a custom perl script. Several of the SSRs
were in genes up-regulated in ripening process. Con-
tigl7908 and Contig03660, which containined one SSR
each, were annotated as expansin and XTH, respectively,
and both were strongly up-regulated during ripening
(Additional file 10). The SSRs identified, in this study,
will be useful as genetic markers for breeding improved
varieties of banana.

Conclusion

Banana is an economically important fruit in many parts
of the world; however, huge post-harvest losses are in-
curred by farmers and consumers due to over-ripening.
The ethylene regulated ripening in banana has not been
studied in great detail at the molecular level. Most of the
studies carried out are related to single genes or a single
gene family. However, ten gene families related to ethylene
biosynthesis and signalling have been studied recently in
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detail [47]. More global analysis of gene expression in ba-
nana has been restricted to subtractive hybridisation and
PAGE-DDGE, both of which fail to give a comprehensive
picture of the transcriptome. In the present study, we have
sequenced the transcriptomes of two stages of the banana
fruit pulp and identified genes involved in the ripening
processes. The two most important processes related to
banana fruit ripening were softening and production of
aroma volatiles. Both of these processes were studied in
detail and many genes related to aroma formation were
identified. Several acyltransferases were identified that are
likely involved in the synthesis aromatic volatiles and fla-
vour components. In addition, the present study highlights
the importance of expansins, PL and XTH in the softening
of the fruit. Apart from enriching the banana genes in the
database, we have also identified many novel genes that
could be playing an integral part during ripening in ba-
nana, and may be good candidates for future gene ma-
nipulation studies.

Methods

Plant material and RNA isolation

Fruits of Musa accuminata (Dwarf Cavendish, Genome
AAA, var. Robusta, Harichhal, germplasm code TRY0081
at National Research Centre for Banana, India) were har-
vested from plants grown in the field of CSIR-National
Botanical Research Institute, Lucknow. Fruits were
washed, wiped and exposed to 100 pL/L ethylene for 24 h
to initiate ripening and stored for four days as described
earlier [6]. The selection of fruit, ethylene treatment and
RNA isolation was replicated four time using ten fruits in
each experiment. Two fruits from each set were randomly
chosen and the pulp pooled and frozen in liquid nitrogen
and stored in -70°C for further use. Frozen tissues from
ripe and unripe fruits were ground to a fine powder in li-
quid nitrogen using a mortar and pestle. Total RNA from
unripe and ripe tissues was extracted using method previ-
ously described [48] followed by DNasel treatment ac-
cording to manufacturer’s instructions (Ambion, USA).
RNA quality was checked on agarose/EtBr gel and quan-
tity determined with a spectrophotometer (Nanodrop,
Thermo Scientific, USA).

cDNA Library construction and 454 sequencing

An equal amount of total RNA from each of the four
different preparations was pooled and used for library
preparations. First strand cDNA was prepared using
5 pg of the pooled RNA using oligo-dT primer and
Superscript II reverse transcriptase (Invitrogen, Carlsbad,
CA). A double-stranded ¢cDNA library was then synthe-
sized as described in double stranded cDNA synthesis
kit (Invitrogen, Carlsbad, CA), and the double-stranded
¢DNA purified by Gene Chip Sample Cleanup Module
(Affymetrix, USA). Quantity as well as quality of the
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Table 5 SSRs identified in assembled contigs of Musa
acuminata

Description Contigs  Singletons
Total number of sequences examined 19410 92,823
Total size of examined sequences (bp) 12460249 13532481
Total number of identified SSRs 1106 1930
Number of SSR containing sequences 1004 1772
Number of sequences containing more than 1 SSR - 94 141
Di-nucleotide repeats 454 834
Tri-nucleotide repeats 536 579
Tetra-nucleotide repeats 24 49
Penta-nucleotide repeats 5 5
Hexa-nucleotide repeats 8 8

double stranded cDNA library was checked on an Agilent
2100 Bioanalyzer DNA chip (Agilent Technologies Inc.,
Santa Clara, CA). Approximately three micrograms of
double-stranded ¢cDNA was sheared by nebulization to
produce random fragments of about 250—-800 bp in length.
The nebulized cDNA was purified further using QIAGEN
QIA quick PCR purification spin columns and pooled.
Fragments smaller than 300 bp were removed and the
purified ¢cDNA samples were assesed on DNA chip
(Agilent 2100 Bioanalyzer, USA) to analyze quantity as
well as confirm the fragment size (350-800 bp). Adapter
ligation and purification of adapter ligated library was
done according to manufacturer’s instruction (Roche,
USA). The quality and quantity of library was evaluated
on Agilent High sensitivity chip and spectroflurometer
(Perkin Elmer, USA), respectively. The double-stranded
c¢DNA fragments were then denatured to generate single-
stranded cDNA fragments, which were then amplified by
emulsion PCR for sequencing according to manufacturer’s
instructions (454 Life Sciences, Roche, USA). Reads from
unripe and ripe libraries were processed and trimmed to
remove low quality and primer sequences.

De novo sequence assembly and annotation

The raw 454 sequences from ripe and unripe banana fruit
libraries were screened and trimmed for weak signals by
GS FLX pyrosequencing software to yield high-quality
(HQ) sequences (>99.5% accuracy of single-base reads).
The primer and adapter sequences were trimmed from the
HQ sequences, and sequences shorter than 50 bp removed
before assembly. The trimmed sequences were assembled
into unique contigs and singletons using ROCHE GS As-
sembler (version 2.5.3) with 40 base pair overlap and 96%
identity. The contigs and singletons were annotated using
a standalone version of NCBI BLASTx program [49]
against the Arabidopsis protein database at The Arabidop-
sis Information Resource (TAIR; http://www.arabidopsis.
org) (version Tair9), MSU Rice genome annotation and
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the NCBI non-redundant protein (Nr) database (http://
www.ncbi.nlm.nih.gov; released on 06/23/2009) and The
Banana Genome Hub (http://banana-genome.cirad.fr/)
using the BLASTx algorithm with an E-value cut-off of
107° and extracting only the top hit for each sequence. An-
notation against the CDD database (http://www.ncbi.nlm.
nih.gov) was done using the rpsblast programe of the blast
suite, and pfam using the hmmer v 3 programe. To find
out the potential coding regions in unigenes were pre-
sented or not, ESTScan was carried out using HMM based
program. To analyse the partial and alternative transcripts,
the contigs were computationally fragmented to 100 bp
tagged and mapped to the banana genome using the
bowtie2 programme [50]. Parts of the contigs that skipped
an exon during mapping were identified as alternatively
spliced mapping on banana genome [4].

Functional classification and biological pathways
assignment

To gain an understanding of metabolic and genetic net-
works operating during ripening, the genes identified in
our transcriptome were mapped according to their link-
age in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways database. Enzyme commission (EC)
numbers were assigned to unique sequences, based on
the BLASTx search of protein databases, using a cut off
E-value 107, The output of KEGG analysis includes
KEGG orthology (KO) assignments and KEGG path-
ways (http://www.genome.jp/kegg/) that are populated
with the KO assignments. Gene ontology (GO) analysis
was also performed using the GO terms indentified for
banana supercontigs having an E-value of >107° in a
BLAST search of Arabidopsis genes in the TAIR
databases.

Digital gene expression and pathway analysis

To analyse differential gene expression the reads per con-
tigs were counted and the transcript per million calcu-
lated. Differentially expressed genes were identified using
DESeq package [51]. To statistically determine the differ-
ential gene expression the R statistics [35] was applied,
and R 28 were considered to be highly significant. To cal-
culate the threshold R value, 1000 datasets for each library
was generated according to the random Poisson distribu-
tion as previously described [35]. For the comparative ex-
pression analysis with the musa genome, all the unigenes
including singletons were mapped to annotated gene
models predicted for the musa genome. Expression levels
were calculated using TPM (Transcripts per million) of
contigs and the predicted levels checked again using the
DESeq pacakge [51]. Pathway analysis was performed
using the KEGG and Biocyc program for Arabidopsis and
Rice, and the contigs were fished using custom made perl
scripts. Clustering of the genes and the heat maps were
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generated using the MEV software (http://www.tm4.org/
mev.html).

Designing of oligonucleotide primers and real-time PCR
analysis

A set of oligonucleotide primers (Additional file 11)
were designed for RT-qPCR on the basis of sequence in-
formation developed through sequence analysis. For RT-
qPCR, first-strand cDNA was synthesized using total
RNA in a Revert Aid H minus first strand cDNA synthe-
sis kit (Fermentas life Sciences, USA) according to the
prescribed protocol. The ¢cDNA was checked by semi
quantitative PCR, followed by agarose gel electrophor-
esis. The PCR mix for Real time PCR contained 1 pl of
diluted ¢cDNA (10 ng), 10 pl of 2x SYBR Green PCR
Master Mix (Applied Biosystems, USA), and 200 nM of
each gene-specific primer in a final volume of 20 pl. A
no template control was also performed for each primer
pair. Expression was quantified using the Applied Bio-
systems 7500 Fast Real time PCR System. All the PCRs
were performed under following conditions: 20 sec at
95°C, 3 sec at 95°C, and 40 cycles of 30 sec at 60°C in
96-well optical reaction plates (Applied Biosystems,
USA). The specificity of amplicons was verified by melt-
ing curve analysis (60°C to 95°C) after 40 cycles. Three
technical replicates were performed for each cDNA.

Availability of supporting data

The data sets supporting the results of this article are
available in the NCBI GenBank repository [http://www.
ncbi.nlm.nih.gov/bioproject/?term=PRJNA172246] and in
the NCBI SRA repository [http://www.ncbi.nlm.nih.gov/
sra/?term=SRA057081].
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Additional file 1: Comparative transcripts queried against the CDD
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Additional file 3: Comparative transcripts queried against the TIGR
Rice protein database.

Additional file 4: Comparative transcripts queried against the
Arabidopsis AGI protein database.

Additional file 5: Calculation of fold change and R value to identify
genes differentially expressing in the Unripe and Ripe
transcriptome library.

Additional file 6: Fold change calculations of genes for which the
heat map has been made in the different figures.
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