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Abstract

of their corresponding miRNAs.

levels of stress tolerance in different wheat genotypes.

Background: MicroRNAs (miRNAs) play critical roles in the processes of plant growth and development, but little is
known of their functions during dehydration stress in wheat. Moreover, the mechanisms by which miRNAs confer
different levels of dehydration stress tolerance in different wheat genotypes are unclear.

Results: We examined miRNA expressions in two different wheat genotypes, Hanxuan10, which is drought-tolerant,
and Zhengyin1, which is drought-susceptible. Using a deep-sequencing method, we identified 367 differentially
expressed miRNAs (including 46 conserved miRNAs and 321 novel miRNAs) and compared their expression levels in
the two genotypes. Among them, 233 miRNAs were upregulated and 10 were downregulated in both wheat
genotypes after dehydration stress. Interestingly, 13 miRNAs exhibited opposite patterns of expression in the two
wheat genotypes, downregulation in the drought-tolerant cultivar and upregulation in the drought-susceptible
cultivar. We also identified 111 miRNAs that were expressed predominantly in only one or the other genotype after
dehydration stress. We verified the expression patterns of a number of representative miRNAs using gPCR analysis
and northern blot, which produced results consistent with those of the deep-sequencing method. Moreover,
monitoring the expression levels of 10 target genes by gPCR analysis revealed negative correlations with the levels

Conclusions: These results indicate that differentially expressed patterns of miRNAs between these two genotypes
may play important roles in dehydration stress tolerance in wheat and may be a key factor in determining the
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Background

Drought is a major environmental stress factor world-
wide that affects plant growth and development. Under
drought stress, a series of protective mechanisms are
triggered that allow plants to adapt to adverse conditions
[1,2]. Phytohormones and second-messenger molecules
participate in signal transduction to respond to stress by
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inducing expression of both protein-coding and non-
protein-coding genes to produce regulatory molecules,
effector molecules directly involved in the biochemical
response, and products of non-protein coding genes that
regulate expression of other genes at the transcriptional
and translational levels [1,3].

As non-protein-coding gene products, microRNAs
(miRNAs), ranging in length from 18 to 25 nucleotides, re-
gulate gene expression either through post-transcriptional
degradation or translational repression of their target
mRNAs. In plants, most miRNAs have perfect or near-
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perfect complementarity to their mRNA targets and down-
regulate them by targeted cleavage or translational repres-
sion [4,5]. Functional analyses have demonstrated that
miRNAs are involved in a variety of developmental pro-
cesses in plants [6]. For instance, miR156, miR166, miR168
and miR2009 show abundant expression in young wheat
seedlings [7]. Recently, 323 wheat novel miRNAs are char-
acterized in a genome-wide level and further identified 64
miRNAs preferentially expressing in developing or ger-
minating grains, which could play important roles in grain
development [8]. In addition, miRNAs play critical roles
in plant resistance to various abiotic and biotic stresses
[9-11]. For example, in the thermosensitive genic male
sterile (TGMS) lines of wheat, miR167, miR172, miR393,
miR396 and miR444c.1 are found to respond to cold stress.
Interestingly, miR167 play roles in regulating the auxin-
signaling pathway and possibly in the developmental re-
sponse to cold stress [12]. Similarly, the expression levels
of miR156, miR159, miR164, miR167a, miR171, miR395
and miR6000 have been shown to be altered in wheat
under UV-B stress [13]. Besides, miR827 and miR2005 are
up-regulated in wheat both under powdery mildew infec-
tion and heat stress, whereas miR156, miR159, miR168,
miR393, miR2001, and miR2013 exhibit opposite expres-
sion pattern response to these stresses [14].

miRNA expression profiling after drought stress has
been performed in wild emmer wheat, rice, Arabidopsis
and Populus. Previously, miR1867, miR474, miR398,
miR1450, miR1881, miR894, miR156, and miR1432 have
been found to be induced by drought in wild emmer
wheat (Triticum dicoccoides) [3]. Similarly, miR169g is
strongly induced while miR393 is transiently upregulated
in rice by drought stress [15]. Several miRNAs (miR156,
miR159, miR168, miR170, miR172, miR319, miR396,
miR397, miR408, miR529, miR896, miR1030, miR1035,
miR1050, miR1088, and miR1126) are found to be down-
regulated and 14 miRNAs (miR159, miR169, miR171,
miR319, miR395, miR474, miR845, miR851, miR854,
miR896, miR901, miR903, miR1026, and miR1125) are
revealed to be induced by drought stress in rice [16]. In
Arabidopsis, miR167, miR168, miR171, and miR396
are shown to be drought responsive [17]. In Populus,
miR1711l-n, miR1445, miR1446a-e, and miR1447 also have
been proved to respond to drought stress [18].

Although numerous miRNAs have been identified in
many plant species, only 42 sequences have been reported
for wheat in the miRBase registry (miRBase release 20).
Furthermore, how miRNAs confer different levels of dehy-
dration stress tolerance in various wheat genotypes is
unclear. To gain insight into the role of wheat miRNAs
in dehydration stress tolerance, two representative wheat
genotypes were used in this study: HanxuanlO, a
drought-tolerant cultivar grown widely in dry land wheat
regions of North China; and Zhengyinl, which is drought-
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susceptible and often planted in water- and fertilizer-rich
regions. We grew these two genotypes under well-watered
and dehydration-stress conditions and analyzed miRNA
expression patterns to identify those miRNAs involved in
dehydration stress tolerance.

Results

Effects of dehydration stress on phenotypic alteration to
two wheat genotypes

The two wheat genotypes exhibited morphological dif-
ferences after 12-h dehydration stress treatment. While
the Hanxuan 10 plants (T1) continued to grow relatively
well, the plants of Zhengyin 1 (T2) displayed severe
dehydration stress symptoms, such as wilting leaves
(Figure 1A). In addition, the chlorophyll content of T1
and T2 decreased by 12.87% and 16.73% than that of
C1 and C2, and relative water content of T1 and T2 de-
creased by 4.70% and 10.58% after dehydration stress,
respectively (Additional file 1: Table S1).

The growth and development of lateral roots showed
obvious differences in two wheat genotypes after dehy-
dration treatment (Figure 1B). For example, the total
lengths of lateral roots of C1, T1, C2 and T2 were 68.74,
65.98, 50.72 and 47.54 cm after 12h dehydration stress,
respectively (Figure 1b-1 and Table 1). By stress time
increasing, the total lengths of lateral roots of T1 and
T2 were 79.90 and 51.90 cm after 72h dehydration
stress, whereas the total length of lateral root were 90.96
and 64.66 cm in their corresponding control (Figure 1b-2
and Table 1). Compared with the total lengths after 12h
stress, the total lengths of lateral roots of C1, T1 and C2
increased respectively by 22.22, 13.92 and 13.94 cm, but
T2 only increased by 4.36 cm. Moreover, numbers of
lateral roots were also changed by dehydration stress.
For instance, numbers of lateral roots of T2 decreased
by 0.8 than C2 after 12h dehydration stress, but T1 only
decreased by 0.2 than C1 (Table 1). These results sug-
gested that dehydration stress significantly inhibited
lateral roots growth and development of the drought-
susceptible cultivar, but had a lesser effect on the
drought-tolerant cultivar.

We found that the number of leaf vascular tissue cells
in two wheat genotypes showed distinct differences after
12h dehydration stress (Figure 1C). For instance, xylem
and phloem cells of T1 leaves were increased averagely
by 2.7 and 0.6 compare with C1 after dehydration treat-
ment, respectively. However, xylem and phloem cells of
T2 were decreased by 9.0 and 8.0 compared to C2 after
dehydration stress, respectively (Table 2). These results
implied that dehydration stress suppressed dramatically
differentiation of vascular tissue cells of leaves of the
drought-susceptible cultivar, but differentiation was pro-
moted in the drought-tolerant cultivar.
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Figure 1 Effects of dehydration stress on phenotypic alteration to wheat seedlings. (A) Morphological changes in two wheat genotypes
after 12h dehydration stress. (B) Effect of dehydration stress on growth and development of lateral roots of the two wheat genotypes. Changes in the
numbers and length of lateral roots in two wheat genotypes after 12h (b-1) and 72h (b-2) dehydration treatment. (C) Effect of dehydration stress on

_

differentiation of vascular tissue cells of leaves in the two wheat genotypes (x40). V, vascular bundle sheath; X, xylem; P, phloem.

Sequencing and annotation of wheat miRNAs

Solexa sequencing of miRNA libraries generated from well-
watered (Cl) and dehydration-stressed (T1) HanxuanlO
and well-watered (C2) and dehydration-stressed Zhengyinl
(T2) plants yielded 20653733, 19546412, 19375732, and
21290140 unfiltered sequence reads, respectively. After
discarding low-quality reads, a total of 12005904 (58.13%,
C1), 10544528 (53.95%, T1), 10619535 (54.81%, C2), and
11701889 (54.96%, T2) reads were retained. These sequen-
ces represented 650391 (3.15%), 1046638 (5.35%), 846328
(4.37%), and 1798773 (8.45%) unique clean reads for C1,
T1, C2, and T2, respectively (Table 3). The most abundant
classes of these unique clean reads were 21-24 nu-
cleotides (nt), and the 24 nucleotides (nt) sequences were
the most common (Figure 2). The unique reads were

compared sequentially with the Rfam and miRBase data-
bases to annotate 228251, 253538, 253662, and 303835
unique small RNAs (sRNAs) and 1451 (0.64%), 1697
(0.67%), 1615(0.64%), and 2056 (0.68%) unique miRNAs
for C1, T1, C2, and T2, respectively (Table 4).

Comparison of differentially expressed miRNAs between
two wheat genotypes

We compared the frequencies of occurrence of differen-
tially expressed miRNAs in well-watered and dehydration-
stressed plants based on a Poisson distribution approach
[19]. We identified 71 conserved miRNAs from Hanxuanl0Q
and 102 conserved miRNAs from Zhengyinl that
were differentially expressed between well-watered
and dehydration-stressed treatment (Additional file 2:

Table 1 Changes in the numbers and length of lateral roots in two wheat genotypes after dehydration stress

Treatments  12h after stress 72h after stress
Numbers of lateral roots  Total length of lateral roots (cm) Numbers of lateral roots  Total length of lateral roots (cm)
l 54£0.55 68.74 +2.30 6.2+045 90.96 + 2.64
T 52+083 6598 261 54+0.55% 79.90 £5.23
2 50+£0.71 50.72 £ 4.34* 52+0.84* 64.66 + 3.93%*
T2 4.2 +0.84* 4754 +£275% 4.2 +£045%* 5190 £3.31*

The data are mean + SD (n =5). *,**Indicate significant difference at P < 0.05 and P < 0.01, respectively.
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Table 2 Changes in the numbers of vascular bundle
sheath, xylem and phloem in two wheat genotypes after
dehydration stress

Treatments  Numbers of vascular  Numbers of  Numbers of
bundle sheath xylem cell phloem cell
l 203 +£0.57** 37.3+£208* 357 £0.57**
T 22.7+£0.57 400+ 361 36.3+£0.33*
2 19.7 £1.15%* 42.0+1.00 41.7+£203
T2 20.7 £0.57* 33.0+ 1.00** 33.7+£033**

The data are mean +SD (n = 3). *, **Indicate significant difference at P < 0.05
and P < 0.01, respectively.

Tables S2-3 and S2-4). We focused on those miRNAs
common to Hanxuanl0O and Zhengyinl and compared
their expression levels after dehydration treatment. We
used the following criteria as the basis for compari-
son: a log2 ratio of normalized values between the
dehydration stress and control treatments greater than
1 or less than -1 in one of the two genotypes. We identi-
fied 46 miRNAs in common between the two wheat geno-
types that were differentially expressed in response to the
dehydration treatment (Additional file 2: Table S2-5).
Through comparative analysis, we observed that 14
miRNAs showed upregulation in both genotypes after
dehydration stress (Table 5), while another 6 miRNAs
were downregulated (Table 6). The expression of 13
miRNAs exhibited opposite patterns in the two wheat
genotypes (Table 7); these miRNAs were downregulated
in Hanxuan10 but upregulated in Zhengyinl. In addition,
13 miRNAs were expressed predominantly in only one or
the other of the two genotypes after dehydration-stress
treatment (Table 8).

In addition,to identify the novel miRNAs, criteria for
annotation of plant miRNAs [20] were used in our study.
Finally, 521 novel miRNAs were predicted based on the
hexaploid wheat genome (http://www.cerealsdb.uk.net/
CerealsDB/Documents/DOC_CerealsDB.php). According
to the screening criteria of differentially expressed miR-
NAs, we found that 321 novel miRNAs were differentially
expressed in two wheat genotypes after dehydration stress
(Additional file 3: Table S3). Among them, 219 miRNAs
showed upregulation in both genotypes after dehydration
stress, while another 4 miRNAs were downregulated.
Moreover, 98 miRNAs were expressed predominantly in
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only one of the two wheat genotypes after dehydration
stress (Additional file 3: Tables S3-2, S3-3 and S3-4).

Validation of differentially expressed miRNAs

To confirm the results of the deep sequencing and com-
parative analyses, we verified the expression patterns of 25
miRNAs selected randomly by qPCR. The qPCR results
coincided with those of the deep sequencing (Figure 3).
For example, miR160a, miR164b, miR166h, miR169d,
and miR444d.3 were confirmed by both techniques to
be downregulated in the drought-tolerant Hanxuanl0
after dehydration stress but upregulated in the drought-
susceptible Zhengyinl (Table 7 and Figure 3). Similarly,
miR156k, miR444c.1 and wheat-miR-202 (a novel miRNA,
secondary structure shown in Additional file 4: Table S4)
were shown by both methods to be upregulated in
both wheat genotypes after dehydration stress (Table 5,
Additional file 3: Table S3-2 and Figure 3), miR398
and wheat-miR-628 (a novel miRNA) were expressed
predominantly in only one of the two genotypes (Table 8,
Additional file 3: Table S3-4 and Figure 3). Northern blot
was also performed to study the transcripts of miRNAs of
four different expression patterns to confirm the expres-
sion profiles obtained from deep sequencing (Figure 4).
The results showed that expression of these miRNAs in
different treatments was also consistent with the result of
high-throughput sequencing. These results indicated that
the frequency of occurrence in the Solexa runs produced
a reliable prediction of expression patterns.

Prediction and validation of miRNA functions and their
effects on potential targets

We predicted 1805 target genes for the 367 differentially
expressed miRNAs (including 46 conserved miRNAs
and 321 novel miRNAs, Additional file 5: Tables S5-1
and S5-2). These potential targets were assigned based
on Gene Ontology. With respect to molecular function,
the targets fell largely into 11 categories, with the three
most over-represented being DNA binding, ATP binding,
and protein binding. Twelve biological processes were
identified, with the three most frequent being metabolic
process, response to stress, and regulation of transcription
(Figure 5). Furthermore, monitoring the expression levels
of 10 representative target genes by qPCR analysis re-
vealed negative correlations with the levels of their

Table 3 Small RNA sequences present in C1, T1, C2 and T2 plants

Treatments Total reads number Clean number Unique number
(Percentage) (Percentage) (Percentage)

C1 20653733(100%) 12005904(58.13%) 650391(3.15%)

T 19546412(100%) 10544528(53.95%) 1046638(5.35%)

2 19375732(100%) 10619535(54.81%) 846328(4.37%)

T2 21290140(100%) 11701889(54.96%) 1798773(8.45%)
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Figure 2 Size distribution of wheat small RNAs. C1 and C2
indicate well-watered Hanxuan10 (drought-tolerant cultivar) and
Zhengyin1 (drought-susceptible cultivar). T1 and T2 indicate
dehydration-stressed Hanxuan10 and Zhengyin1.

corresponding miRNAs (Figure 6). These results implied
that several miRNAs may be directly or indirectly involved
in wheat tolerance to dehydration stress through regula-
tion of target gene expression.

Discussion

Recent studies have indicated that the expression of
miRNAs, an important class of gene regulators, is
altered by abiotic stress treatment [21-23]. However, most
of these studies were performed using model organisms
such as Arabidopsis and rice. In this work, we investigated
changes in miRNA expression levels after dehydration
stress in two wheat genotypes to better understand the
function of plant miRNAs in stress adaptation.

In this study, we identified 14 upregulated con-
served miRNAs and 6 conserved downregulated miRNAs
(Tables 5 and 6) in two wheat genotypes subjected to
dehydration stress. The gene target of the upregulated
miR156k encodes the squamosa promoter-binding-like
protein (SBP) transcription factor, which is known to be
important for leaf growth and development [24]. The
target of the upregulated miR444c.1 is the MIKC-type
MADS-box transcription factor (MADS-box TF) gene,
which was reported to be involved in regulating plant
developmental processes and stress responses [25]. For
the downregulated miR159a, the gene target encodes
the MYB3 transcription factor, which plays a role in
cold-stress responses [26]. MYB family members have
also been implicated in plant tolerance to environmental
stress through their functions in hormone and other
abiotic stress signaling networks [27]. Our findings indi-
cate that these miRNAs may also play important roles
in stress tolerance in wheat.

Genotypic specificity of miRNA expression has been
reported previously in terms of the differential expres-
sion of a given miRNA in the same tissues in different
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genotypes [28]. In this study, we found that 13 con-
served miRNAs and 98 novel miRNAs were expressed
predominantly in only one or the other genotype after
dehydration treatment (Table 8 and Additional file 3:
Table S3-4). For example, miR398 was upregulated in
the drought-susceptible cultivar after dehydration treat-
ment (Table 8 and Figure 3). This miRNA has been repor-
ted to be upregulated in response to copper deprivation
[29] and its target gene, superoxide dismutase, is in-
duced during oxidative stress [30,31]. We also showed
that wheat-miR-628 (a novel miRNA) was downregulated
only in the drought-susceptible cultivar (Additional file 3:
Table S3-4 and Figure 3) and its putative gene target was
alpha/beta fold hydrolase (AFH). Most hydrolases are
believed to be involved in the decomposition of products
of damage (‘cell cleaning’) caused by stress conditions
[32]. Moreover, AFHs may have diverse functions and play
various roles in different pathways despite their sequence
similarities. In some cases, they may function as enzymes
such as proteases, esterases, or peroxidases [33]. Our
findings suggest that the different expression patterns
of wheat-miR-628 among wheat genotypes may be related
to variations in the capacity to adapt to dehydration stress.

A different expression pattern was exhibited by 13 miR-
NAs that were downregulated in the drought-tolerant cul-
tivar, but were upregulated in the drought-susceptible
cultivar including miR160a, miR164b, miR166h, miR169d,
and miR444d.3 (Table 7 and Figure 3). The putative target
of miR160a is a member of the auxin response factors
(ARFs) gene family. ARFs are key factors in the regulation
of physiological and morphological mechanisms mediated
by auxins that may contribute to stress adaptation [34].
Furthermore, ARFs regulate the expression of early auxin
responsive genes, including the AUX/IAA genes [35], and
AUX/IAA proteins interact with ARFs and repress their
activities [36]. Auxin induces targeted ubiquitination/deg-
radation of specific AUX/IAA proteins [37] and frees
ARFs from repression by AUX/IAA proteins. The accu-
mulation of ARFs resulting from the downregulation of
miR160a might enhance the auxin response and thus en-
hance root and leaf development. The target of miR164b
is the NAC transcription factor (NAC TF) family. NAC
TFs have functions related to various abiotic stress
[38,39]; indeed, overexpression of the SNAC1 gene in rice
increased drought and salt tolerance [40]. In Arabidopsis,
NACI1 overexpressing lines were bigger, with larger leaves,
thicker stems and more abundant roots than their control
plants. The NAC1 might be an early auxin responsive
gene, and confirmed that NAC1 was located downstream
of TIR1 and upstream of AIR3 and DBP in transmitting
the auxin signal to the AIR3 gene to promote lateral root’s
development. TIR1 is likely to regulate NAC1 at the
transcriptional level, perhaps through auxin-dependent
degradation of a negative regulator of NAC1 [41]. The



Table 4 Annotation of sSRNAs sequences from C1, T1, C2 and T2

Category Unique signatures Total signatures

cl T1 C2 T2 C1 T1 c2 T2
rRNA 112291(49.20%) 126346(49.83%) 133724(52.72%) 147784(48.64%) 1995335(27.20%) 2054201(34.83%) 2095372(28.60%) 2517033(40.42%)
tRNA 37394(16.38%) 37971(14.98%) 35593(14.03%) 45462(14.96%) 3764841(51.32%) 2166029(36.73%) 4133757(56.43%) 2557011(41.06%)
SNORNA 17488(7.66%) 20634(8.14%) 18452(7.27%) 24474(8.06%) 850682(11.59%) 893967(15.16%) 295169(4.03%) 141849(2.29%)
SNRNA 9485(4.16%) 11277(4.45%) 10164(4.01%) 13596(4.47%) 60773(0.83%) 64856(1.10%) 47312(0.65%) 59258(0.95%)
mMIiRNA 1451(0.64%) 1697(0.67%) 1615(0.64%) 2056(0.68%) 109924(1.50%) 268389(4.55%) 80626(1.10%) 407419(6.54%)
Other 50142(21.97%) 55613(21.93%) 54114(21.33%) 70463(23.19%) 554968(7.56%) 449981(7.63%) 673621(9.19%) 544438(8.74%)
Total 228251(100%) 253538(100%) 253662(100%) 303835(100%) 7336523(100%) 5897423(100%) 7325857(100%) 6227008(100%)
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Table 5 Upregulated miRNAs in both two wheat genotypes after dehydration stress

miRNAs ID Homologous miRNAs  Normalized value (TPM) Log2 Log2 Putative target

C1 T Cc2 T2 (T1/C1)  (T2/C2)
tae-miR156k gma-miR156k 0.25 1.71 0.19 519472 277 14.75 SBP
tae-miR159a-5p  gma-miR159a-5p 0.17 1.61 1.04 13340 3.27 7.01 Serine/arginine repetitive matrix 1
tae-miR1661-5p 0sa-miR1661-5p 0.92 3348 0.01 1.62 5.19 7.34 FAM10 family protein
tae-miR166n-5p  0sa-miR166n-5p 0.58 38.03 0.01 1.28 6.03 7.00
tae-miR167b sof-miR167b 042 15.74 1.60 23355 524 7.19
tae-miR168a-5p  zma-miR168a-5p 575 556.21 1.79 46.92 6.60 471
tae-miR168b sof-miR168b 3.66 16.60 245 22022 218 6.49 Short-chain dehydrogenase/reductase
tae-miR444c.1 0sa-miR444c.1 4.83 23.99 38.7 98.02 231 1.34 MADS-box transcription factor
tae-miR827b 0sa-miR827b 0.25 0.76 0.28 204.50 1.60 9.50 ATP-dependent Clp protease
tae-miR829-3p aly-miR829-3p 0.01 0.19 0.19 15.21 425 6.34 Purple acid phosphatase-like protein
tae-miR1137 tae-miR1137 18.16 72.36 33.99 170.23 1.99 2.32 Pherophorin-C1 protein precursor
tae-miR1318-3p  0sa-miR1318-3p 117 2.56 11.02 35.64 113 1.69
tae-miR1432 0sa-miR1432 10.16 3234 0.56 16.32 167 4.85 Mitochondrial phosphate transporter
tae-miR5368 gma-miR5368 167109 389036 58025 214666 122 1.89

downregulation of NAC1 transcripts by either auxin-
induced miR164 or ubiquitination may decrease auxin sig-
nals [42,43]. In this study, we observed that the lateral
roots flourished more in drought-tolerant cultivar than in
drought-susceptible cultivar (Figure 1B and Table 1); this
might have resulted from the early accumulation of auxin
responsive factors. In the early stage of dehydration stress,
the drought-tolerant cultivar might change their morpho-
logical characteristics to enhance root and leaf develop-
ment, thus accumulating more biomass to counteract the
wastage brought on by dehydration stress.

miR166h is a member of the miR166 family and targets
the Class III HD-ZIP protein 4 (HD-ZIP4 III) gene. In
maize, miR166 family miRNAs cleave rolled leafl (rld1)
mRNA which alters leaf polarity [44]. In addition to their
involvement in leaf polarity regulation, HD-ZIP family
members have been reported to be induced by various
stress conditions, including drought and phytohormones
[45,46]. Overexpression of the sunflower Hahb-4 gene
(a HD-ZIP gene) in Arabidopsis conferred both drought-
resistance and morphological changes [47]. The class III

HD-ZIP gene AtHBS8 is expressed in procambial tissues
and has been functionally implicated in vascular tissue
formation [48]. The class III HD-ZIP proteins have also
been reported to control cambium activity by promoting
axial cell elongation and xylem differentiation [49]. In this
study, we found that the xylem and phloem cells of leaf
are more in drought-tolerant cultivar than in drought-
susceptible cultivar after dehydration treatment (Figure 1C
and Table 2); this might have resulted from the upregula-
tion of Class III HD-ZIP gene. In the course of dehydra-
tion stress, the drought-tolerant cultivar might regulate
differentiation of vascular tissue cells, thus enhancing the
developmental process to adapt dehydration stress.
Another miRNA, miR169d, is a member of the miR169
family and targets the CCAAT-box transcription factor
(CCAAT-box TF), which is one of the most common
elements in eukaryotic promoters. The nuclear factor Y
(NFY) transcription factor complex was isolated as a
CCAAT-binding protein complex and is an evolutionarily
conserved transcription factor that occurs in a wide range
of organisms, from yeast to human [50,51]. A study in

Table 6 Downregulated miRNAs in both two wheat genotypes after dehydration stress

miRNAs ID Homologous miRNAs Normalized value (TPM) Log2 Log2 Putative target
c1 T Cc2 T2 (T1/C1)  (T2/C2)
tae-miR15% ath-miR159a 1036.32 4.08 19.40 1.28 -7.99 -392 MYB3
tae-miR159b mdm-miR159b 0.17 0.01 245 017  —4.06 -384 MYB3
tae-miR159¢c-5p aly-miR159¢c-5p 36.73 427 18.64 6.92 -3.11 —143 Dihydro-flavanoid reductase-like protein
tae-miR171f sbi-miR171f 3.00 0.19 245 0.26 -3.98 -3.26 Sensor histidine kinase
tae-miR395i 0sa-miR395i 0.75 0.19 7.25 188 198 —-1.95 ATP sulfurylase
tae-miR916 cre-miR916 1849 797 21.19 795 =121 -141
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Table 7 Opposite expression miRNAs in both two wheat genotypes after dehydration stress

miRNAs ID Homologous miRNAs  Normalized value (TPM) Log2 Log2 Putative target
1 T (] T2 (T1/C1)  (T2/C2)
tae-miR160a wi-miR160a 5.16 0.19 0.19 1333 —4.77 6.15 ARF
tae-miR164b sbi-miR164b 15.24 0.01 0.19 1.37 -10.57 2.86 NAC
tae-miR166h cme-miR166h 583 0.85 0.38 0.94 -2.77 1.32 HD-ZIP4
tae-miR169d wi-miR169d 4.50 0.28 0.19 573 -3.98 493 CCAAT-box transcription factor
tae-miR172a bdi-miR172a 7.66 2.75 0.28 231 —148 303 Succinyl CoA ligase beta subunit-like protein
tae-miR319¢c ppt-miR319¢ 641 0.38 0.19 1.20 -4.08 267 Acyl-CoA synthetase
tae-miR393b mdm-miR393b 8.08 1.04 122 41019 =295 839 TIR1
tae-miR393i gma-miR393i 9.58 1.99 0.19 2649 =227 7.14 TIR1
tae-miR396a bdi-miR396a 12969 2911 1262 3326 -2.16 472 GRF
tae-miR396¢ zma-miR396c 81694 6724 64 43.84 -6.92 278 GRF
tae-miR396g 0sa-miR396g 13.99 3.13 047 16.83 =216 5.16 GRF
tae-miR444d3  0sa-miR444d.3 5.83 0.38 0.01 0.17 -394 4.09 IF3
tae-miR827-5p  zma-miR827-5p 28.57 0.01 0.19 0.85 -11.48 2.18 PHD finger-like protein

Triticum aestivum revealed that nine subunits of the NFY
complex were responsive to drought [52]. In Arabidopsis,
transcription induced by drought and ABA was regulated
by one NFY transcription factor (NFYA5), which might
promote drought resistance [53]. In this study, miR169d
was repressed in the drought-tolerant cultivar after dehy-
dration stress, which might influence ABA-responsive
transcription and result in enhanced dehydration stress
tolerance.

The putative target of miR444d.3 is encoding a transla-
tion initiation factor 3 (IF3) gene. In eukaryotic protein
synthesis, translational initiation is considered to be the
rate-limiting step and controls transcript stability. IF3
plays a central role in polypeptide chain elongation in

eukaryotes and its expression is induced by environ-
mental stress [54,55]. Active conservation of polysomes
during desiccation has been reported to be one of the
mechanisms associated with stress tolerance in plants
[56]. We found that miR444d.3 was downregulated in
the drought-tolerant cultivar, indicating that IF3 may
also involve in dehydration stress tolerance in wheat.

We observed that growth of the drought-tolerant culti-
var was better than that of the drought-susceptible cultivar
after dehydration stress (Figure 1A and Additional file 1:
Table S1). Given the high similarity in the genetic com-
position of the two genotypes, phenotypic variations—
such as dehydration stress tolerance—are more likely to
be caused by changes in regulatory processes than changes

Table 8 Differentially expressed miRNAs only in one wheat genotype after dehydration stress

miRNAs ID Homologous miRNAs Normalized value (TPM) Log2 Log2 Putative target

C1 T Cc2 T2 (T1/C1) (T2/C2)
tae-miR156h mdm-miR156h 042 047 0.56 89.56 0.19 7.31 SBP
tae-miR159a.2 osa-miR159a.2 5.00 2.75 047 153847 -0.86 11.67 Ent-kaurene synthase
tae-miR319a-3p  0sa-miR319a-3p 833 6.16 791 385 -043 -1.04 Probable dihydrodipicolinate reductase 1
tae-miR398 tae-miR398 1.67 3.03 53.11 45343 087 3.09 Superoxide dismutase[Cu-Zn]
tae-miR528b-3p  zma-miR528b-3p 033 0.19 038 18723  -081 8.96 Receptor protein kinase-like
tae-miR538a ppt-miR538a 5222 578 857 6.15 -3.17 -048
tae-miR1128 ssp-miR1128 067 0.76 217 0.85 0.19 -134 Irvingia malayana 18S ribosomal RNA gene
tae-miR1310 pta-miR1310 7338 7596 9840 3521 0.05 -1.48
tae-miR1862b 0sa-miR1862b 1.58 0.85 4.71 0.85 -0.89 —246 Myosin heavy chain class VIII A2 protein
tae-miR2911 peu-miR2911 34366 64175 32224 86482 090 142 Chlorophyll a/b-binding protein WCAB precursor
tae-miR5048b hvu-miR5048b 11653 73659 17082 31209 266 0.87 Protein kinase domain containing protein
tae-miR5059 bdi-miR5059 7.75 711 1799 778 -0.12 -1.21
tae-miR5648-5p  ath-miR5648-5p 6.75 2.56 1.51 0.77 -140 -097 Aquaporin NIP1-2
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J

in proteins [57]. Because of their different geographical
origins, the two genotypes are adapted to the particular
environmental conditions in their native habitats. Thus,
constitutive differences related to metabolism, biomass
mobilization, energetic resources, radical system structure,
and density of stomata would be expected. In this study,
we confirmed that several miRNAs were downregulated
in the drought-tolerant cultivar but upregulated in the
drought-susceptible cultivar under dehydration stress, and
we assessed the functions of their potential targets in re-
sponse to stress. Therefore, we infer that the different cap-
acities for dehydration stress tolerance in the two wheat
genotypes may arise from the differential expression of
target genes, which are regulated by their corresponding
miRNAs (Figure 7).

Conclusions

We found that 46 conserved miRNAs and 321 novel
miRNAs were differentially expressed in two wheat
genotypes under dehydration stress. Interestingly, 13

miRNAs exhibited opposite patterns of expression in
the two wheat genotypes; these miRNAs were down-
regulated in drought-tolerant cultivar but upregulated
in drought-susceptible cultivar. A number of repre-
sentative miRNAs were verified by qPCR analysis and
northern blot, which produced results consistent with
those of the deep-sequencing method. Our findings
indicate that expression patterns of some miRNAs may be
very different even between two genotypes of the same
species. Further analysis of the targets of differentially
expressed miRNAs will help understand the mechanism
of response and tolerance to dehydration stress in wheat.

Methods

Plant materials and treatments

Wheat cultivar Hanxuan10 and Zhengyinl were used in
this study. HanxuanlO was collected from Luoyang
Academy of Agriculture and Forestry Sciences, Luoyang
City, Henan Province, China. Hanxuanl10 is the import-
ant source in China with drought resistance, which is
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with their expression in the C1 well-watered control treatment, which was set to 1.0.

widely grown in semi-arid areas under rain-fed condi-
tions. Zhengyinl (St1472/506), which is generated from
Akagomughi//Ritie/Wilhemina, was collected from the
National Engineering Research Center for Wheat,
Zhengzhou City, Henan Province, China. Seeds of
HanxuanlO and Zhengyinl were surface-sterilized in
70% alcohol for 5 min, treated with 0.1% HgCl for
15 min, and rinsed five times in distilled water for 2 min
each. After soaking in tap water for 12 h, the seeds were
allowed to germinate for 4 days in a dark incubator at
25°C. The plantlets were then cultured in half strength
Hoagland’s nutrient solution in a phytotron at 25°C/22°C
(day/night) and under a 14-h photoperiod. Artificial water
stress was induced with polyethylene glycol (PEG) 6000
solution to achieve an osmotic potential of -0.975
MPa (20% PEG). At the two-leaf stage, HanxuanlO
and Zhengyinl seedlings were subjected to dehydration
stress treatments designated T1 and T2, respectively, by
watering with PEG solution or were grown under normal

condition as control treatments designated C1 and C2,
respectively. Leaf tissues were harvested from both sets
of seedlings 12 h after treatment. All samples were frozen
immediately in liquid nitrogen and stored at -80°C
until use.

Analysis of lateral roots, chlorophyll content and relative
water content

Number and length of lateral root of the seedlings were
recorded by counting and measurement. Chlorophyll in
leaves was extracted with 80% acetone and its content
was expressed as mg g " fresh weight (FW) as described
previously [58]. Relative water content of leaf was calcu-
lated according to the method of Flexas et al. [59]. Data
presented are the averages of at least 5 replicates, and
the final data analysis used the t-test of Statistical Ana-
lysis System (SPSS 19.0) (SPSS Institute, Inc., NC, USA).
In the results presented asterisks are used to identify the
levels of significance: *P < 0.05 and **P < 0.01.
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Preparation and observation of leaf section

The fresh leaves of same position in C1, T1, C2 and T2
were used as materials, 0.5 x 0.5 cm tissues at the half
zone of the leaf was taken, and these materials were
fixed in FAA (Formalin: glacial acetic acid: 50% alcohol
mixture = 5:5:90). Conventional paraffin section method
[60] was used for making transverse section of every
sample, safranin and fast green dyed and neutral gum
sealing pieces. In the end, OLYMPUS BX51 microscope
(Olympus Co., Japan) was used to observe the vascular

tissue structure of the leaf and photograph. The observa-
tions were repeated three times per sample.

Small RNA library construction and sequencing

Total RNA was extracted using TRIzol reagent (TaKaRa
Co., Tokyo, Japan) according to the manufacturer’s instruc-
tions. Small RNAs were ligated sequentially to 5" and 3’
RNA/DNA chimeric oligonucleotide adaptors (Illumina),
and the resulting ligation products were gel purified by
10% denaturing PAGE and reverse-transcribed to produce
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cDNAs. The cDNAs were sequenced using a Genome and removing overrepresented sequences and noise, clean
Analyzer IIx System (Biomarker technologies CO., LTD, reads and unique reads (reads with non-redundancy) were

Beijing, China). obtained. The BlastN was used to align clean reads against
Rfam 11.0 (ftp://ftp.sanger.ac.uk/pub/databases/Rfam)
Identification of miRNAs and Repbase (http://www.girinst.org/). The tRNA, rRNA,

The reads generated by deep sequencing were analyzed snoRNA and snRNA were annotated by aligning them
on the FASTX-toolkit website (http://hannonlab.cshl. to the Rfam database while the repeat sequences were
edu/fastx_toolkit/). After the basic analysis, including aligned to the Repbase database. The remaining non-
filtering out low quality reads, trimming the adaptors annotated sequences were used to do a BLAST against the
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Figure 7 Possible regulatory mechanism involving differentially expressed miRNAs and their target genes in two wheat genotypes
under dehydration stress. Different expression patterns of several miRNAs may be indirectly involved in wheat tolerance to dehydration stress
by regulating target gene expression. 1, upregulation; |, downregulation; ARF, auxin response factor; NAC, NAC transcription factor; HD-ZIP4, Class
Il HD-ZIP protein 4; CCAAT-box TF, CCAAT-box transcription factor; IF3, translation initiation factor 3.



http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
ftp://ftp.sanger.ac.uk/pub/databases/Rfam
http://www.girinst.org/

Ma et al. BMC Plant Biology (2015) 15:21

miRBase 20 (http://www.mirbase.org) databases to iden-
tify mature miRNAs. All non-annotated reads with a
length of 16-30 nt were mapped to the hexaploid
wheat genome (http://www.cerealsdb.uk.net/CerealsDB/
Documents/DOC_CerealsDB.php) using the Bowtie pack-
age (version one), only perfectly matched sRNAs were
used for further analysis. Novel miRNAs were identified
using the MIREAP [61] software (http://sourceforge.net/
projects/mireap/) based on their precursors, followed by
secondary structure prediction using RNAfold software
(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The key
criteria for miRNA prediction were according to that had
been reported in previous literature [20].

Screening of differentially expressed miRNAs
Differentially expressed miRNAs were identified using the
TPM and IDEG6 [62] software. TPM (Tags Per Million
reads) is a standardized method for calculating miRNA
expression levels. TPM values were calculated using the
following equation:

TPM = number of mapped miRNA reads
+ number of clean sample reads x 10°

In order to calculate the levels of differential expressed
miRNAs, normally the value was set as 0.01 by default
when the sequencing read is 0 (no reads) [63]. We cali-
brated miRNA expression levels using multiple hypoth-
esis tests with a false discovery rate (FDR) of less than
0.01, performed generalized chi-square tests for differ-
ential miRNA expression using the IDEG6 software
(http://telethon.bio.unipd.it/bioinfo/IDEG6/), and screened
the miRNAs for those with P-values less than 0.01 and
TPM ratios between samples that were greater than 2 (fold
change > 2). The miRNAs that met these criteria were
identified as being differentially expressed.

Prediction of miRNA targets and annotation of functions
Potential miRNA targets were identified in wheat (Triticum
aestivum L.) transcripts using the psRNATarget software
(http://plantgrn.noble.org/psRNATarget/) (version 12) with
the following parameters: prediction score cutoff value = 3.0,
length for complementarity scoring = 20, and target acces-
sibility = 25. Based on gene IDs, we obtained the sequen-
ces of miRNA targets from NCBI. Blast search, mapping,
and annotation of these sequences were performed using
the online software Blast2GO (http://www.blast2go.de).

Reverse transcription reactions

Reverse transcription reactions were performed using an
SYBR PrimeScript miRNA RT-PCR Kit (TaKaRa Co.,
Tokyo, Japan) following the manufacturer’s instructions.
Briefly, a 20-pl reaction, containing 2-pl total RNA,
10-pl 2 x miRNA reaction buffer mix, 2-ul 0.1% BSA,
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and 2-pl miRNA PrimeScript RT enzyme mix was in-
cubated at 37°C for 60 min and 85°C for 5 min and
then stored at —20°C until use.

Validation of differentially expressed miRNAs

qPCR was performed with a SYBR PrimeScript miRNA
RT-PCR Kit (including reverse transcription and fluores-
cent quantitation) using a real-time PCR detection system
(Bio-Rad laboratories, Inc.). Each 25-pl qPCR reaction so-
lution comprised 2-ul cDNA (~100 ng), 1-pl 10 uM PCR
forward primer, 1-ul 10 uM Uni-miR qPCR primer,
12.5-ul 2 x SYBR premix EX Taqll, and 8.5-ul nuclease-
free water. The reactions were incubated at 95°C for
2 min and then subjected to 40 cycles of 95°C for 10 s,
58°C for 20 s, and 72°C for 10 s. After reactions were per-
formed, a threshold was set manually and the threshold
cycle (CT) was recorded automatically. All reactions were
replicated three times per sample. The relative expression
levels of the miRNAs were calculated using the 224"
method [64], and the data were normalized to 18S rRNA
CT values. The primer sequences corresponding to 25 dif-
ferentially expressed miRNAs are presented in Additional
file 6: Table Sé.

miRNA verification by northern blot

Northern blot analyses were performed with High Sensi-
tive miRNA Northern Blot Assay Kit (Signosis, USA) in
accordance with the manufacturer’s instructions. 30 pg
total RNA of each sample was electrophoresed on a 15%
polyacrylamide gel, transferred to membrane (Hybond N+
nylon filter, Amersham) with a semidry apparatus (BioRad,
Hercules, CA) and UV crosslinked (Stratalinker; Stratagene).
Membranes were exposed using a chemiluminescence
imaging system (Ultralum, Inc., Claremont, CA). The nor-
malization of the result was done by stripping the blot and
probing it for U6 expression. Hybridization signals were
imaged and quantified using a Molecular Image Analysis
Software (Image Quant TL 7.0, GE Healthcare, USA).

Validation of expression of the target genes by qPCR

The expression levels of the predicted target genes were
estimated by qPCR. First strand cDNA was synthesized
from 1 pg of RNA using a TransScript First-Strand
¢DNA Synthesis SuperMix (TransGen Co., Beijing, China)
following the manufacturer’s instructions. The product of
the reverse transcription reaction was diluted to a final
volume of 90 pl, and 1 ul was used for qPCR with Trans-
Start Top Green qPCR SuperMix (TransGen Co., Beijing,
China). Each 20-pl qPCR reaction comprised 1-pl cDNA,
0.5-pl 10 uM forward primer, 0.5-pl 10 uM reverse primer,
10-pl 2 x TransStart Top Green qPCR SuperMix, and 8-yl
double-distilled water. The reactions were incubated at
95°C for 2 min and then subjected to 40 cycles of 95°C for
5 s, 53°C for 20 s, and 72°C for 10 s. All reactions were
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replicated three times per sample. The relative expression
level of the target gene was calculated using the 2°44<T
method normalized to 18s rRNA CT values. The sequen-
ces of the primer pairs used for the target genes are pre-
sented in Additional file 7: Table S7.

Availability of supporting data

The generated raw reads of 4 small RNA libraries in this
study are available in SNBI SRA database. The informa-
tion can be found at the following links: http://www.ncbi.
nlm.nih.gov/sra/?term=SRP051106. The accession num-
bers of C1, T1, C2 and T2 are SRX807431, SRX808858,
SRX809318 and SRX809338, respectively. The data in-
cluding the chlorophyll content and relative water content
are available in Additional file 1. The sequences of differ-
entially expressed conserved miRNAs and novel miRNAs
are available in Additional files 2 and 3, respectively. Sec-
ondary structure of differentially expressed novel miRNAs
is available in Additional file 4. Potential target genes
of differentially expressed miRNAs are available in
Additional file 5. All primer sequences used in this
study are listed in Additional files 6 and 7, respectively.

Additional files

Additional file 1: Table S1. Changes in the content of chlorophyll and
relative water content in two wheat genotypes under dehydration stress.

Additional file 2: Table S2. Differentially expressed conserved miRNAs
in two wheat genotypes after dehydration stress.

Additional file 3: Table S3. Differentially expressed novel miRNAs in
two wheat genotypes after dehydration stress.

Additional file 4: Table S4. Secondary structure of differentially
expressed novel miRNAs.

Additional file 5: Table S5. Potential target genes of differentially
expressed miRNAs.

Additional file 6: Table S6. Primer sequences used for gPCR analysis of
25 differentially expressed miRNAs.

Additional file 7: Table S7. Primer pair sequences used for gPCR
analysis of 10 target genes.
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