
Banerjee et al. BMC Plant Biology  (2015) 15:60 
DOI 10.1186/s12870-015-0444-2
RESEARCH ARTICLE Open Access
Redox-dependent chaperone/peroxidase function
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Abstract

Background: Cyanobacteria, progenitors of plant chloroplasts, provide a suitable model system for plants to
study adaptation towards different abiotic stresses. Genome of the filamentous, heterocystous, nitrogen-fixing
cyanobacterium Anabaena PCC7120 harbours a single gene (alr4641) encoding a typical 2-Cys-Peroxiredoxins
(2-Cys-Prxs). 2-Cys-Prxs are thiol-based peroxidases that also function as molecular chaperones in plants and other
systems. The Alr4641 protein from Anabaena PCC7120 shows high level biochemical similarities with the plant
2-Cys-Prx. The physiological role played by the Alr4641 protein in Anabaena was addressed in this study.

Results: In Anabaena PCC7120, alr4641 transcript /Alr4641 protein was induced in response to abiotic stresses and
its promoter was active in the vegetative cells as well as heterocysts. The wild-type Alr4641 protein or Alr4641
lacking the peroxidatic cysteine (Alr4641C56S) or the resolving cysteine (Alr4641C178S) existed as higher oligomers
in their native form. The wild-type or the mutant Alr4641 proteins showed similar chaperone activity, but only the
wild-type protein exhibited peroxidase activity indicating that unlike peroxidase activity, chaperone activity was not
dependent on cysteines. In contrast to other 2-Cys-Prxs, chaperone/peroxidase activity of Alr4641 was dependent
on its redox state and not oligomerization status. Alr4641 could protect plasmid DNA from oxidative damage and
physically associate with NADPH-dependent thioredoxin reductase (NTRC). Like 2-Cys-Prxs from plants (e.g. rice),
Alr4641 could detoxify various peroxides using NTRC as reductant. On exposure to H2O2, recombinant Anabaena
PCC7120 strain over-expressing Alr4641 (An4641+) showed reduced content of reactive oxygen species (ROS), intact
photosynthetic functions and consequently better survival than the wild-type Anabaena PCC7120, indicating that
Alr4641 can protect Anabaena from oxidative stress.

Conclusions: The peroxidase/chaperone function of Alr4641, its inherent transcriptional/translational induction
under different abiotic stresses and localization in both vegetative cells and heterocysts could be an adaptive
strategy to battle various oxidative stresses that Anabaena encounters during its growth. Moreover, the
recombinant Anabaena strain over expressing Alr4641 showed higher resistance to oxidative stress, suggesting its
potential to serve as stress-tolerant biofertilizers in rice fields.
Background
Peroxiredoxins (Prxs) are ubiquitous peroxidases with im-
portant roles in detoxification of hydrogen peroxide, alkyl
hydroperoxides and peroxynitrites [1,2]. Prxs are charac-
terized by a conserved Alkylhydroperoxide C (AhpC) or
Thiol–Specific Antioxidant (TSA) domain that contains a
thioredoxin fold. Prxs have highly conserved cysteine resi-
dues, peroxidatic cysteine (Cp) and resolving cysteine
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(Cr), which are essential for peroxidase activity. Based on
their catalytic mechanisms and the presence of conserved
cysteine residues, Prxs are classified into three groups,
namely, typical 2-Cys-Prx, atypical 2-Cys Prx (which are
subdivided into type II Prx and PrxQ) and 1-Cys-Prx [3].
The typical 2-Cys-Prxs are functionally conserved across

diverse organisms and form the largest group of peroxire-
doxins. Recently, 2-Cys-Prx has been shown to be a
conserved marker of circadian rhythms in all the three
phylogenetic domains viz. Eukaryota, Bacteria and Archaea
[4]. In typical 2-Cys-Prxs, Cp is present near N-terminus
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while Cr is located in the vicinity of C-terminus. On reac-
tion with a peroxide substrate, Cp (Cys-SH) is oxidized to
sulfenic acid (Cys-SOH), which in turn reacts with the thiol
group of the resolving cysteine from other subunit to form
an intermolecular disulfide bridge [5]. The active form
of enzyme is regenerated with the help of reductants
like thioredoxin. In the presence of excess substrate (e.g.
H2O2), Cp of 2-Cys-Prx may undergo overoxidation to
form sulfinic acid (Cys-SO3), which prevents disulfide
bond formation, rendering the enzyme inactive. How-
ever, in many organisms, sulfiredoxin (Srx) reduces the
overoxidized Cp to its catalytically active form [6,7]. Sensi-
tivity to overoxidation depends on the structural motifs,
GG(L/V/I)G and YF, which are believed to be present in
the eukaryotic 2-Cys-Prxs, but generally absent in the cor-
responding prokaryotic enzymes [8].
The typical 2-Cys-Prx plays a vital role in detoxifying

peroxides in all the kingdoms of life. Transgenic Arabi-
dopsis with decreased 2-Cys-Prx in chloroplast showed
oxidative damage of chloroplastid proteins indicating that
2-Cys-Prx protects the photosynthetic machinery from
oxidative damage [9,10]. Also, Arabidopsis mutant lacking
both the chloroplastid 2-Cys-Prx displayed altered redox
homeostasis and showed increased H2O2 levels in leaves
[11]. Overexpression of 2-Cys-Prx has been shown to
protect potato plants from oxidative stress and high
temperature [12]. In tobacco, the chloroplastid 2-Cys-Prx
has been implicated in protecting cells from photoinhibi-
tion following exposure to high light, methyl viologen
(MV) or t-butyl hydroperoxide [13]. Disruption of gene
encoding 2-Cys-Prx in Synechocystis as well as in Syne-
chococcus eliminated tolerance against H2O2 [14,15]. In
bacteria like Sulfolobus solfataricus and Vibrio vulnifi-
cus, 2-Cys-Prx has been proposed to detoxify endogen-
ously generated hydrogen peroxide, thus, supporting its
role as an anti-oxidative stress protein [16,17].
Interestingly, the typical 2-Cys-Prx not only defends cells

from oxidative stress, but also functions as redox-regulated
chaperone depending on its oligomerization status [18]. The
2-Cys Prx from Pseudomonas aeruginosa, on exposure to
H2O2, converts into a low molecular weight (LMW) form
from its high molecular weight (HMW) form. This change
triggers a chaperone to peroxidase functional switch [19]. In
case of 2-Cys Prx from yeast, oxidative stress and heat shock
triggers conversion from LMW form to HMW structure,
which shows chaperone activity [20]. In stroma of chloro-
plast, under conditions of stress, the dimeric 2-Cys-Prx
switches to its oligomeric form and binds reversibly to the
thylakoid membrane [21]. It is widely believed that the
dimeric form of 2-Cys-Prx shows peroxidatic functions
while oligomerization is essential for chaperone activity [2].
Cyanobacteria, progenitors of plant chloroplasts, were

the first organisms to produce oxygen as a by-product of
photosynthesis [22,23]. Hence, it is expected that these
organisms would have developed elaborate mechanisms to
overcome oxidative stress. Filamentous forms of nitrogen-
fixing cyanobacteria (e.g. Anabaena) are economically
important as biofertilizers during cultivation of paddy in
Southeast Asia [24]. Anabaena PCC7120, a filamentous,
heterocystous, diazotrophic cyanobacterium, that tolerates
abiotic stresses like radiation and desiccation, has been used
as a suitable model system to study the fundamental as-
pects of adaptive responses to various stresses including
oxidative stress in our laboratory [25-29]. Genome se-
quence analysis has shown Anabaena PCC7120 to possess
several peroxiredoxin genes/ORFs (e.g. all1541, alr2503,
all2375, all2556, alr3183, alr4404, alr4642 and alr4641)
[30]. The Alr3183, Alr2503, All2375 and All2556 belong to
PrxQ-type of peroxiredoxins, All1541 is a type II Prx,
Alr4404 is a 1-Cys-Prx, Alr4642 is Prx-like, whereas
Alr4641 is a typical 2-Cys-Prx [26,31].
Earlier, 2-Cys-Prx from Anabaena was shown to be

prone to over-oxidation [8] and was found to utilize
NADPH-dependent thioredoxin reductase (NTRC) as re-
ducing agent for peroxidase activity like the 2-Cys-Prx from
rice [32]. In this study, expression analysis in response to
various stresses, redox dependent chaperone/peroxidase
function and the role played by this enzyme in protecting
Anabaena from oxidative stress were addressed. Along with
oxidative stress, alr4641/Alr4641 was induced by salt/os-
motic/γ-radiation stress in Anabaena and the Alr4641
protein was expressed in the vegetative cells as well as het-
erocysts. Alr4641 formed higher oligomeric complexes and
showed peroxidase/chaperone function. Unlike peroxidase
activity, chaperone activity of Alr4641 did not depend on
the conserved cysteine residues. Interestingly, reduction of
Alr4641 with DTT resulted in loss of chaperone activity
whereas treatment with H2O2 inactivated peroxidase func-
tion. Over-expression of Alr4641 in Anabaena protected
the photosynthetic machinery from H2O2-induced damage
via its peroxidatic cysteine, leading to better survival than
the wild-type Anabaena; thus, establishing its protective
role in overcoming oxidative stress.

Results
Abiotic stresses induce alr4641/Alr4641 expression in
Anabaena
Expression of alr4641 in response to different oxidative
stress inducing agents was assessed by Northern blotting-
hybridization/dot blot analysis. The wild-type Ana-
baena PCC7120 cells were treated with methyl viologen
(MV), hydrogen peroxide (H2O2) or tertiary butyl hy-
droperoxide (t-Bx) for 1 h. Subsequently, cells were
harvested, total RNA isolated and probed with the
alr4641 gene probe. Results showed distinct induction
of ~0.9-knt transcript in RNA isolated from Anabaena
cells exposed to the above-mentioned oxidizing agents
as compared to the untreated (control) cells (Figure 1A).



Figure 1 Induction of alr4641/Alr4641. (A) Northern-blotting hybridization analysis. Total RNA was isolated from Anabaena PCC7120 grown
in BG-11 medium without any oxidative stress-causing agent (Un) or with 1 μM methyl viologen (MV), 1 mM H2O2 (H2O2), 0.25 mM t-butyl
hydroperoxide (t-Bx), 50 mM NaCl (NaCl), 100 mM sucrose (Suc), resolved (5 μg per lane) on formaldehyde-agarose gels, transferred onto a
nylon membrane and probed with the DIG-labeled alr4641 ORF. The ~900-nt transcript is shown by an arrow. Blot on the left panel was exposed
to the X-ray film for 30 s whereas the one on the right was exposed for 15 min. (B) Time course of alr4641 expression. The wild-type Anabaena
PCC7120 cells were treated with H2O2 (250 μM) and total RNA isolated at time points indicated. Total RNA (1 μg) from each time point was
spotted on a nylon membrane and hybridized to the DIG-labeled alr4641 probe. (C) The wild-type Anabaena PCC7120 was treated with different
concentrations of MV, H2O2, t-Bx, cumeme hydroperoxide (Cux), NaCl or sucrose as indicated in the figure. Total RNA was isolated after 1 h of
stress and was hybridized to the alr4641 probe. Un, RNA from untreated control cells (D) Induction of the Alr4641 protein in Anabaena. Total
proteins (20 μg per lane) were isolated from Anabaena cells treated with sucrose (300 mM) or NaCl (150 mM) or MV (2 μM) and probed with the
Alr4641 antiserum. The 23 kD Alr4641 protein is shown by an arrow. (E) Total RNA isolated from untreated Anabaena cells (Un) or cells treated
with 1 kGy or 3 kGy dose of gamma radiation was hybridized to the alr4641 probe. After exposure to 3 kGy dose of gamma radiation, total
proteins were extracted from Anabaena cells and probed with the Alr4641 antiserum.
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Interestingly, treatment with sucrose or NaCl also en-
hanced the levels of the alr4641 transcript (Figure 1A).
Although, alr4641 expression was observed as early as
after 30 min of exposure to H2O2, maximal expression
occurred by 1 h after which it declined and disappeared
at the end of 6 h (Figure 1B). Expression profile of
the alr4641 transcript exposed to different concentra-
tions of oxidative/osmotic stress causing agents for 1 h
was monitored. With increasing concentrations, a
concomitant rise in the level of the alr4641 transcript
was observed (Figure 1C). Western blotting followed by
immunodetection with the Alr4641 antiserum revealed
salt, sucrose and MV to increase the content of the
Alr4641 protein as compared to the untreated control
cells (Figure 1D). Interestingly, the alr4641 transcript
was also induced in response to ionizing (γ) radiation, a
physical agent that causes oxidative stress (Figure 1E).
Post irradiation, during recovery, a clear enhancement
in the content of the 2-Cys-Prx protein was observed
(Figure 1E).
Alr4641 promoter is expressed in the vegetative cells as
well as heterocysts
As distinct induction of alr4641 was observed in response
to various abiotic stresses, it was desired to locate the
alr4641 promoter and indentify the regulatory elements
associated with it. Rapid amplification of cDNA ends
(RACE) with the total RNA isolated from the H2O2-
treated cells showed a distinct ~200-bp cDNA product
(Figure 2A). Sequence analysis of ~200-bp product identi-
fied the start of alr4641 transcript to be 165-nt upstream
of the translational start of the alr4641 ORF (Figure 2B).
Bioinformatic analysis revealed the presence of a prokary-
otic −10 and −35-like promoter sequence and a putative
FurA binding box within this promoter (Figure 2B). Elec-
trophoretic mobility shift assays (EMSAs) showed the
purified FurA protein from Anabaena PCC7120 to bind
the FurA binding box (Additional file 1).
The alr4641 promoter and its adjacent DNA were

cloned upstream of the gfp reporter gene in reporter vec-
tor, pAM1956, and transferred into Anabaena PCC7120



Figure 2 RACE analysis and expression of the alr4641 promoter (Palr4641)-gfp gene fusion. (A) RACE was performed with RNA isolated
from Anabaena cells treated with H2O2 (1 mM) for 1 h using primers described in the Methods section. The ~200-bp DNA fragment is shown by
an arrow. (B) Sequence analysis of the RACE product. The transcriptional start site is indicated by +1 in the figure. The nucleotide sequence
corresponding to the −10 and −35 region of the alr4641 promoter, the ribosome binding site (SD) and the translational start codon (SC) are
denoted while the FurA-binding sequence is underlined. (C) Bright field and fluorescence micrographs (1500X). An4641prom cells, were grown
in medium lacking combined nitrogen for several generations and visualized under a fluorescence microscope; (a) bright field image, (b) fluorescence
micrograph of cells using Hg-Arc lamp (excitation BP, 546–612 nm and emission LP, 515 nm) and (c) fluorescence micrograph (excitation BP,
450–490 nm and emission LP, 515 nm). Heterocysts are depicted by arrows. (D) Total protein from heterocysts (20 μg) was resolved by
SDS-PAGE and probed with the Alr4641 antiserum. (E) Detection of the Alr4641 protein. The wild-type Anabaena PCC7120 cells were grown in
BG-11 medium without (BG11N-) or with combined nitrogen (BG11N+). Protein extracts (60 μg per lane) were resolved by SDS-PAGE (10% gel),
and immunodetected with the Alr4641 antiserum on Western blots. The 23 kD Alr4641 protein is depicted by an arrow.
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(An4641prom). An4641prom was grown under nitrogen-
fixing conditions and subjected to microscopic analysis.
Interestingly, along with the vegetative cells, GFP fluores-
cence was also observed in the heterocysts indicating that
the alr4641 promoter was active in heterocysts as well as
in the vegetative cells (Figure 2C). Moreover, the Alr4641
protein was also detected in proteins extracted from
heterocysts on Western blots (Figure 2D). Expression of
the Alr4641 protein was monitored in the wild-type Ana-
baena cultures grown under nitrogen-supplemented or
nitrogen-fixing conditions. No significant difference in the
production of Alr4641 was observed (Figure 2E) suggest-
ing that the absence of combined nitrogen in the growth
medium does not affect Alr4641 expression in Anabaena.

Oligomerization of Alr4641 is independent of cysteine
residues
Enhanced production of the Alr4641 protein in response
to abiotic stresses and its localization in both heterocysts
as well as vegetative cells suggested that Alr4641 could
be an important player in detoxification of ROS in Ana-
baena. Hence, we wished to characterize the biophysical
and biochemical properties of the Alr4641 protein in
order to gain insights into its function. Analysis with the
SMART (http://smart.embl-heidelberg.de/) or BLAST re-
vealed the protein encoded by alr4641 to be a typical 2-
Cys-Prx containing the conserved VCP motif. The 612 bp
long alr4641 ORF encoded a 23 kD (203 amino acid)
protein with the AhpC/TSA domain extending from the
13th amino acid to the 146th amino acid. Analysis of the
Alr4641 protein sequence showed the presence of GGVG
and YF motifs that are typical of eukaryotic 2-Cys-Prx
(Figure 3A). Based on homology with other peroxiredox-
ins, cysteines at position 56 (Cys-56) and 178 (Cys-178) of
Alr4641 were speculated to be the putative peroxidatic
and resolving cysteine residues respectively (Figure 3A).
For functional characterization, the 2-Cys peroxiredoxin

protein (Alr4641) from Anabaena was over-expressed in E.
coli with N-terminal His-tag and purified near to homo-
geneity by affinity chromoatography (Figure 3B). The puta-
tive peroxidatic (Cys-56) and resolving (Cys-178) cysteines
of Alr4641 were individually mutated to serine by site-
specific mutagenesis and the corresponding proteins
(Alr4641C56S and Alr4641C178S) were purified to near
homogeneity. Gel filtration analysis revealed Alr4641 to
elute in a fraction corresponding to decamer/dodecamer
(Figure 3C). Native PAGE analysis showed the wild-type
Alr4641 as well as the mutants to be present as higher
oligomers (Figure 3D). These results suggest that peroxida-
tic and resolving cysteine residues are not involved in
oligomer formation. On SDS-PAGE, the wild-type Alr4641
protein migrated as a monomer under reducing conditions
(in presence of DTT), while in absence of DTT, a 50 kD
protein, corresponding to its dimeric form was observed,
indicating formation of inter subunit disulfide bond.
Electrophoretic separation showed both Alr4641C56S

http://smart.embl-heidelberg.de/


Figure 3 Oligomerization of the wild-type/mutant Alr4641 proteins. (A) In silico analysis. The 203 amino-acid long Alr4641 protein contains
an AhpC/TSA domain at its N terminal. The amino acid residue number of the conserved VCP motif, the GGVG and YF motif, and the peroxidatic
and resolving cysteines are indicated. (B) Purification of Alr4641 by affinity chromatography. Proteins were resolved by SDS-PAGE and visualized
by staining with CBB G-250. Lane 1, whole cell protein extract (10 μg) of un-induced E. coli BL-21/pET4641; lane 2, whole cell protein extract
(10 μg) of IPTG-induced E. coli BL-21/pET4641; lane3, clarified cell lysate (10 μg); lane 4, molecular mass marker (SDS-7), lane 5, 200 mM imidazole
elution (7.5 μg) and lane 6, 500 mM imidazole elution (6.0 μg). (C) Size exclusion chromatography. The column (Superdex 200 10/300 GL) was
pre-equilibrated with buffer (20 mM Tris, 50 mM NaCl, pH 7.2) and a 100μl aliquot of protein (200 μg) was injected. The retention volumes
obtained with standard proteins were employed to draw a standard curve (depicted in the insert) that was used to determine the mass of
Alr4641 (D) Native PAGE. The purified proteins (10 μg each) were resolved on native polyacrylamide gel (10%) and subsequently stained with
CBB. Lane 1, native protein marker; lane 2, Alr4641; lane 3, Alr4641C56S and lane 4, Alr4641C178S. (E) SDS-PAGE analysis of purified proteins (each
10 μg) under reducing or non-reducing conditions. (F) Native PAGE of reduced or oxidized Alr4641. The Alr4641 protein (10 μg) was incubated
with either H2O2 (10 mM) or DTT (5 mM) for 10 min, resolved on native polyacrylamide gels and visualized by staining with CBB. Lane 1, Alr4641
treated with H2O2 (10 mM); lane 2, untreated Alr4641 and lane 3, Alr4641 treated with DTT (5 mM).
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and Alr4641C178S to be present as monomers irre-
spective of the presence or absence of reducing agent
(DTT) on SDS PAGE (Figure 3E). Tryptophan fluores-
cence spectra of the wild-type Alr4641, Alr4641C56S
and Alr4641C178S proteins showed no shift in peak
position at 340 nm suggesting that the absence of Cys
residues does not alter the compactness of their struc-
ture (Additional file 2). Reduction of the wild-type
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Alr4641 did not alter the oligomeric state of the protein,
but on treatment with H2O2, few smaller oligomers
along with the major higher oligomeric form were ob-
served on native PAGE (Figure 3F). As the oligomeric
state of Alr4641 remained unchanged, it was of particu-
lar interest to analyze the chaperone/peroxidase func-
tion of Alr4641 after exposure to oxidizing or reducing
agents. Results pertaining to these activities are de-
scribed in the next two sections.

Alr4641 protein loses its chaperone function on reduction
The Alr4641 protein was assessed for its capability to
function as a molecular chaperone employing the malate
dehydrogenase (MDH) aggregation assay. At 55°C, the
MDH protein showed substantial aggregation after 10 min
whereas the purified Alr4641 protein by itself did not form
any aggregates. When purified Alr4641 was added to
MDH, a marked decrease in the scattering of light was ob-
served indicating reduced aggregation of MDH. Chaperone
activity of Alr4641 was increased with increasing concen-
tration of the protein (Alr4641) indicating that this protein
Figure 4 Alr4641 functions as a molecular chaperone. (A) Chaperone acti
(MDH, 5 μM) in the presence of different concentrations of Alr4641 (as indicate
(B) Light scattering of MDH was monitored (as described in A) in the presence
activity of oxidized or reduced Alr4641. The purified Alr4641 protein was t
for chaperone activity with MDH (5 μM). In another reaction, the DTT-trea
employed for the chaperone assay. (D) Secondary structure analysis. The p
control Alr4641 protein i.e. without DTT treatment (as indicated in the figu
did indeed function as a molecular chaperone (Figure 4A).
Alr4641C56S and Alr4641C178S both showed chaperone
activity similar to the wild-type Alr4641 (Figure 4B).
Alr4641 treated with H2O2 retained chaperone activity,
but interestingly, the Alr4641 protein on reduction with
dithiothretol (DTT) failed to show this activity (Figure 4C).
However, when the DTT-reduced Alr4641 was treated
with H2O2, it regained its chaperone activity (Figure 4C).
CD spectropolarimetric analysis showed significant differ-
ences in the secondary structure of the reduced and the
non-reduced wild-type Alr4641 suggesting that the oxi-
dized and reduced forms were inherently different from
each other (Figure 4D).

Alr4641 protects plasmid DNA from oxidative damage
and shows Trx/NTRC-dependent peroxidase activity
Metal catalyzed oxidation (MCO) was performed to ver-
ify if the purified Alr4641 protein could function as an
antioxidant protein. The plasmid DNA was completely
degraded when subjected to MCO assay in the absence
of Alr4641. However, addition of the Alr4641 protein
vity. Light scattering due to thermal aggregation of malate dehydrogenase
d in the figure) was monitored with a spectrophotometer at 360 nm.
of Alr4641C56S or Alr4641C178S or Alr4641 (20 μg each). (C) Chaperone
reated with H2O2 (10 mM) or DTT (10 mM) for 60 min and tested
ted Alr4641 was incubated with H2O2 (5 mM) for 30 min and then
urified Alr4641 protein treated with DTT (10 mM) for 30 min or the
re), was analyzed in a CD spectropolarimeter.
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protected the plasmid DNA from degradation (Figure 5A).
The ability of Alr4641 to scavenge hydrogen peroxide
with different electron donor systems [DTT, reduced
glutathione (GSH) or thioredoxin A (TrxA)] was evalu-
ated. The Alr4641 protein could use TrxA and DTT but
not GSH to detoxify H2O2 (Figure 5B). The purified
Alr4641 protein showed TrxA-dependent activity whereas
both Alr4641C56S and Alr4641C178S failed to do so
(Figure 5C).
The NTRC protein from Anabaena was over-expressed

in E. coli, purified by affinity chromatography (Figure 5D).
Surface Plasmon Resonance (SPR) was employed to study
Figure 5 Protection of DNA and peroxidase activity. (A) Metal catalyze
to oxidative damage using a MCO reaction (5 mM DTT + 3 μM Fe3+) to ge
purified Alr4641 (lane 4). The integrity of DNA was assessed by electrophor
(B) Peroxidase activity. Relative rates of decomposition of H2O2 by the puri
(C) Peroxidase activity of Alr4641 cysteine mutants. Decomposition of H2O2 b
TrxA as reducing agent at different intervals of time as indicated in the figure
protein from Anabaena PCC7120 was over-expressed in E. coli and purified by
electrophoresis the proteins were visualized by staining with CBB. Lane 1, mo
plasmon resonance analysis. The Alr4641 protein was immobilized on bare go
SPR). Different concentrations of NTRC (as indicated in the figure) were injecte
activity of Alr4641, in the presence of NTRC, was monitored at different conce
interaction of Alr4641 with NTRC. The Alr4641 protein
was immobilized on a bare gold sensor chip while NTRC
was used in the mobile phase. The interaction between
the two proteins was confirmed by a concentration-
dependent increase in the SPR signal (Figure 5E). Equi-
librium analysis showed a good Lorentz fit with the
experimental values (Additional file 3) and the equilib-
rium constant (KD) was observed to be 1.037x10−6 ±
4.76x10−8 M. NTRC was also employed to evaluate the
peroxidase activity of Alr4641 in the presence of different
peroxidase substrates. Among the three substrates tested,
best activity was observed with H2O2 followed by t-butyl
d oxidation (MCO) assay. The pBSK DNA (1 μg, lane 1) was subjected
nerate ROS in absence (lane 2) or in presence of BSA (lane 3) or
esis on a 1% agarose gel followed by staining with ethidium bromide.
fied Alr4641 protein using various electron donors: GSH, DTT and TrxA.
y Alr4641C56S or Alr4641C178S or Alr4641 was monitored with 5 μM
. H2O2 was monitored as described in the Methods section. (D) The NTRC
affinity chromatography as described in the Methods section. After
l. mass marker and lane 2, purified NTRC protein (5 μg). (E) Surface
ld chip utilizing the EDC-NHS chemistry (Autolab ESPIRIT User manual
d over Alr4641 and the response was monitored for 300 s. (F) Peroxidase
ntrations of H2O2 as indicated in the figure.



Figure 6 Over-oxidation of the Alr4641 protein in Anabaena
PCC7120. (A) Treatment with oxidative stress-inducing agents.
Exponential phase cultures of Anabaena PCC7120 (3.0 μg chlorophyll
a ml−1) were exposed to methyl viologen, (MV), hydrogen peroxide,
(H2O2) or t-butyl hydroperoxide, (t-Bx) for 30 min. Cell free extracts
(25 μg protein per lane) were resolved on non-reducing SDS-
polyacrylamide gel, electroblotted onto a nitrocellulose membrane
and probed with the Alr4641 antiserum. The dimeric (non-over-
oxidized) form and the monomeric (oxidized) form are indicated in
the figure. (B) Over-oxidation of Alr4641 in response to gamma (γ)
radiation. Exponential phase cultures of Anabaena PCC7120 (6.0 μg
chlorophyll a ml−1) were exposed to different doses of γ-radiation
as indicated in the figure. The Alr4641 protein was detected
immediately after irradiation as described in A. (C) After exposure
to 6 kGy dose of γ-radiation, Anabaena cells were incubated in
BG11N+ medium for recovery from radiation stress. Cells were
removed at time points indicated and the Alr4641 protein was
detected as before.
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hydroperoxide and cumeme hydroperoxide (Additional
file 4). With increasing concentrations of H2O2, a reduc-
tion in the peroxidase activity was observed, indicating that
excess H2O2 inactivated the Alr4641 protein (Figure 5F).

Alr4641 forms over-oxidized monomer in vivo under
conditions of oxidative stress
The peroxidatic cysteine of 2-Cys-Prxs, on treatment with
excess of oxidizing agents (e. g. H2O2), becomes over-
oxidized and is unable to form disulphide bridges. Hence,
the over-oxidized 2-Cys-Prx shows up as a monomer on
non-reducing SDS-polyacrylamide gels [10]. To analyze
the formation of over-oxidized monomers in vivo in Ana-
baena during oxidative stress, cells were treated with
different oxidizing agents and analyzed (Figure 6). Treat-
ment with H2O2 but not methyl viologen produced de-
tectable Alr4641 monomers, whereas at the concentration
of t-butyl hydroperoxide (t-Bx) employed, partial over-
oxidation of Alr4641 occurred and both monomeric as
well as dimeric forms of the protein were observed
(Figure 6A). Exposure of Anabaena to 6 kGy dose of
gamma radiation also resulted in the formation of the
Alr4641 monomers (Figure 6B). However, the over-
oxidized form disappeared during recovery and 24 h
after irradiation, only the dimeric form of Alr4641 was
observed (Figure 6C).

Over-expression of Alr4641, but not Alr4641C56S, causes
reduction in intracellular ROS generation on exposure
to H2O2

To assess the in vivo role of catalytic cysteine (C56), the
wild-type alr4641 or alr4641C56S were individually cloned
between the strong light inducible psbA promoter (PpsbA)
and the gfp (green fluorescent protein) gene in pAM1956
(denoted as pAM4641 and pAM4641C56S respectively).
Both these constructs were separately transferred to Ana-
baena PCC7120. Under fluorescence microscope, the
filaments of An4641+ (Anabaena expressing Alr4641) and
AnC56S+ (Anabaena over-expressing Alr4641C56S) ap-
peared green indicating the presence of pAM4641 or
pAM4641C56S (Figure 7A, B). When probed with the anti-
Alr4641 antiserum, abundant production of the Alr4641 or
Alr4641C56S protein was observed in the cell-free extract
of An4641+ or AnC56S+ respectively (Figure 7C). When
analyzed on non-reducing SDS-PAGE, the wild-type
Alr4641 was mostly present in its dimeric form whereas
Alr4641C56S remained largely monomeric (Figure 7D).
Native PAGE followed by Western blot analysis with cell
free extracts of An4641+/AnC56S+revealed the occur-
rence of higher oligomeric form in vivo in both the
cases (Figure 7E) as also observed with the purified pro-
teins (Figure 3D).
Earlier, the NTRC protein was shown to physically

interact with the purified Alr4641 protein (Figure 5E). In
addition, capability of NTRC to associate with the Alr4641
protein from An4641+ cells free extracts was assessed by
pull down experiments. As shown in Figure 7F, substantial
amount of Alr4641 was bound when NTRC was immobi-
lized on NiNTA agarose. In the absence of NTRC, hardly
any Alr4641 bound to the empty resin (Figure 7F).



Figure 7 Over-expression of Alr4641/Alr4641C56S in Anabaena. (A, B) Fluorescence micrographs. The recombinant An4641+ (A) or AnC56S+

(B) cells were grown in BG-11 medium for 3 days and fluorescence microphotographs (500X magnification) using Hg-Arc lamp (excitation BP,
450–490 nm and emission LP, 515 nm) were captured. (C, D, E) Over-production of the Alr4641/Alr4641C56S protein in Anabaena. Cell-free
extracts from the wild-type Anabaena PCC7120 (WT) or An4641+ or AnC56S+ (20 μg per lane) were resolved by reducing SDS-PAGE (C) or
non-reducing SDS-PAGE (D) or by native polyacrylamide gel electrophoresis (E). After electrophoresis, proteins were immunodetected with the
Alr4641 antiserum. The Alr4641 protein is indicated by an arrow. (F) Physical interaction of Alr4641 with NTRC. NiNTA agarose loaded with the
His-tagged NTRC protein was incubated with cell-free extract obtained from An4641+ (+). Unloaded NiNTA agarose (i.e. free of any bound protein)
was incubated with An4641+ cell-free extract as negative control (−). Bound proteins were resolved on SDS-Polyacrylamide gels, transferred onto
nitrocellulose membrane and probed with the anti Alr4641 antibody. Input An4641+ cell extract added to NiNTA agarose containing NTRC (+In)
or to the negative control (−In) is also shown. (G) Intracellular ROS formation in response to H2O2. WT or An4641+ or cells AnC56S+ were grown
for 3 days in BG-11 medium and treated with H2O2 (1 mM) for 1 h. Subsequently, cells were incubated with DCHFDA (10 μM final concentration)
for 20 min and fluorescence emission (λex = 490 nm, λem = 520 nm) was measured with a spectrofluorimeter. The relative fluorescence of control
(untreated cells) and H2O2-treated cultures is shown in the figure.
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The intracellular levels of ROS in the wild-type Ana-
baena, An4641+ or AnC56S+ cells exposed to H2O2 for
1 h were assessed with the fluorogenic probe DCHFDA.
Under control conditions, ROS levels were very low in
all types of cells. However, on exposure to 1 mM H2O2,
substantially higher levels of ROS were observed in the
wild-type Anabaena PCC7120 and AnC56S+ cells as
compared to the An4641+ cells (Figure 7G).

Over-production of Alr4641 protects the photosynthetic
machinery and enhances survival in response to oxidative
stress in Anabaena
Treatment with 1 mM H2O2 for 24 h resulted in pro-
nounced bleaching caused by a sharp reduction in the
chlorophyll a content in the wild-type Anabaena PCC7120
but not in An4641+ cells (Figure 8A and B). A substantial
decline was observed in Fv/Fm of H2O2-stressed wild-type
Anabaena cells, while An4641+ showed Fv/Fm comparable
to the unstressed control cells (Table 1). Light curves (LC)
of electron transport rate (ETR) with the wild-type Ana-
baena or An4641+ were carried out to analyze electron
transport rate in PSII in response to H2O2. The ETR (II) of
An4641+ on treatment with H2O2 was similar to that of
control cells. In contrast, a severe decrease in ETR (II) was
observed when the wild-type Anabaena was treated with
H2O2 (Figure 8C). Rate of CO2 fixation decreased margin-
ally in the An4641+ treated with H2O2 as compared to a
20-fold reduction observed in the similarly treated wild-



Figure 8 Oxidative stress tolerance of the wild-type Anabaena PCC7120 (WT) and An4641+. (A) Three-day-old Anabaena cultures were
inoculated in a fresh growth medium and subjected to H2O2 (1 mM) stress for 2 days. Later, cultures were transferred onto a microtitre plates
and photographed. (B) The chlorophyll a content of cultures shown in (A) was determined immediately (day 0) or after two days of exposure to
H2O2. (C) Rapid light curves of ETR (II). Data were collected through the light response reaction from untreated (control cells) or cells treated with
H2O2 (1 mM) as indicated in the figure. (D) The rate of 14CO2 fixation [μmoles of CO2 fixed (μg chlorophyll a)−1 h−1] of the wild-type Anabaena
PCC7120 (WT) or An4641+ cells after treatment with 1 mM H2O2 for 24 h. (E) The wild-type Anabaena PCC7120 (WT) or An4641+ cells after
treatment with H2O2 (1 mM) for 2 days were spotted (100 μl each) on BG-11 agar plate. The plates were incubated under continuous illumination
and photographed after 14 days of incubation.
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type Anabaena PCC7120 (Figure 8D). The wild-type
Anabaena PCC7120 treated with H2O2 failed to grow
on BG-11 plates indicating loss in viability. On the other
hand, similarly treated An4641+ grew on plates like the
unstressed control cells (Figure 8E).
Table 1 PSII activity in Anabaena cultures treated with
H2O2

Strain (treatment) Fv/Fm

WT (control) 0.287333 ± 0.00585

WT (H2O2) 0.195 ± 0

An4641+ (control) 0.286 ± 0.018358

An4641+ (H2O2) 0.28275 ± 0.01345
Discussion
Prxs form a phylogenetically ancient group of enzymes
with a major role in detoxification of peroxides [2].
Generally, Prxs show a moderate catalytic activity, but
their high cellular content seems to compensate for
their reduced efficiency in decomposing peroxides [33].
It is believed that the antioxidant system in chloroplasts,
organelle with highest content of Prxs in a plant cell,
has evolved from cyanobacteria. Anabaena bears a re-
semblance to plant chloroplasts in being equipped with
an oxidation sensitive 2-Cys-Prx (i.e. Alr4641) along
with its reducing partner NTRC [32] and showing a low
catalase activity [8,25].
The presence of the 0.9-knt alr4641 transcript (Figure 1)

indicates that in spite of their adjacent location, the
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alr4642 ORF (642-bp, located 191-bp downstream of
alr4641) and alr4641 are not co-transcribed, signifying
that alr4641 forms a monocistronic operon. The promoter
sequence found immediately upstream of this start site
showed the presence of FurA (a transcriptional repressor)
binding site (Figure 2) and the purified FurA protein from
Anabaena bound the DNA fragment containing this se-
quence (Additional file 1). Gonzalez et al. have shown
production of the Alr4641 protein to be reduced in the
FurA-overexpressing Anabaena PCC7120. All these re-
sults imply that FurA regulates transcription of alr4641 in
Anabaena [34].
In response to different abiotic stresses, the 2-Cys-prx

gene transcript was enhanced in Synechococcus PCC7942
but not Synechocystis PCC6803 suggesting that transcrip-
tional induction of 2-Cys-prx differs among cyanobacteria
[35]. In Anabaena, along with methyl viologen and H2O2,
gamma radiation (a physical agent that causes oxidative
stress) could also enhance production of the alr4641 tran-
script or the Alr4641 protein (Figure 1) [27]. Interestingly,
salinity as well as osmotic stress also increased production
of the Alr4641 protein (Figure 1), indicating that Alr4641
may be a multiple stress induced protein. This is not un-
usual as several environmental stresses (salinity, drought,
heavy metals, heat shock etc.) generate ROS [12], which
in turn may ultimately enhance production of the
Alr4641 protein.
Employing pull down assay and SPR analysis, NTRC

was shown to physically interact with Alr4641 (Figures 5E,
7F) suggesting that NTRC is likely to be the physiological
reductant of Alr4641 in Anabaena. In vivo, on treatment
with H2O2, the recombinant AnC56S+ strain (that over-
expresses Alr4641C56S) showed higher ROS levels com-
pared to the An4641+ strain (that over-expresses the
wild-type Alr4641) (Figure 7G). This underscores the im-
portance of peroxidatic cysteine of Alr4641 for detoxifica-
tion of H2O2 in vivo in Anabaena.
In general, the purified 2-Cys-Prx isolated from differ-

ent organisms co-exists in various forms i.e. dimeric,
decameric and high molecular wt. complexes [36]. In
contrast, in its native form, Alr4641 as well as its cyst-
eine mutants appeared as decamers in vitro, (Figure 3)
or in vivo (Figure 7E). Moreover, irrespective of the
redox state (i.e. whether oxidized or reduced), Alr4641
appeared as decamer (Figure 3) indicating that the disul-
fide bonds are not involved in oligomerization.
Generally, along with conformational change, the olig-

omeric state of 2-Cys Prx has also been linked to its dy-
namic redox state, which in turn determines its function
[36]. Chaperone activity of 2-Cys-Prx has been generally
linked to their oligomerization state [20]. The higher mo-
lecular weight complex shows chaperone function, the di-
meric form mostly functions as a peroxidase, whereas the
decameric form shows both these activities [37]. Although,
reduction of Alr4641 with DTT did not change its oligo-
meric nature, its chaperone activity was severely reduced
(Figure 4). Loss of chaperone function was observed on
reducing Alr4641C56S and Alr4641C178S too (data not
shown), suggesting that reduction in chaperone activity
was not due to disruption of disulphide bonds. In contrast,
treatment with H2O2 did not affect the chaperone activity
of Alr4641, whereas a substantial loss in peroxidase ac-
tivity was observed (Figure 5F). Apparently, chaperone/
peroxidase activity of Alr4641 does not depend on its
oligomeric status, but is decided by the redox state of
the protein i.e. the reduced form is more likely to func-
tion as a peroxidase while the oxidized form is more
liable to function as a chaperone. A model depicting the
above phenomena is described in the Figure 9. Although,
thought to be a specific disulphide bond reducing agent,
DTT is known to affect function of proteins not contain-
ing any cysteine residues [38], and it is proposed that
DTT may act as a general reducing agent that causes
changes in the global structure of proteins [39]. Reduction
of 2-Cys-Prx from Arabidopsis with DTT also resulted
in altered secondary structure [37]. In this study too, a
distinct difference in the CD spectra of reduced and
non-reduced Alr4641 was observed (Figure 4), indicat-
ing that treatment with DTT causes a change in the sec-
ondary structure.
Excess H2O2 over-oxidizes the peroxidatic cysteine, ren-

dering Alr4641 incapable of peroxidase activity [8]. Inter-
estingly, high dose of γ-radiation could also over-oxidize
the 2-Cys-Prx (Figure 6B) preventing the formation of di-
sulfide bond. Post irradiation, on SDS PAGE, the mono-
meric form of Alr4641 disappeared and only the dimeric
form could be seen after 24 h, indicating the reversion
of the over-oxidised Alr4641protein to its normal form
(Figure 6C). It is suggested that the recovery of the over-
oxidized Alr4641 is facilitated by the sulfiredoxin (Srx)
protein, which reverses the over-oxidation in vivo [40].
In Anabaena, depletion of combined nitrogen from

medium leads to formation of heterocysts, the special-
ized cells that fix nitrogen [41]. It should be noted that
in spite of lowered O2 content, ROS are generated by
photosystem I (PSI) and respiratory electron transport
in heterocysts [42]. Also, when the ratio of nitrogenase
reductase to O2 is greater than 4, nitrogenase reductase
reduces oxygen to H2O2 without being inactivated by
oxygen [43]. Thus the H2O2 produced in heterocysts
has to be removed promptly. Prxs are known to be
differentially distributed among the vegetative cells and
heterocysts [29] and among the four PrxQ-like proteins
(Alr3183, Alr2503, Alr2375 and Alr2556) from Ana-
baena, only Alr2375 was detected in heterocysts [44]. In
our study, promoter activity (Palr4641-GFP fluorescence)
as well the Alr4641 protein was observed in heterocysts
as well as vegetative cells (Figure 2), indicating that it



Figure 9 A model depicting redox-dependent functional switching of Alr4641. Rectangular box in the lower panel represents the
oligomeric (decameric) structure of Alr4641 while the upper panel shows the state of catalytic cysteine residues of the individual monomeric
units. Various conformational forms of the Alr4641 protein i.e. DTT-reduced decamer (Form-A), reduced decamer (Form-B), oxidized decamer
(Form-C) and over-oxidized decamer (Form-D) are shown in the figure. Alr4641 exists as decamer irrespective of its redox state or disulphide
linkage status) in all the above-mentioned conformations. Monomeric units corresponding to various forms are depicted as follows: Form-A,
white circle; Form-B and Form-C, light-grey oval and Form-D, dark-gray oval. Form-B (with free thiol groups) on oxidation with H2O2 forms
inter-molecular disulfide bonds (indicated with black lines in the lower panel), resulting in the formation of oxidized decamer (i.e. Form-C).
Form-B is regenerated from Form-C by electron donors like Trx and NTRC. However, with excess H2O2, the cysteinyl residue of the peroxidatic
cysteine of Form-B is over-oxidised to sulfinic/sulfonic acid (Form-D). Reduction of Alr4641 with DTT not only results in the loss of disulfide bonds
but also changes the overall structure of the protein (Form-A). Form-B, Form-C and Form-D show chaperone activity (indicated by “C”), but fails
to show this activity. On the other hand, Form-A, Form-B and Form-C function as peroxidase (indicated by “P”), whereas the over-oxidized Alr4641
i.e. Form-D is unable to do so. To summarize, under reducing conditions, Alr4641 is more likely to function as a peroxidase, whereas under
oxidizing surroundings, it is more likely to work as a chaperone.
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may play a role in detoxifying peroxides in vegetative
cells and heterocysts.
Hydrogen peroxide (H2O2) is a commonly occurring

reactive oxygen species (ROS) in biological systems and
cyanobacteria have been shown to be generally more
sensitive to H2O2 than other phototrophs [45]. As Ana-
baena PCC7120 does not show good catalase activity
[8,27], it is suggested that Prxs may be the principal
components that detoxify H2O2 in this organism. H2O2

damages photosynthetic apparatus and severely affects
Fv/Fm in several cyanobacteria [46]. In the cyanobacter-
ium Microcystis aeruginosa, treatment with H2O2 en-
hanced reactive oxygen species (ROS) accumulation,
which caused destruction of pigment synthesis and led
to cell death [47]. Treatment of the wild-type Anabaena
PCC7120 with H2O2 caused (a) enhanced levels of ROS
(b) decrease in photosynthetic activities and (c) loss in
viability (Figure 8). However, all the above-mentioned
deleterious effects were alleviated in An4641+ strain,
indicating that Alr4641 can protect Anabaena from oxi-
dative stress.
Conclusions
The present study has identified Alr4641 as an abiotic stress
induced protein that plays an important role in protecting
Anabaena from oxidative stress. The Alr4641 protein was
found to be unique from the other reported 2-Cys-Prxs i.e.
the redox state and not its oligomerization status dictated
the functional switch between the peroxidase or chaperone
activity of this protein. Key attributes of Alr4641 like dual
function, inherent transcriptional/translational induction
under different stresses, localization in both vegetative cells
and heterocysts, ability to use various reducing agents for
detoxifying peroxides, reflect the versatile role played by the
protein in Anabaena. The recombinant Anabaena strain
over expressing Alr4641 exhibited higher tolerance to oxi-
dative stress, thus establishing its potential to serve as
stress-tolerant biofertilizers in paddy fields.

Methods
Organism and growth conditions
Anabaena PCC7120 cultures were grown in BG-11 liquid
medium, pH 7.0 with combined nitrogen (17 mM NaNO3)
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under continuous illumination (30 μE m−2 s−1), with
shaking (100 rpm) or without shaking (as still culture)
at 27°C ± 2°C. Growth was assessed by monitoring the
content of chlorophyll a mL−1 of culture volume [48]. E.
coli cells were grown in Luria-Bertani (LB) medium in
the presence of appropriate antibiotics at 37°C with shak-
ing at 150 rpm. The antibiotics used were 10 μg neomycin
mL−1 (Nm10) in BG-11 liquid media and 25 μg neomycin
mL−1 (Nm25) in BG-11 agar plates for recombinant Ana-
baena PCC 7120; and 34 μg chloramphenicol mL−1

(Cm34), 50 μg kanamycin mL−1 (Kan50) or 100 μg carbeni-
cillin mL−1 (Cb100) for E. coli. The E. coli and Anabaena
strains and plasmids used in the study are indicated in
Additional file 5.

Cloning of alr4641, alr4641C56S alr4641C178S, furA and
ntrc into pET16b
The alr4641 ORF was PCR amplified using gene-
specific primers, alr4641fwd and alr4641rev, from Ana-
baena PCC7120 chromosomal DNA (Additional file 6).
The PCR product (612-bp) obtained was digested with
NdeI and BamHI and cloned into similarly digested
pET16b (Additional file 5) to obtain plasmid pET4641.
The pET4641 insert was sequenced to confirm the nu-
cleotide sequence integrity of the cloned gene. A point
mutation, leading to substitution of the Cys codon at
positions 56 or 178 to Ser codon was introduced into
the alr4641 ORF by PCR directed site-specific mutagen-
esis using overlapping PCR as described earlier [25].
The PCR products (alr4641C56S and alr4641C178) con-
taining the desired mutation were cloned into pET16b vec-
tor between the NdeI and BamHI restriction enzyme sites
for over-expression in E. coli and named pET4641C56S
and pET4641C178S respectively. The furA (all1691) or
the ntrc (all0737) ORF was amplified with specific
primers (described in Additional file 6) employing Ana-
baena PCC7120 genomic DNA as template. Restriction
enzyme sites for NcoI and BamHI were incorporated in
the forward and the reverse primers respectively. The
reverse primer also had six His codons (shown in bold)
followed by a stop codon. PCR product was purified,
digested, and ligated to the NcoI-BamHI digested pET16b
vector to give rise to pETFurA and pETNTRC respect-
ively. All the resultant clones were confirmed by DNA
sequencing.

Over-production and purification of recombinant proteins
Over-production of the His-tagged Alr4641, Alr4641C56S,
Alr4641C178S, FurA and NTRC proteins in E. coli
BL21pLysS and their subsequent purification was per-
formed by affinity chromatography using Ni-NTA matrix
as described earlier [49]. The purified Alr4641 protein was
also used to immunize rabbits for generating specific
antiserum. The primary and booster immunizations and
collection of the antiserum were performed at a commer-
cial facility (Merck, India).

Size exclusion chromatography (SEC)
HPLC (AKTApure, USA) was performed using Superdex
200 10/300 GL column equilibrated at a flow rate of
0.5 ml min−1 at 25°C in Tris-buffer (20 mM, pH 7.2) con-
taining NaCl (50 mM).

Chaperone activity
The chaperone activity of purified proteins was measured
by using 1 μM malate dehydrogenase (MDH) as substrate
in 50 mM HEPES-NaOH (pH 8.0) buffer at 55°C with
various Prx concentrations (4:1, 2:1, 1:1, 1:2 MDH:Prx
molar ratio). Turbidity (A360) due to substrate aggregation
at 55°C was monitored in a spectrophotometer (JASCO,
Japan) equipped with a thermostatic cell holder. When
desired, the purified Alr4641/Alr4641C56S/Alr4641C178S
proteins were individually treated with DTT (5 mM) or
H2O2 (10 mM) for 10 min, passed through a desalting col-
umn and employed for the chaperone assay as described
above. Assays were performed at least 4 times and repre-
sentative curves are shown in the figure.

Peroxidase activity assay
For DTT dependent peroxidase assay, reaction mixture
(1 ml) containing HEPES-NaOH (50 mM, pH 7.0) and
desired concentrations of Prx proteins were pre-incubated
with DTT (3 mM) for 10 min at 37°C, followed by the
addition of H2O2 (200 μM). The reaction was stopped
after 10 min by addition of TCA (10%, v/v). Subsequently,
0.2 volume of ferrous ammonium sulfate (10 mM) and 0.1
volume of potassium thiocyanate (2.5 M) were added. Ab-
sorbance of the red colored complex was spectrophoto-
metrically measured at 480 nm. The amount of residual
H2O2 remaining in the reaction was calculated from a
standard calibration curve prepared by using known con-
centrations of H2O2. Trx-dependent peroxidase reactions
were performed in a 50 μl reaction mixture containing
HEPES-NaOH (50 mM, pH 7.0), E. coli thioredoxin A
(TrxA, 5 μM), E. coli thioredoxin reductase (TR, 0.5 μM),
NADPH (0.25 mM), Prx Protein or its mutant variants
(0.05-1 μg), and H2O2 (200 μM). For GSH-dependent per-
oxidase activity, the typical reaction mixture contained
HEPES/NaOH (50 mM, pH 7.0), NADPH (0.25 mM),
glutathione reductase (GR, 0.2 μM), Prx protein (1 μg)
and reduced glutathione (GSH, 5 mM). The reaction
was started by addition of 100 μM peroxide substrate.
The residual amount of peroxide was determined by
ferrithiocyanate system as mentioned above. NTRC-
dependent peroxidase activity of Alr4641 with different
peroxide substrates was determined as described by
Pascual et al. (2011) [32].
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Protein electrophoresis, Western blotting and
immunodetection
Purified Alr4641, Alr4641C56S and Alr4641C178S were
resolved electrophoretically by 12% SDS-PAGE with or
without DTT (10 mM). These three proteins were also
resolved by native PAGE and stained with CBB. Total
cellular proteins from Anabaena cultures were extracted
using Laemmli’s buffer [50] and electrophoretically sepa-
rated by 12% SDS-PAGE. The gel was electroblotted on
to a nitrocellulose membrane as described earlier [51].
In case of native PAGE, for efficient transfer, the gel was
immersed in 1X SDS-PAGE running buffer, incubated at
70°C for 30 min and electroblotted on to the nitrocellu-
lose membrane. Immunodetection was carried out with
the Alr4641 antiserum.

Pull down assay
In the pull-down experiment, His-tagged NTRC (500 μg)
was allowed to bind to Ni-NTA agarose slurry (100 μl) in
assay buffer (50 mM Tris, 200 mM NaCl, 5 mM immida-
zole) for 2 h at 4°C, followed by washing with same buffer
to remove the unbound NTRC. Cytosolic extract of
An4641+ (800 μg protein) was incubated with NTRC-
bound Ni-NTA agarose overnight at 4°C with constant
rocking. In the control experiment, only Ni-NTA agarose
was incubated with cytosolic fraction of An4641+. In both
the cases, agarose was centrifuged at 5000 g for 5 min at
4°C, washed thrice with the assay buffer, boiled with crack-
ing buffer and resolved on 12.5% SDS-PAGE. The gel was
transferred on to a nitrocellulose membrane and probed
with anti-Alr4641 antibody.

Co-Immuno-precipitation
For co-immuno-precipitation, the His-tagged NTRC (50
μg) was allowed to incubate with His-tagged Alr4641 (50
μg) in co-immunoprecipitation buffer (50 mM Tris-Cl pH
7.5, 15 mM EDTA, 100 mM NaCl, 0.1% Triton X-100 and
protease inhibitor cocktail obtained from Sigma) at 4°C in
duplicate. To one vial, Alr4641 antiserum was added and
the components were allowed to interact for 6 h at 4°C
with constant shaking. No antibody was added to the other
vial (negative control). After that, a slurry of protein-G
agarose beads (50 μl) was added to both the vials and these
were kept shaking overnight at 4°C. Next day, beads were
precipitated by centrifuging at 1200 g for 5 min at 4°C and
washed thrice with the co-immuno-precipitation buffer.
Subsequently, sample buffer was added to beads and the
proteins extracted by boiling. The extracted proteins were
separated on SDS-polyacrylamide (12.5%) gels, and visual-
ized by staining.

Surface plasmon resonance (SPR) analysis
Autolab Esprit SPR system was used for surface plasmon
resonance analysis with bare gold sensor chip. At 20°C,
about 250 response units of Alr4641 was loaded onto
the bare gold chip employing the EDC-NHS chemistry
(Autolab ESPIRIT User manual SPR) followed by exten-
sive washing with buffer H (10 mM HEPES, 100 mM
NaCl, pH 7.5). Different concentrations (4.33, 8.66, 10.39
and 12.99 μM) of the NTRC protein were injected onto
the Alr4641-bound sensor chip at 33.3 μL min−1 flow rate
in independent experiments. The NTRC was allowed to
interact with the immobilized Alr4641 for 300 s before
washing off with buffer H. The data were processed and
equilibrium constant (KD) was calculated using Autolab
kinetic evaluation software (V5.4) provided with the
instrument.

Gel retardation assays (GRA)
Primers 4641Prom_GRAFwd and 4641Prom_GRARev
were annealed to form a 39-bp dsDNA (i.e. alr4641 pro-
moter), which was used for the gel shift assays with the
purified FurA protein. The end labeling of DNA fragments
with digoxygenin (DIG) and the subsequent GRA, in the
presence of the non-specific competitor poly (dI-dC), was
performed as described by the manufacturer (Roche).

Metal catalyzed oxidation (MCO) assay for antioxidant
activity
The plasmid DNA (pBluescript, 1 μg) was subjected to
MCO by incubating FeCl3 (20 μM) and DTT (5 mM) at
room temperature for 30 min. Purified proteins (2–20 μg)
were added to the reaction mixture and further incubated
for 4 h. Subsequently, DNA integrity was assessed by
electrophoresis of reaction samples on agarose (0.8%,
TBE, pH 7) gels.

Oxidation and reduction of the Alr4641 protein
The purified Alr4641 protein was oxidized with H2O2

(10 mM) for 30 min or reduced by addition of DTT
(5 mM). The samples were analyzed for chaperone activ-
ity as described earlier or resolved on Native PAGE and
visualized by CBB staining.

Northern blotting-hybridization and dot blot analysis
Isolation of Anabaena PCC7120 total RNA and subse-
quent Dot blot or Northern blotting-hybridization analysis
with the alr4641 DIG-labeled DNA probe was performed
as described earlier [52].

Rapid amplification of cDNA ends (RACE)
The total RNA isolated from the wild-type Anabaena
PCC7120 cells stressed with H2O2, for 1 h was treated
with DNase I and re-purified using commercial spin col-
umns (Nucleospin RNA clean-up XS, Macherey Nagel).
The reverse primer EXTERN-4641RACE-Rev (Additional
file 6) was employed for cDNA synthesis. Tailing of cDNA
using dATP and terminal transferase, the subsequent PCR
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with oligo dT-anchor primer and an internal gene-specific
primer (INTER-4641RACE-Rev) was performed exactly as
described (5’/3’ RACE kit, 2nd Generation, Roche).

Construction of GFP promoter
A 600-bp DNA fragment (upstream of the alr4641 gene)
that contained the alr4641 promoter was amplified with
suitable primers and cloned just upstream of gfp (reporter
gene) in pAM1956 employing the restriction enzymes
KpnI and SacI (construct named as pAM4641prom). This
construct was conjugated into Anabaena PCC7120 and
exconjugants (An4641 prom) were selected on BG-11/N+

plates containing neomycin (25 μg ml−1) and subjected to
microscopic analysis.

Heterocyst isolation
Anabaena PCC7120 was grown aerobically in nitrogen-
free BG-11 liquid medium. Heterocysts were isolated
from whole filaments using modified protocol as de-
scribed by Cha et al., 2007 [44]. Anabaena culture was
harvested and subjected to several freeze-thaw cycles in
Tris-buffer (20 mM Tris, 1 mM EDTA, pH 7.4). After
centrifugation for 5 min at 1000 g, the sedimented cells
were suspended in the same buffer, glass beads (600 μM)
were added and the suspension was vortexed for 2 min.
Subsequently, the suspension was centrifuged at 150 g
for 5 min to obtain heterocysts in the supernatant. En-
richment of greenish yellow heterocysts was achieved by
repeatedly washing (7–8 times) and centrifuging (150 g,
5 min) the heterocyst pellet.

Construction of pAM4641 plasmid and over-expression of
Alr4641 protein in Anabaena PCC7120
The alr4641 DNA fragment (~0.66-kb) from pET4641
was subcloned, downstream of the strong PpsbA1 promoter,
into the pFPN vector [53] employing the restriction
enzymes NdeI and BamHI (plasmid called pFPN4641).
Subsequently, the alr4641 gene along with the PpsbA1
promoter was transferred as a SalI–XmaI fragment from
pFPN4641 to appropriately digested E. coli/Anabaena
shuttle vector pAM1956 [54] to obtain pAM4641. Using a
conjugal E. coli donor [HB101 (pRL623 + pRL443)],
pAM4641 was conjugated into Anabaena PCC7120 as
described earlier [55]. Exconjugants were selected on
BG-11/N+ plates containing neomycin (25 μg ml−1) and
repeatedly subcultured. The transformed Anabaena strain
thus obtained (designated An4641+) was maintained on
BG-11/N+ plates containing neomycin.

CO2 fixation
The wild-type Anabaena PCC7120 and the recombinant
An4641+ cells were subjected to 1 mM H2O2 treatment
for 1 day. Culture aliquot (200 μl) of the above-mentioned
Anabaena cells (5–6 μg ml−1 chlorophyll a) was incubated
in white fluorescent light (24 W m−2) for 5 min and
followed by addition of NaH14CO3 (20 mM, specific activ-
ity 0.5 mCi mmol−1). The reaction was stopped after
10 min by addition of 400 μl of 6 N acetic acid to the reac-
tion mixture. The acid stable product was counted in a
liquid scintillation counter with 0.4% BBOT [2, 5-bis (5-
tert-butylbenzoxazole-2-yl) thiophen] dissolved in a so-
lution containing toluene and absolute ethanol (v/v,
65:35). The experiment was performed twice with three
replicate samples each time.

DCHFDA assay
The content of the reactive oxygen species (ROS) in Ana-
baena strains treated with H2O2 for 1 day and in respective
controls cells was measured with Dichlorodihydrofluores-
cein diacetate (DCHFDA) [56]. Briefly, DCHFDA (10 μM
final concentration) was added to cells suspended in BG-
11 medium (3 μg chlorophyll a ml−1). Cells were incubated
for 20 min in dark at 25°C. Fluorescence emission (λex =
490 nm and λem = 520 nm) of the control or H2O2

(1 mM)-treated cells was measured immediately after-
wards. Experiments were repeated thrice and average
values are reported.

Determination of oxidative stress tolerance of An4641+

strain
Three-day-old Anabaena cultures of the wild-type Ana-
baena PCC7120 (WT) as well as An4641+ (in triplicates)
were inoculated in a fresh growth medium at a chlorophyll
a density of 3 μg ml−1 and subjected to H2O2 (1 mM)
stress in tubes (without shaking) under illumination for
2 days. Growth was monitored in liquid cultures by deter-
mination of chlorophyll a content [48].

Bioinformatic analysis
Amino acid sequence was analysed using BLAST (http://
blast.ncbi.nlm.nih.gov/Blast.cgi) or SMART (http://smart.
embl-heidelberg.de/) algorithms [57,58]. Promoter, up-
stream of the transcriptional start site, was identified by a
promoter search program (www.softberry.com). DNA-
binding consensus sequence (GATAATGATAATCA TT
ATC) of the E. coli FurA protein was used to identify
corresponding sequences from DNA upstream of the
alr4641 ORF using the LALIGN program (www.ch.emb-
net.org).

Additional files

Additional file 1: Purification of FurA and its binding with FurA
binding sequence of Alr4641 promoter. (A)The FurA protein from
Anabaena PCC7120 was over-expressed in E. coli and purified by affinity
chromatography as described in the Methods section. After electrophoresis
proteins were visualized by staining with CBB. Lane 1, mol. mass marker
and lane 2, purified FurA protein (5 μg). (B) Gel shift assays with FurA. The
DNA fragment corresponding to the FurA binding site (Figure 2B) was
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http://www.biomedcentral.com/content/supplementary/s12870-015-0444-2-s1.pptx
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end-labeled with DIG and employed for EMSA with the FurA protein in
the presence of non-specific competitor poly (dI-dC). The samples were
electrophoretically resolved, electro-blotted onto nylon membrane and
probed with anti DIG antiserum. The position of DNA-protein complex is
indicated by an arrow.

Additional file 2: Tryptophan fluorescence (Ex-295nm) spectra of
the wild-type Alr4641, Alr4641C56S and Alr4641C178S proteins.
Emission peaks were at the same position.

Additional file 3: Surface plasmon resonance analysis showing
interaction of Alr4641 with NTRC. Alr4641 was loaded onto the bare
gold chip employing the EDC-NHS chemistry. Different concentrations
(4.33, 8.66, 10.39 and 12.99 μM) of the NTRC protein were injected onto
the Alr4641-bound sensor chip at 33.3 μL/min flow rate in independent
experiments. For each concentration, the experimental curve (solid lines)
matches the calculated profile (dotted lines) for SPR curve.

Additional file 4: NTRC-dependent peroxidase activity of Alr4641.
Reduction of various peroxide substrates (100 μM each, as indicated in
the figure) by the Alr4641 protein in the presence of the NTRC protein
was measured by monitoring the decrease in absorbance of NADPH
at 340 nm.

Additional file 5: List of E. coli, Anabaena strains and plasmids used
in this study.

Additional file 6: List of primers used in the study.
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