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Abstract

clarify their expression patterns in wheat caryopses.

hydrolytic enzymes during germination.

Bread wheat

Background: The major wheat seed proteins are storage proteins that are synthesized in the rough endoplasmic
reticulum (ER) of starchy endosperm cells. Many of these proteins have intra- and intermolecular disulfide bonds. In
eukaryotes, the formation of most intramolecular disulfide bonds in the ER is thought to be catalyzed by protein
disulfide isomerase (PDI) family proteins. The cDNAs that encode eight groups of bread wheat (Triticum aestivum L))
PDI family proteins have been cloned, and their expression levels in developing wheat grains have been determined.
The purpose of the present study was to characterize the enzymatic properties of the wheat PDI family proteins and

Results: PDI family cDNAs, which are categorized into group | (TaPDILTAa, TaPDIL1AB, TaPDIL1Ay, TaPDIL1AS, and
TaPDIL1B), group Il (TaPDIL2), group Il (TaPDIL3A), group IV (TaPDIL4D), and group V (TaPDIL5A), were cloned. The
expression levels of recombinant TaPDILTAq, TaPDIL1B, TaPDIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A in Escherichia
coli were established from the cloned cDNAs. All recombinant proteins were expressed in soluble forms and purified.
Aside from TaPDIL3A, the recombinant proteins exhibited oxidative refolding activity on reduced and denatured
ribonuclease A. Five groups of PDI family proteins were distributed throughout wheat caryopses, and expression levels
of these proteins were higher during grain filling than in the late stage of maturing. Localization of these proteins in
the ER was confirmed by fluorescent immunostaining of the immature caryopses. In mature grains, the five groups of
PDI family proteins remained in the aleurone cells and the protein matrix of the starchy endosperm.

Conclusions: High expression of PDI family proteins during grain filling in the starchy endosperm suggest that these
proteins play an important role in forming intramolecular disulfide bonds in seed storage proteins. In addition, these
PDI family proteins that remain in the aleurone layers of mature grains likely assist in folding newly synthesized
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Background

The major seed proteins of bread wheat (Triticum aesti-
vum L.) include gliadins and glutenins. These storage
proteins are synthesized in the rough endoplasmic
reticulum (ER) of starchy endosperm cells and accumu-
late in two kinds of protein bodies derived from the ER
and protein storage vacuoles [1-3]. Many of the wheat
seed storage proteins have intramolecular disulfide bonds
[4]. For example, gliadins have three to four intramolecu-
lar disulfide bonds in the C-terminal domain. In the case
of y-gliadins, formation of intramolecular disulfide bonds
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in the ER has been demonstrated to be essential for trans-
port to the Golgi apparatus and deposition into protein
bodies [5-8]. Therefore, mutations in cysteine residues or
the reduction of disulfide bonds result in precipitation
into insoluble aggregates in the ER [6-8].

Generally, the formation of disulfide bonds in proteins
synthesized in the rough ER occurs mainly via dithiol/
disulfide transfer reactions catalyzed by protein disulfide
isomerase (PDI) (EC 5.3.4.1) and PDI-related proteins in
eukaryotes [9]. PDI has two thioredoxin domains that
contain the redox active site CGHC (a and @’) and two
inactive domains (b and b’) [10]. Other PDI family
members contain one or more thioredoxin domains [11].
In dicotyledonous Arabidopsis, a set of 22 orthologs of
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known PDI family proteins was discovered by a genome-
wide search, and these orthologs were separated into
phylogenetic groups I-X [12].

The physiological functions and biochemical properties
of several plant PDI family members have been studied.
AtPDIL5, an Arabidopsis ortholog of group I PDI family
proteins, is expressed in endothelial cells of developing
seeds and traffics together with the cysteine proteases
RD21 and CP43 from the ER through the Golgi to vacu-
oles [13]. Studies of an AtPDIL5-null mutant revealed that
AtPDIL5 is required for proper seed development and
regulates the timing of programmed cell death by chap-
eroning and inhibiting cysteine proteases and serving as a
redox-sensitive protease regulator during their trafficking
to vacuoles before endothelial cells undergo programmed
cell death. AtPDIL2-1, an Arabidopsis ortholog of group
IV PDI family proteins, has been shown to act in maternal
sporophytic tissues to affect embryo sac development [14].
A truncated AtPDIL2-1 mutant has been demonstrated
to function as a gain-of-function mutant in sporophytic
tissues and to affect ovule structure and impede embryo
sac development, thereby disrupting pollen tube guidance.

In Oldenlandia affinis, a coffee family (Rubiaceae) plant,
Oa PDI, an Oldenlandia ortholog of group I PDI family
proteins, has been shown to be involved in the biosyn-
thesis of the knotted circular proteins termed cyclotides
[15]. In addition, Oa PDI dramatically enhances the oxida-
tive folding of kalata B1 at physiological pH in vitro.

GmPDIL-1, GmPDIL-2, GmPDIL-3, GmPDIS-1 and -2,
and GmPDIM, soybean orthologs of groups I-V PDI family
proteins have been identified, and the recombinant pro-
teins of GmPDIL-1, GmPDIL-2, GmPDIS-1, GmPDIS-2
and GmPDIM, but not GmPDIL-3, have been demon-
strated to possess oxidative refolding activities [16-19].
In addition, GmPDIL-1, GmPDIL-2, GmPDIS-1, and
GmPDIM have been shown to be involved in the folding
of the soybean seed storage proteins proglycinin and
B-conglycinin in the ER of cotyledon cells.

In monocotyledonous rice, grains of the mutant eps,
which lack the rice ortholog (PDIL1-1) of group I PDI
proteins, fail to generate the normal prolamin-containing
protein bodies-I and accumulate the 57-kD proglutelin
polypeptide in aggregate with the prolamin polypeptides
via intermolecular disulfide bonds in small ER-derived
protein bodies of uniform size (0.5 m in diameter) [20]. In
addition, PDIL1-1 is asymmetrically distributed within the
cortical cisternal ER, and this ortholog is essential for the
maturation of proglutelin only when its rate of synthesis
significantly exceeds its export from the ER. These find-
ings suggest that rice PDIL1-1 helps retain proglutelin in
the cisternal ER lumen until it attains competence for ER
export [21]. Furthermore, analysis of the T-DNA insertion
mutant revealed that rice PDIL1-1 deficiency causes a
chalky phenotype, thick aleurone layer, lower protein
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content, and higher free sugar content in grains than the
wild-type rice protein, suggesting that rice PDIL1-1 is
involved in regulatory activities for various proteins that
are essential for the synthesis of grain components [22].
Rice PDIL2;3, a rice ortholog of group V PDI family
proteins, has been shown to be efficiently targeted to
the surface of protein bodies-I in a redox active site-
dependent manner and to play an important role in the
accumulation of Cys-rich 10-kD prolamin (crP10) in
the core of PB-I [23]. Complementation experiments
using eps have indicated that rice PDIL2;3 and PDILI;1
are not functionally redundant for disulfide bond forma-
tion in structurally diverse storage proteins and that these
proteins play distinct roles in protein body development.

In wheat, the importance of PDI family proteins in
seed storage protein folding and accumulation has been
long predicted. Oxidative refolding activity was first
reported in the embryo of bread wheat in 1978 [24], and
activity in the endosperm was subsequently reported
[25,26]. In 1995, a ¢cDNA encoding a typical PDI was
cloned. In addition, a 60-kD glycoprotein, which had a
partial amino acid sequence homologous to the amino
acid sequence predicted from the cDNA, was purified
from grains of bread wheat by Shimoni et al. [27,28].
Since then, many cDNAs encoding wheat PDI family
proteins have been identified [29-37]. Furthermore,
d’Aloisio et al. reported the cloning of cDNAs encoding
one typical PDI categorized into group I and eight PDI
family proteins categorized into groups II-VIII [34].
These investigators also found that genes encoding these
PDI family proteins are located in chromosome regions
syntenic to those in rice [36]. Quantitative analysis of
mRNAs transcribed from these genes revealed that these
genes were constitutively expressed in all tissues examined
but were characterized by different expression profiles
[34]. Based on mRNA expression data, PDI family pro-
teins (especially in groups I-V) have been proposed to
play essential roles in grain development; however, the
enzymatic activities of these individual proteins have not
been characterized. In this study, we report the cloning of
¢DNAs encoding bread wheat PDI family proteins of
groups I-V (TaPDIL1A, TaPDIL1B, TaPDIL2, TaPDIL3A,
TaPDIL4D, and TaPDIL5A) and characterization of
the enzymatic properties of their recombinant proteins.
In addition, this report describes the expression and
subcellular localization of these PDI family proteins in
developing and mature caryopses.

Results and discussion

Cloning of wheat PDI family genes

In this study, we harvested mRNAs of bread wheat PDI
family protein orthologs from groups I, IL, IIL, IV, and V
[12] from the immature caryopses and performed PCR
using primer sets designed from their nucleotide sequences
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as reported previously [34]. Next, we generated and cloned
the cDNAs encoding these PDI orthologs. We obtained five
clones categorized into group 1 (TaPDIL1Aa [DDBJ:
AB933341], TuPDILIASB [DDBJ:AB933345], TaPDIL1Ay
[DDBJ:AB933342], TaPDILIAS [DDBJ:AB933343], and
TaPDILIB [DDBJ:AB933344]) and one clone categorized
into group II (7aPDIL2, [DDBJ:AB933346]), group III
(TaPDIL3A, [DDBJ:AB933347]), group IV (TaPDIL4D,
[DDBJ:AB933348]) and group V (TaPDIL5A, [DDB]J:
AB933349]) (Table 1). Among these clones, TaPDILIAp,
TaPDIL1Ay, TaPDIL1AS, and TaPDIL2 have novel nucleo-
tide sequences. The domain structures predicted from
the amino acid sequences encoded by these cDNAs are
shown in Figure 1. PDI family proteins categorized into
group I are members of the representative eukaryotic
PDI, which possesses an N-terminal signal sequence, two
thioredoxin-like motifs with a CGHC active site (a and a’
domains), two putative thioredoxin-folded domains
without active site (b and b’ domains), and a C-terminal
KDEL sequence that functions as an ER retention signal

[38,39]. In earlier studies [33,34], three genes (TaPDILI-1
[CPDI4A], TaPDILI-2, and TaPDIL1-3) encoding group I
PDI family proteins were shown to be located on chromo-
some arms 4AL, 4BS, and 4DS, respectively. Recently, the
wheat genome draft sequences were deposited in the
databases of the wheat portal (http://wheat-urgi.versailles.
inra.fr/Seq-Repository/) [40]. Nucleotide sequences of the
c¢DNAs of TuPDIL1Aa, TaPDILIAfS, TaPDIL1Ay, and TaP-
DIL1AGS were coincident with those of the TuPDILI-1 gene
and contigs on chromosome 4AL. Alignments of the
nucleotide sequences of these ¢cDNA with the genomic
nucleotide sequence of TaPDILIA [GenBank:AJ868102]
suggested that they are produced by intron retention-type
alternative splicing of the first exon (Figure 2) [41]. TaPDI-
L1Aa, TaPDILIAB, TaPDILIAy, and TaPDILIAS cDNAs
encoded proteins of 515, 501, 487, and 485 amino acids,
respectively (Table 2, Additional file 1: Figure S1). TaPDI-
L1AB, TaPDIL1Ay, and TaPDIL1AS lack the amino acid
sequences Pro21-A34, Alal5-Leud2, and Alal3-Leu42

Table 1 Wheat PDI family proteins cloned in this study
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Figure 1 Wheat PDI family protein domain structures deduced
from the cDNA clones. The boxes indicate the domain boundaries
predicted by an NCBI conserved domain search. Black boxes in domains
aand a' represent the CXXS/C motif. The N-terminal black box represents
a signal peptide that was predicted using SignalP-4.0 euk software.

found in TaPDIL1A«, respectively. The putative signal
peptides of TaPDIL1Ay and TaPDIL1AS (Metl-Alal8 and
Met1-Alal6, respectively) were shorter than those of TaP-
DIL1Aa and TaPDILIAB (Metl-Ala25 and Metl-Ala26,
respectively). The effects of such alterations in the signal
peptide on TaPDIL1A protein targeting to the ER are
unclear. The nucleotide sequence of TaPDILIB cDNA
was matched to that of GPDIA-4B, the TaPDILI-2
genomic gene [GenBank: AJ868103] [33,34], and contigs
on chromosome 4BS. TaPDIL1A«, -1, -1y, and -18 and
TaPDIL1B have a conserved arginine involved in the
regulation of the active site redox potential and a
conserved glutamic acid that facilitates the release of
the active site from a mixed disulfide with substrate in
human PDI [42-44] in both the a and a’ domains
(Table 2 and Additional files 1: Figure S1 and Additional

file: 2: Figure S2).

Clone ORF (nt) Accession number Clone name reported previously Accession number
TaPDILTAa 1545 AB933341 CPDI4A*, TaPDIL1-1a**, TaPDIL1-1c* AJ868105
TaPDILTAR 1503 AB933345

TaPDILTAy 1461 AB933342

TaPDILTAS 1455 AB933343

TaPDIL1B 1536 AB933344 CPDI4B*, TaPDIL1-1b** AJ868106

TaPDIL2 1755 AB933346

TaPDIL3A 1623 AB933347 TaPDIL3-1** FN555317
TaPDIL4D 1101 AB933348 TaPDIL4-1** FN555318
TaPDIL5A 1320 AB933349 TaPDIL5-1a** FN555320

*reference 33, **reference 34.
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Figure 2 Splicing sites in TaPDIL1Aa, TaPDIL1AB, TaPDIL1Ay, and TaPDIL1AS. Open boxes indicate exons, and solid black lines denote introns.
The numbers indicate the size of each exon and intron (bp). The positions of the signal peptide (SP), the two CGHC motifs, and the C-terminal KDEL
sequence are indicated.

The TaPDIL2 cDNA encoded a 585- amino acid protein
(Figure 1 and Table 2), and the nucleotide sequence of
TaPDIL2 cDNAs was 99% identical to that of TaPDIL2-1
[34]. No contig sequences matched with the sequence of
TaPDIL2 cDNA found in the wheat genome draft
sequences. The putative amino acid sequence of TaPDIL2
was also 99% identical to that of TaPDIL2-1 (Additional
file 3: Figure S3). TaPDIL2 was categorized as a group II
PDI family protein that possesses an N-terminal signal
sequence, aspartic acid-rich flanking region, two
thioredoxin-like motifs with a CGHC active site (a and
a’ domains), two putative thioredoxin-folded domains
without active sites (b and b’ domains), and a C-terminal
KDEL sequence. TaPDIL2 also has a conserved arginine

and a conserved glutamic acid in both the a and a’
domains (Table 2 and Additional file 4: Figure S4).

The TaPDIL3A cDNA encoded a 541-amino acid protein
(Table 2), and the nucleotide sequence was matched to
contigs on chromosome 7AS. TaPDIL3A was categorized
as a group III PDI family protein and possesses the same
domain structure as TaPDIL1A (Figure 1). However, the
sequences of the active sites in the a and a’ domains (CERS
and CVDC) differ from the representative motif CGHC. In
addition, TaPDIL3A lacks the conserved glutamic acid in
the a domain, as well as the conserved arginine in the a
and a’ domains (Additional file 5: Figure S5).

The nucleotide sequence of the TaPDIL4D cDNA was
matched to that of contigs on chromosome 1AS.

Table 2 Characteristics of the wheat PDI family proteins cloned in this study

Name Total amino  Signal Molecular pl  Conserved  Consensus N- Conserved Conserved ER retention
acid residues peptide* weight active site glycosylation site(s) arginine(s) charge pairs signal

TaPDIL1Aa 515 1-25 56579.13 499 C68GHCT1, N283 R136, R475  E62/K96, E406/K439 KDEL
C412GHC415

TaPDILTAB 501 1-26 55256.73 507 (C54GHC57, N269 R122, R461  E48/K82, E392/K425 KDEL
C398GHC401

TaPDILTAy 487 1-18 53977.23 510 C40GHC43, N255 R108, R447  E34/K68, E378/K411 KDEL
(C384GHC387

TaPDILTAS 485 1-16 53679.83 510 (C38GHC41, N253 R106, R445  E32/K66, E376/K399 KDEL
C382GHC385

TaPDIL1B 512 1-25 5642502 503 C68GHC71, N283 R136, R475  E62/K96, E406/K439 KDEL
C412GHC415

TaPDIL2 585 1-28 63588.76 461 C129GHC132, N109, N212 R136, R535  E123/K157, E464/K497 KDEL
C470GHC473

TaPDIL3A 541 1-23 59594.01 495 (C96ERS99, N150 R160 E429K462 KDEL
C435VDC438

TaPDIL4D 367 1-30 40260.95 6.17 C60GHC63, - R125,R244  E54/K87,E173/K211 -
C179GHC182

TaPDILSA 440 1-22 47207.89 530 C57GHC60, N164, N170 R119, R257  E51/K89, E188/K226 NDEL
C194GHC197

*Signal peptides were predicted using SignalP 4.1 Server by the Technical University of Denmark.
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TaPDIL4D was categorized as a group IV PDI family
protein, which is unique to plants and possesses an N-
terminal signal peptide, two thioredoxin-like motifs with
a CGHC active site (a and a’ domains), and a domain
homologous to the C-terminal domain of mammalian
ERp29 (Figure 1 and Table 2) [45].

TaPDIL5SA was categorized as a group V PDI family
protein. This sequence encodes a protein of 440 amino
acids that is homologous to mammalian P5 [46], and the
nucleotide sequence of TaPDIL5A ¢cDNA was matched
to that of contigs on chromosome 5AL. TaPDIL5A pos-
sesses an N-terminal signal peptide, two thioredoxin-like
motifs with a CGHC active site (a and a’ domains), a
putative thioredoxin-folded b domain, and a C-terminal
NDEL sequence similar to KDEL (Figure 1 and Table 2).
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TaPDIL4D and TaPDIL5A contain a conserved arginine
and a conserved glutamic acid in both the a and a’
domains (Table 2 and Additional files 6: Figure S6 and
Additional files 7: Figure S7).

Expression and characterization of recombinant wheat
PDI family proteins

To investigate the enzymatic properties of wheat PDI
family proteins, recombinant proteins without the putative
N-terminal signal peptide were prepared from ¢cDNAs of
TaPDIL1Aa, TaPDIL1B, TaPDIL2, TaPDIL3A, TaPDIL4D,
and TaPDIL5A using an Escherichia coli (E. coli) expression
system, and then the proteins were purified (Figure 3A-F).
All recombinant proteins were expressed as soluble pro-
teins (Figure 3A-F) and eluted in a monomeric form from a
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Figure 3 Expression of recombinant wheat PDI family proteins. Recombinant TaPDIL1Aa (A), TaPDIL1B (B), TaPDIL2 (C), TaPDIL3A (D), TaPDL4D
(E), and TaPDIL5A (F) were expressed in E. coli. cells transformed with each expression plasmid and incubated with 0.4 mM IPTG at 30°C for O (lane 1)
or 20 h (lane 2). Soluble (lane 3) and insoluble (lane 4) fractions were separated from these cells after 20 h by centrifugation after sonication. Each
recombinant PDI family protein (arrowheads) was purified by His-tag column chromatography (lane 5) followed by gel filtration chromatography
(lane 6). Proteins in each sample were separated by SDS-PAGE and stained with Coomassie Brilliant Blue. (G) The CD spectra of the purified recombinant
TaPDIL1Aa (e), TaPDIL1B (o), TaPDIL2 (A ), TaPDIL3A (m), TaPDL4D (#), and TaPDIL5A (A) were determined at a concentration of 0.3 mg/ml. (H) The
purified recombinant TaPDIL1Aa (lane 1), TaPDIL1B (lane 2), TaPDIL2 (lane 3), TaPDIL3A (lane 4), TaPDIL4D (lane 5), or TaPDIL5A (lane 6) was detected
by western blot analysis with anti-TaPDIL1Aa serum (lanes 1 and 2), anti-TaPDIL2 serum (lane 3), anti-TaPDIL3A serum (lane 4), anti-TaPDIL4D serum
(lane 5), or anti-TaPDIL5A serum (lane 6). Asterisks indicate degradation products.
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gel filtration column (data not shown). All recombinant
TaPDIL family proteins had circular dichroism (CD) spec-
tra typical of well-folded a/B-type proteins (Figure 3G).

The oxidative refolding activities of these recombinant
proteins were analyzed with reduced and denatured
ribonuclease A (RNaseA) as a substrate. Both TaPDI-
L1Aa and TaPDIL1B exhibited higher activities than the
other recombinant PDI family proteins (Table 3). Fur-
thermore, the activities of TaPDIL1Aa and TaPDIL1B
were approximately 1.5-fold higher than that of the
recombinant soybean ortholog GmPDIL-1 [17] despite
63% share identity in amino acid sequence (Additional
file 2: Figure S2). The activity of TaPDIL2 was nearly
identical to that of soybean ortholog GmPDIL-2 [17],
which has an amino acid sequence with 62% shared
identity (Additional file 4: Figure S4). The recombinant
TaPDIL3A had no oxidative refolding activity similar to
soybean GmPDIL3 [19]. The lack of oxidative refolding
activity of TaPDIL3A and GmPDIL-3 is thought to stem
from their atypical active site motifs and the lack of a
conserved arginine that is necessary for active site activ-
ity as described above. Furthermore, the activity of TaP-
DILAD was approximately three- to four-fold higher
than those of soybean orthologs, GmPDIS-1 and
GmPDIS-2 [16], even though 75% and 74%, respectively,
of the amino acid sequences are identical (Additional
file 6: Figure S6). Finally, TaPDIL5A exhibited approxi-
mately four-fold greater activity than that of the soybean
ortholog GmPDIM [18], which shares a 79% identical
amino acid sequence (Additional file 7: Figure S7).

Expression of PDI family proteins in wheat caryopses

We generated antiserum using recombinant TaPDIL1Aaq,
TaPDIL2, TaPDIL3A, TaPDIL4D, or TaPDIL5A as an anti-
gen. Each antiserum cross-reacted with the recombinant
protein used for the immunization (Figure 3H). The
antiserum against TaPDIL1Aa also cross-reacted with re-
combinant TaPDIL1B. The expression of each PDI family
protein in wheat caryopses was confirmed by western blot

Table 3 Oxidative refolding activity of recombinant
wheat PDI family proteins

Wheat PDI Activity Soybean Activity
family protein  (mmol/min/mol) PDI ortholog (mmol/min/mol)
TaPDILTAa 736+ 4 GmPDIL-1 460°
TaPDIL1B 665 + 49
TaPDIL2 287+ 20 GmPDIL-2 259P
TaPDIL3A N.D. GmPDIL-3 NDS
TaPDIL4D 179+7 GmPDIS-1 66°
GmPDIS-2 43°
TaPDIL5A 175+ 33 GmPDIM 45°¢

2 b < dyjalyes are quoted from references 16, 17, 18, and 19, respectively.
Oxidative refolding activity was assayed using reduced and denatured RNaseA
as a substrate.
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analyses with these sera. The sera against TaPDIL1A«, TaP-
DIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A recognized a
60-, 70-, 69-, 40-, and 47-kDa band, respectively, on gels
containing proteins extracted from caryopses of bread
wheat (Figure 4A). Because anti-TaPDIL1Aa serum cross-
reacted with recombinant TaPDIL1B, a highly conserved
protein categorized as group I PDI family proteins, it is
likely that splicing variants of TaPDIL1Aa, TaPDIL1B, and
TaPDIL1-3 [34] may all be detected by western blot analysis
with this serum. Likewise, the sera against TaPDIL2, TaP-
DIL3A, TaPDIL4D, and TaPDIL5A were presumed to
cross-react with their homolog categorized into group I,
I, IV, or V, respectively. Thus, the proteins that cross-
reacted with sera against TaPDIL1Aaq, TaPDIL2, TaPDIL3A,
TaPDIL4D, or TaPDIL5A were referred to as TaPDILI1,
TaPDIL2, TaPDIL3, TaPDIL4, or TaPDIL5, respectively.
The sizes of the bands that cross-reacted with anti-
TaPDIL4D and anti-TaPDIL5A sera approached the
molecular sizes calculated from the amino acid se-
quences of TaPDL4D and TaPDIL5A, respectively, in the
absence of the signal peptide. The sizes of bands that
cross-reacted with the sera against TaPDIL1A«, TaP-
DIL2, and TaPDIL3A were larger than the calculated
molecular sizes based on the amino acid sequences of
these PDI family proteins without the signal peptide,
but these proteins contain one or two consensus N-
glycosylation sites, suggesting that these PDI family
proteins contain N-glycan(s). When caryopses proteins
were digested with endoglycosidase H or F, the masses
of the bands that were recognized by the sera against
TaPDIL1Aa, TaPDIL2, and PDIL3A became smaller
(Figure 4B), supporting the notion of N-glycosylation of
these proteins in wheat caryopses. Because endoglycosi-
dase H specifically cleaves high mannose-type oligosac-
charides but not complex oligosaccharides from
glycoproteins, these results indicate that the oligosac-
charides attached to TaPDIL1, TaPDIL2, and TaPDIL3
are high mannose-type oligosaccharides. In agreement
with these findings, TaPDIL1 purified from wheat was
previously shown to be a glycoprotein [28]. In addition
to PDI family proteins, we examined wheat orthologs of
calreticulin and ER oxidoreductin 1 (Erol) using western
blot analyses. Calreticulin acts cooperatively with the
human PDI family protein ER-60/ERp57 to fold mono-
glycosylated N-glycoproteins [47-50]. Erol is a PDI-
activating enzyme located in the ER [51-54]. The active
centers of PDI family proteins oxidize cysteine residues in
substrate proteins and become a reduced form. PDI family
proteins require other oxidizing molecules such as Erol
for reoxidation of their active center cysteine residues.
The sera against calreticulin and Erol cross-reacted
with a 52-kDa band and 63-kDa band, respectively
(Figure 4A). These band sizes were similar to those
calculated from the putative amino acid sequences of
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Figure 4 Expression of wheat PDI family proteins in wheat caryopses. (A) Proteins (25 pg) extracted from the caryopses at 25 (lanes 1, 3) or
15 (lanes 2, 4-7) dap were analyzed by western blot with serum against TaPDIL1Aa (lane 1), TaPDIL2 (lane 2), TaPDIL3A (lane 3), TaPDIL4D (lane 4),

TaPDIL5A (lane 5), calreticulin (lane 6), or Ero1 (lane 7). (B) TaPDIL1, TaPDIL2, and TaPDIL3 are high mannose-type N-glycosylated proteins in
wheat caryopses. The proteins extracted from the caryopses were treated with (+) or without (=) endoglycosidase H (H) or endoglycosidase F (F).

The proteins (20 ug for TaPDIL1 and TaPDIL2; 30 ug for TaPDIL3, TaPDIL4,
serum against TaPDIL1Aaq, TaPDIL2, TaPDIL3A, TaPDIL4D, or TaPDIL5A.

and TaPDIL5) were separated by SDS-PAGE and immunostained with

the wheat orthologs of calreticulin (50,1145 [EMS59406])
and Erol (65,619; [EMS58683]) [55].

The expression levels of the PDI family proteins, calreti-
culin, and Erol in the caryopses during maturation were
determined by western blot analyses (Figure 5A). In
addition, the levels of each of the PDI family proteins in
bread wheat caryopses and flour were semi-quantitatively
assessed by determining their band intensities on western
blots (Figure 5B and Table 4). Levels of TaPDIL1 in the

caryopses were highest at 10-15 dpa, which corresponds
to the time of greatest synthesis of the seed storage pro-
teins such as gliadins and glutenins (Figure 5A, Additional
file 8: Figure S8). The levels of TaPDIL2, TaPDIL4, and
TaPDIL5 in caryopses were also highest at 5-15 dpa in
the maturing period. The level of TaPDIL3 in the caryop-
ses was highest at 5 dpa and then decreased with time.
The content of TaPDIL1 was the highest among PDI fam-
ily proteins (Table 4). The expression of 7aPDILI mRNA in
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Figure 5 Expression of wheat PDI family proteins in wheat caryopses during maturation. (A) Proteins (25 ug) extracted from caryopses at
5 (lane 1), 10 (lane 2), 15 (lane 3), 25 (lane 4), 30 (lane 5), and 35 dpa (lane 6) as well as mature grain (M) were analyzed by western blot as described in
Figure 4A. For detection of gliadins, anti-gliadin serum was used. Total proteins were stained with Coomassie Brilliant Blue (CBB). HMW-GS indicates
high molecular glutenin subunit. (B) Levels of TaPDIL1, TaPDIL2, TaPDIL3, TaPDIL4, and TaPDIL5 in caryopses at 5 (1), 10 (2), 15 (3), 25 (4), 30 (5) and 35
dpa (6) and in mature grain (7) were estimated from the band intensities on western blots in A. Values were calculated as a ratio to the value obtained
at 5 dpa. Data represent the mean + standard error of three experiments.
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Table 4 PDI family proteins in wheat caryopses and flour

Wheat PDI Content (pmol/mg protein)

family protein 5 dpa 10 dpa 15 dpa 25 dpa 30 dpa 35 dpa Mature flour
TaPDIL1 15.0 274 232 69 34 29 43 73
TaPDIL2 39 3.8 2.7 0.5 0.6 04 0.6 1.1
TaPDIL3 0.7 03 02 0.1 0.1 0.1 0.1 0.1
TaPDIL4 12.7 1.6 12.1 4.1 32 30 35 15
TaPDIL5 1.5 1.3 12 03 0.2 0.2 03 03

Contents by weight of PDI family proteins were estimated from the band intensities on western blot analysis of the caryopses (Figure 4B) and flour (Haruyokoi)
with recombinant TaPDIL1Aq, TaPDIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A used as standard proteins for determination of TaPDIL1, TaPDIL2, TaPDIL3, TaPDIL4,
and TaPDIL5, respectively. Molar quantities of TaPDIL1, TaPDIL2, TaPDIL3, TaPDIL4, and TaPDIL5 included in 1 mg of caryopses protein or flour protein were
calculated with each molecular weight of TaPDIL1Aq, TaPDIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A (as shown in Table 2), respectively.

the developing caryopses has been reported to be the high-
est of those of PDI family proteins [34]. The expression of
wheat Erol was highest at 15 dpa (Figure 5A). Wheat Erol
may activate wheat PDI family proteins, but whether plant
Erol activates plant PDI family proteins in vivo remains un-
proven. Knockdown of rice Erol (OsEROL1) revealed that
native disulfide bond formation in proglutelins depends on
an electron transfer pathway involving OsERO1 [56].
Wheat calreticulin was also highly expressed during the
period of grain filling (Figure 5A). Levels of all PDI family
proteins, calreticulin, and Erol were drastically diminished
in the late maturing period (25-35 dpa; Figure 5A and B)
when grain weights decreased due to desiccation (Add-
itional file 8: Figure S8); however, low levels of PDI family
proteins remained even in the mature grains. Calreticulin
and Erol were not detected in the 25-35 dpa caryopses
or in the mature grains.

Localization of PDI family proteins in wheat caryopses
Localization of each PDI family protein in the immature
wheat caryopses at 10 and 20 dpa was investigated by
immunofluorescence microscopy. The antisera for PDI
family proteins were confirmed to specifically react with
their respective native recombinant PDI family protein
(Additional file 9: Figure S9). The aleurone cells, pericarp,
and starchy endosperm of the caryopsis were labeled with
the sera raised against TaPDIL1Aq, TaPDIL2, TaPDIL3A,
TaPDIL4D, or TaPDIL5A (Figure 6). These distributions
suggest that these PDI family proteins are required for
folding nascent proteins that are synthesized de novo in
these tissues during grain development.

The TaPDIL1 group proteins, TaPDIL2, TaPDIL3A,
and TaPDIL5A contain putative signal peptides as well
as the C-terminal ER retention signal. Therefore, these
PDI family proteins were expected to localize to the ER.
In addition, the ER-localization of TaPDIL4D, which has
an N-terminal signal peptide but no C-terminal ER re-
tention signal, was also predicted because soybean
orthologs GmPDIS-1 and GmPDIS-2 localize to the ER
[16]. The ER-localization of all PDI family proteins in the
starchy endosperm was indicated by their network-like

distribution in the cytoplasm and co-localization with cal-
reticulin, a well-known ER luminal protein (Figure 7A-E).
In the starchy endosperm, peripheral regions of A-type
starch granules were strongly immunostained with anti-
PDI family and anti-calreticulin sera, suggesting that the
ER was densely packed around the starch granules. The
existence of all wheat PDI family proteins in the ER of the
starchy endosperm cells during grain filling suggests that
these factors play important roles in the folding of storage
proteins such as gliadins and glutenins, which are synthe-
sized and folded in the ER. y-Gliadin has been shown to
require PDI family proteins for folding by in vitro transla-
tional experiment [5]. In the aleurone cells, members of
all five groups of PDI family proteins were labeled along
with calreticulin in the periphery of aleurone grains and
network structure (Figure 7F-J), suggesting localization of
these proteins to the ER. In aleurone grains, storage pro-
teins accumulate during seed development [57]. These
PDI family proteins may assist in the folding of storage
proteins synthesized in the ER of the aleurone cells, and
the resultant folded storage proteins accumulate in the
aleurone grains. However, the specific details of the trans-
port of storage proteins from the ER to aleurone grains
remains unclear. In addition, the five groups of PDI family
proteins were also detected at the boundaries of aleurone
cells. The localization mechanism and physiological roles
of those PDI family proteins at the aleurone cell boundary
remain to be elucidated.

In the mature grains, the members of the five groups
of PDI family proteins were labeled in the aleurone cells
and starchy endosperm (Figure 8A-E). In the aleurone cells
of the mature wheat grain, the ER has been found in two
regions: the periphery of the aleurone grain-spherosome
complex and the cytoplasm as spread network structures
[58]. The periphery of the aleurone grain-spherosome com-
plex was mainly labeled with antisera to the five anti-PDI
family proteins and calreticulin (Figure 8F-]). Based on
these findings, we predict that the PDI family proteins that
localized in the aleurone cells of the mature grain accu-
mulated prior to grain formation and function in folding
newly synthesized hydrolytic enzymes in the ER during
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Figure 6 Distribution of wheat PDI family proteins in immature wheat caryopses. Cross sections of caryopses at 10 dpa (A-E) and 20 dpa
(F-J) were immunostained with serum against TaPDILTAa (A, F), TaPDIL2 (B, G), TaPDIL3A (C, H), TaPDIL4D (D, 1), or TaPDIL5A (E, J). Specimens
were observed with a stereomicroscope SZX16. Fluorescent images are shown on the right panels in (A-J). Visible light images collected
simultaneously are shown on the left in A-J. se, starchy endosperm; a, aleurone layer; pc, pericarp. Scale bar=1 mm.

F TaPDIL1
a, pc
/s
se
G
a, pc
-
se
H
|
J TaPDIL5

J

germination. In mature cereal grain endosperm, only
aleurone cells are alive [59]. When cereal grains imbibe
water, a-amylases and cysteine proteinases, which may
contain intramolecular disulfide bonds [60,61], are synthe-
sized in the ER of the aleurone cells in response to gibber-
ellic acid secretion into the endosperm from the embryo
via the scutellum [62,63]. These hydrolytic enzymes are
secreted to the starchy endosperm to break down starch
and protein that accumulated in the starchy endosperm to
supply carbon and nitrogen used in germination. Whereas
the secretion of a-amylases and cysteine proteases from
the aleurone layers increased in response to gibberellic acid
treatment for 24 h, the level of the barley TaPDIL-1 ortho-
log was not affected by gibberellic acid treatment [64],
suggesting that the barley TaPDIL-1 ortholog that remains

in the aleurone cell of the wheat grain may help fold the
newly synthesized hydrolytic enzymes.

During the late stage of maturation, the starchy endo-
sperm cells undergo programmed cell death, and the
protein bodies fuse to the protein matrix [65]. The ana-
lyzed members of the five groups of PDI family proteins
were distributed throughout the fused protein matrix
(Figure 8K-O). Because wheat flour arises from milled
starchy endosperm, the five groups of PDI family pro-
teins must be present in flour (Table 4). We previously
detected oxidative refolding activity in an extract from
wheat flour, and its activity was inhibited by the PDI
inhibitor bacitracin [66]. Therefore, PDI family proteins
may be active in both the starchy endosperm of the dry
mature grain and flour. It is unclear whether the PDI
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Figure 7 Subcellular distribution of wheat PDI family proteins in immature starchy endosperm and aleurone cells. Cross sections of caryopses
at 10 dpa were immunostained with a combination of sera against TaPDIL1Aa (A and F, green), TaPDIL2 (B and G, green), TaPDIL3A (C and H, green),
TaPDIL4D (D and |, green), or TaPDIL5A (E and J, green) and calreticulin (CRT, red). Specimens were observed with a Confocal Imaging System FV1200.
Merged images of red and green are also shown. Endosperm sections and aleurone cells are shown in the left and right panels, respectively. Asterisks

indicate A-type starch granules. Arrowheads indicate aleurone grains. White dotted lines show the profile of one aleurone cell. Scale bar =5 pm.

family proteins that remain in the starchy endosperm of
the wheat grain play a physiological role during germin-
ation. Further studies are needed to identify the substrate
proteins associated with each PDI family protein in vivo
and to determine the effects of knockdown of these
factors on wheat phenotypes, such as seed storage protein
accumulation and plant body growth. Furthermore, PDI
family proteins may affect the quality of food products.

We previously demonstrated that PDI family proteins play
a role in retaining glutenin macropolymers during dough
mixing, and these polymers are the most important factor
for dough’s tensile strength [66]. We semi-quantitatively
analyzed the levels of the five PDI family protein groups in
a wheat flour sample (Table 4) and found that among the
five groups of PDI family proteins, TaPDIL1 levels were
the highest. Because the oxidative refolding activities of
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Figure 8 Distribution of wheat PDI family proteins in the mature aleurone cells and the protein matrix of wheat grains. Cross sections of
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mature grains were immunostained with sera against TaPDIL1Aa (A, F, K), TaPDIL2 (B, G, L), TaPDIL3A (C, H, M), TaPDIL4D (D, I, N), or TaPDIL5A (E, J, O).
Specimens were observed with a fluorescence microscope BZ-9000 (A-E, K-O) and a Confocal Imaging System FV1200 (F-J). Visible light images (gray)
collected simultaneously are shown in the middle panels (F-O). Merged fluorescent and visible light images are also shown in the right panels (F-O). a,
aleurone layer; pc, pericarp; pm, protein matrix; se, starchy endosperm. Arrowheads indicate aleurone grains. White dotted lines show the profile of one

aleurone cell. Asterisks indicate A-type starch granules. Scale bars in A-E =250 um. Scale bars in F-J =5 um. Scale bars in K-O =50 pym.

recombinant TaPDIL1A and TaPDIL1B were the strongest
of the five recombinant PDI family proteins, TaPDIL1 may
primarily function in retaining glutenin macropolymers
during dough mixing. Therefore, PDI family proteins may
be an important contributing factor to the quality wheat
flour, and they may serve as targets for genetic manipula-
tion in the future.

Conclusions

In eukaryotes, PDI and PDI family proteins function in
multiple essential capacities such as oxidative folding of
nascent proteins, molecular chaperoning, antigen pres-
entation, degradation of abnormal proteins, and redox

signaling. Most information about such functions has
been obtained from mammalian cell studies. The physio-
logical functions and functional mechanisms of plant
PDI family proteins remain largely unknown. Here, we
demonstrated that four of the five groups of wheat PDI
family proteins exhibit oxidative refolding activity on
reduced and denatured RNaseA. All five groups of PDI
family proteins were highly expressed throughout the
caryopses and in particular, in the starchy endosperm
during grain filling. As expected from their primary
structures, these proteins localized to the ER. These re-
sults suggest that PDI family proteins play an important
role in folding seed storage proteins synthesized in the
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ER. In mature grain, the PDI family proteins from all five
groups remain in the ER surrounding the aleurone
grains of the aleurone cells and the protein matrix of the
starchy endosperm. Because many of the hydrolytic
enzymes are synthesized and folded in the ER of the
aleurone cells and secreted to the starchy endosperm to
break down starch and storage proteins during the early
stage of germination, these PDI family proteins may
function in folding nascent hydrolytic enzymes. In con-
clusion, our work provides significant basic information
about the physiological functions of these PDI family
proteins during the wheat life cycle. In the future, it will
be necessary to identify the in vivo substrate proteins
and determine the effects of selective silencing of PDI
family genes on wheat phenotypes with respect to seed
storage protein folding, transport, and accumulation;
seed germination; and plant body growth.

Methods

Plant material

Bread wheat plants were grown in an open field at Kyoto
University. The developing caryopses were collected
147 days after seeding bread wheat plants (Triticum aesti-
vum cv. Yumeshiho) for isolation of mRNA to clone wheat
PDI family ¢cDNAs. The developing caryopses from 5-35
dpa were collected from Triticum aestivum cv. Haruyokoi
at 5-day intervals for western blot analysis and immunohis-
tochemistry. The caryopses were frozen in liquid nitrogen
and stored at —80°C immediately after harvest.

cDNA cloning

The cloning of TaPDIL1, TaPDIL2, TaPDIL3, TaPDIL4,
and TaPDIL5 cDNAs was performed using RT-PCR.
Total RNA was isolated using the Sepasol RNA I (Nacalai
Tesque, Kyoto, Japan) reagent according to the manufac-
turer’s protocol. The amplification of ¢cDNA from total
RNA was performed with a Prime Script IT RTase (TaKaRa
Bio Inc., Shiga, Japan) using the following oligonucleotide
primers: 5-CATGGCGATCTCCAAGGTC-3’ and 5-CTC
TACCTGTCTGCTGCTAGC-3 for TaPDIL1 (GenBank:
AJ277379), 5-TGGACTGAATTCGGCGGATCCATTTC
CACTCC CACTTCCCCCAACG-3 and 5-CATCCCCT
GGTTTCGGCGTCGGCTC-3' for TaPDIL2 (GenBank:
FN555316), 5-TGGACTGAATTCCCCTCTCCTAGATC
TCGGAGGAGGAGCGC-3 and 5-TGGACTGAATTCA
TGGCTACTGCGTAACCGTGACCAACCCCTAC-3’ for
TaPDIL3 (GenBank:FN555317), 5-TGGACTCTCGAGG
TGCAAGAAGAACAGGTGCCAACCG-3’ and 5-TGGA
CTCTCGAGCCGCTAAACTTTCACTGCCATCTCTCT
GATCTC-3’ for TaPDIL4 (GenBank:FN555318), and
5-TGGACTAAGCTTCCGGCTTCCAGAAATTTTTCA
ACGACGC-3 and 5-TGGACTAAGCTTCCACCTTG
CACATCAGAGCTTTCTCCCAC-3’ for TaPDIL5 (Gen-
Bank:FN555320). Nested PCRs were performed with the

Page 12 of 16

DNA fragments amplified by the RT-PCR as a template
using the following oligonucleotide primers: 5-ATGGC
GATCTCCAAGGTCTGGATC-3 and 5- CTGCTGCTA
GCAAGACTGATGC-3 for TaPDIL1, 5-CCATGGCGG
CGATGCCGATGC-3" and 5-GGCTCCTACTTGTTGT
CAATGGTG-3 for TaPDIL2, 5-GGAGGAGCGCGAT
GAGGGCGACG-3 and 5-CATTTTCCTTCAACGCGG
CCAGC-3 for TaPDIL3, 5-GGTCA CCCGAGCTCG
CAG-3' and 5-CTTCACT TCTCTCTTGTGGC-3 for
TaPDIL4, and 5-TGGACTAAGCTTCCGGCTTCCAGA
AATTTTTCAACGACGC-3" and 5-CACATCAGAGCA
AGTGAAGC-3" for TaPDIL5. The amplified TaPDILI,
TaPDIL2, and TaPDIL3 DNA fragments were subcloned
into pCR Blant II-TOPO (Invitrogen, Carlsbad, CA) and
transformed in E. coli DH5. The amplified TaPDIL4 and
TaPDIL5 DNA fragments were subcloned into T-Vector
pMD20 (TaKaRa Bio Inc.) and transformed into E. coli
DH5 cells. The inserts in the plasmid vectors were
sequenced using the fluorescence dideoxy chain termin-
ation method with an ABI PRISM® 3100-Avant Genetic
Analyzer (Applied Biosystems, Foster City, CA).

Construction of His-tagged expression plasmids
Expression plasmids encoding mature His-tagged TaP-
DIL1Aa, TaPDIL1B, TaPDIL2, TaPDIL3A, TaPDIL4D,
and TaPDIL5A without the putative signal peptide were
constructed. Briefly, the DNA fragment was amplified
from the c¢cDNA of TaPDIL1A«, TaPDIL1B, TaPDIL2,
TaPDIL3A, TaPDIL4D, and TaPDIL5A by PCR using the
following oligonucleotide primers: 5-GACGACGACAA
GATG GAGGAGGCCGCCGCCGCCGAGGAG-3’ and
5-GAGGAGAAGCCCGGTCAGAGCTCGTCCTTCAG
AGGCTC-3’ for TaPDIL1Aa and TaPDIL1B, 5-GACG
ACGACAAGATGGCAGTCCCCACCTCCAACCCGG-3
and 5-GAGGAGAAGCCCGGTCACAACTCGTCCTTC
GGGTTCGAAC-3' for TaPDIL2, 5-GACGACGACAA
GATG GCGAAGCTCGATCTGGACGAGGTG-3 and
5-GAGGAGAAGCCCGGTCATAGCTCATCCTTGACA
TTGTC-3 for TaPDIL3A, 5-GACGACGACAAGATGG
ACGAGGTGCTTGCCCTCACGGAG-3’' and 5-GAGG
AGAAGCCCGGTCAAGAGGAGAAGGCTGAAAGAA
TG-3 for TaPDIL4D, and 5-GACGACGACAAGATGC
TCTACTCCGCCGGCTCCCCGGTC-3' and 5-GAGG
AGAAGCCCGGTCACAACTCGTCGTTGGGCGCAGA
G-3’ for TaPDIL5A. The amplified DNA fragment was
subcloned into the ligation-independent cloning site of
the pET46EL/LIC vector (EMD Biosciences, Inc., San
Diego, CA). The recombinant proteins have a His-tag
linked to the amino terminus.

Expression and purification of recombinant wheat PDI
family proteins

E. coli BL21(DE3) cells were transformed with the
expression vectors as described above. The expression of
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recombinant proteins was induced by the addition of
0.4 mM isopropyl thiogalactoside at 30°C for 20 h. All
expressed recombinant proteins were soluble in E. coli.
The cells from 1 L culture broth were collected by
centrifugation, washed twice by suspending in phosphate-
buffered saline and centrifugation, disrupted by sonication
in 8 mL of 20 mM Tris (hydroxymethyl) aminomethane
(Tris)-HCl buffer (pH 8) containing 5 mM imidazole and
0.5 M NaCl (binding buffer), and then centrifuged at
10,000 x g for 30 min at 4°C. The supernatant was filtered
through a Millex Syringe-driven filter 33 mm (Millipore
Corporation, Billerica, MA) and applied to a column
packed with Ni Sepharose 6 Fast Flow (GE Healthcare,
Piscataway, NJ). After washing the column with binding
buffer containing 60 mM imidazole, recombinant proteins
were eluted with binding buffer containing 1 M imidazole,
concentrated with a Vivaspin 20 (GE Healthcare), and
then subjected to gel filtration chromatography on a TSK
gel G3000SW column (Tosoh, Tokyo, Japan) equilibrated
with 20 mM Tris—HCI buffer (pH 7.4) containing 0.15 M
NaCl and 10% glycerol. Recombinant proteins that
eluted in the inside volume fractions were collected.
The concentrations of purified recombinant proteins
were determined from their absorbance at 280 nm
using the molar extinction coefficients calculated with
the modified method of Gill and von Hippel [67].
Extinction coefficients of 43,820, 42,330, 40,840, 33,265,
36,620, and 54,275 M™' cm™ were used for recombinant
TaPDIL1A«, TaPDIL1B, TaPDIL2, TaPDIL3A, TaPDIL4D,
and TaPDIL5A, respectively.

The CD spectra of recombinant proteins in 20 mM
Tris—HCI buffer (pH 7.4) containing 150 mM NacCl and
10% glycerol were obtained using a J-720 spectropolar-
imeter (JASCO Corp., Tokyo, Japan) in a 1-mm path-
length cell with a scan speed of 20 nm/min at 14°C.

RNaseA refolding assay

Oxidative refolding activity was assayed by measuring
the RNase activity produced through the regeneration of
the active form from reduced and denatured RNaseA
that was prepared as described previously by Creighton
[68]. Each reaction mixture comprised 180 mM [4-(2-
hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (pH 7.5),
150 mM NaCl, 2 mM CacCl,, 0.5 mM glutathione disul-
fide, 2 mM glutathione, 1 mg/mL reduced RNaseA, and
0.25 pM recombinant wheat PDI family proteins. The
reaction mixture was incubated at 25°C. An aliquot (16 pl)
of the reaction mixture was removed, and RNaseA activity
was measured spectrophotometrically at 284 nm with
cytidine2”:3’-cyclic monophosphate as the substrate [69].
Reactivation of reduced RNaseA in the absence of recom-
binant protein was subtracted from reactivation in the
presence of recombinant wheat PDI family proteins.
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Antibodies

Antisera were prepared by Japan Bio Serum (Hiroshima,
Japan). Purified recombinant TaPDIL1Aa, TaPDIL2,
TaPDIL3A, TaPDIL4D, and TaPDIL5A were emulsified
with Freund’s complete adjuvant and intradermally
injected into female guinea pigs. Anti-calreticulin and
anti-Erol guinea pig sera were prepared with recom-
binant soybean calreticulin and soybean Erol expressed
in E. coli as described previously [16]. Anti-gliadin
rabbit serum was purchased from Sigma-Aldrich. Inc.
(St. Louis, MO).

Western blot analysis

Wheat caryopses that had been frozen in liquid nitrogen
were ground into fine powders with a Multi-beads
Shocker (Yasui Kikai. Osaka, Japan) [70]. Proteins were
extracted from ground caryopses by boiling for 5 min in
sodium dodecyl sulfate -polyacrylamide gel electrophor-
esis (SDS-PAGE) sample buffer [71] containing a 1% cock-
tail of protease inhibitors (Sigma-Aldrich). Debris in the
sample was removed by centrifugation at 5000 x g for
20 min. The concentrations of proteins in the samples
were measured with a protein assay kit (RC DC protein
assay, Bio-Rad Laboratories, Hercules, CA). To cleave the
N-glycan modifications of the proteins by endoglycosidase
H (Sigma-Aldrich) or endoglycosidase F (Sigma-Aldrich),
proteins were extracted from the caryopses in 2% SDS,
0.1 M Tris—HCI (pH 8.6), 1% Nonidet P-40. The extract
was diluted 20-fold for glycosidase H in 0.1 M Tris—HCl
(pH 8.6)/1% Nonidet P-40 or for glycosidase F in 50 mM
potassium phosphate buffer (pH 5.5) containing 0.25% 2-
mercaptoethanol. Proteins (0.4 mg) were treated with
10 mU endoglycosidase H or 125 mU endoglycosidase F at
37°C for 16 h. Proteins were subjected to SDS-PAGE [71]
and blotted onto polyvinylidene difluoride membranes.
The proteins were then immunostained with the specific
guinea pig or rabbit antisera as primary antibodies and
horseradish peroxidase-conjugated anti-guinea pig IgG
serum (Promega Corporation, Madison, WI) or anti-rabbit
IgG serum (Santa Cruz Biotechnology, Inc., Dallas, TX) as
secondary antibodies. The bands were visualized using the
Western Lightning Plus-ECL Enhanced Chemilumines-
cence Substrate (Perkin Elmer Life Sciences, Boston, MA).

Semi-quantitative assay of wheat PDI family proteins in
caryopses

Proteins extracted from the developing caryopses were sep-
arated along with known amounts of recombinant PDI
family proteins on the same gel by SDS-PAGE and detected
by western blot analysis as described above. The amount of
each PDI family protein was calculated from the band in-
tensities of the sample and the corresponding recombinant
protein. Recombinant TaPDIL1Aq, TaPDIL2, TaPDIL3A,
TaPDILAD, and TaPDIL5A were used as standards for the
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semi-quantitative analysis of TaPDIL1, TaPDIL2, TaPDIL3,
TaPDIL4, and TaPDIL5, respectively.

Microscopic observation

Caryopses from developing and mature grains were cut and
fixed with 4% paraformaldehyde in 80 mM piperazine-1,4-
bis (2-ethanesulfonic acid) at pH 6.5, 5 mM ethylene glycol
tetraacetic acid, and 2 mM MgCl, for 2 h at room
temperature. The fixed caryopses were dehydrated with a
series of 50, 50, 70, 70, 80, 90, 95, and 99.5% ethanol for
40 min each at room temperature. The dehydrated caryop-
ses were embedded in Historesin (Leica Microsystems,
Wetzlar, Germany) and sliced into sections with a rotary
microtome PR-50 (Yamato Kohki Industrial Co., Ltd,
Saitama, Japan). The sections were mounted on glass slides
and stained with guinea pig antisera against TaPDIL1Aaq,
TaPDIL2, TaPDIL3A, TaPDIL4D, and TaPDIL5A and
subsequently with a secondary antibody, which was Cy3-
conjugated anti-guinea pig IgG goat serum (Chemicon
International, Temecula, CA). For detection of calreticulin,
specimens were stained with an anti-calreticulin rabbit
serum followed by a biotin-anti-rabbit IgG goat serum
(Cortex Biochem, San Leandro, CA) and incubation with
Cy5-streptavidin (GE Healthcare Bio-Sciences Corp.). The
specimens were examined on a stereomicroscope SZX16
equipped with an SZX2-FGFP filter and a DP73 camera
(Olympus Co., Tokyo, Japan), a Confocal Imaging System
FV1200 (Olympus), and a fluorescence microscope BZ-
9000 (Keyence Corp., Osaka, Japan).
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Additional file 1: Figure S1. Alignment of amino acid sequences
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TaPDILTAa and soybean GmPDIL-1.
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Additional file 6: Figure S6. Alignment of amino acid sequences of
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Additional file 7: Figure S7. Alignment of amino acid sequences
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