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Abstract

Background: The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in
tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil
accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea
americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~
70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from
generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and
compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and
species-specific regulation and biosynthesis of TAG in plants.

Results: RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that
of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes
in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid,
was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum
(ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in
terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent
mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore,
in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high
transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil
accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved
in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil
biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm
species might contribute towards its rich TAG content.
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Conclusions: Our work represents a comprehensive transcriptome resource for a basal angiosperm species and
provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of
oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid
gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich
mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet
associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content
and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.

Background
Basal angiosperms are the first and oldest families of
flowering plants that originated well over 100 million
years ago and are represented by only a few hundred
species compared with hundreds of thousands of species
of monocot and eudicot angiosperms [1, 2]. Avocado
(Persea americana) belongs to the family Lauraceae, one
of the largest basal angiosperm families with over 50
genera [3] and has been used extensively as a model sys-
tem to understand the early evolution of angiosperm
flower development from the gymnosperms [1, 4]. Av-
ocado is also an advantageous system in which to
study the evolution of mechanisms underlying the
synthesis of storage reserves such as starch or lipids
in fruit tissues other than seed. Interestingly, avocado
fruit growth, unlike most angiosperm fruits, is charac-
terized by an unrestricted period of cell division,
which continues through the entire period of fruit de-
velopment [5, 6]. During its development, the fleshy
edible part accumulates by dry weight 60 to 70 % oil
and 10 % carbohydrates. The oil is stored in the form
of triacylglycerol (TAG) and is predominantly com-
posed of oleic acid [7]. About 60 % of the total carbo-
hydrates are seven-carbon sugar derivatives such as
D-mannoheptulose and its sugar alcohol, perseitol [8].
The high nutritional value and the usefulness of avo-
cado’s monounsaturated oils in promoting health
raised its current world-wide production value to ~3.8
billion US dollars [9].
The avocado fruit, like oil palm and olive, is one of a

few examples in which the mesocarp, a nonseed tissue,
accumulates copious amounts of TAG. In general, TAG
biosynthesis in plant tissues primarily involves synthesis
of fatty acids in the plastid and their transfer to the
endoplasmic reticulum (ER) followed by sequential es-
terification to a glycerol-3-phosphate backbone in an
acyl-CoA-dependent [10] or -independent manner
[11, 12]. Although biosynthesis of TAG in plants is
generally understood and considered to be a highly
conserved process, the molecular and biochemical details
are mostly limited to oilseeds [13, 14]. Recently, greater at-
tention is being given to plants that store oil in tissues
other than seeds, which has revealed important differences

[15–19]. For example, in avocado and oil palm mesocarp,
lipid-droplet associated proteins (LDAP), which may
play a role in stabilization of lipids, have been identi-
fied [20, 21]. Typically, storage proteins such as oleo-
sins, caleosins, and steroleosins were shown to play a
role in stabilization and regulation of the size of the
oil bodies in angiosperm seeds and pollen [22]. How-
ever, several studies, including comparative transcrip-
tome analysis of nonseed oil-rich tissues, consistently
point to the absence or reduced transcript levels for
genes encoding for these integral lipid-body proteins
[15, 16, 23].
Transcriptome studies of oil palm and olive have also

indicated key differences in the transcriptional control of
TAG biosynthesis in nonseeds from that of seed tissues
[15, 16, 18]. In seed tissues, many of the master regula-
tors of embryogenesis and seed maturation, such LEAFY
COTYLEDON (LEC) genes LEC1, LEC1-like (L1L),
LEC2 and FUSCA3 (FUS3), and abscisic acid (ABA)-
insensitive3 (ABI3) regulate TAG synthesis directly or
indirectly through the downstream transcription fac-
tor WRINKLED1 (WRI1; [24–28]). The WRI1 protein,
a member of the APETALA2 (AP2)-ethylene respon-
sive element binding proteins, regulates late glycolysis
and fatty acid biosynthetic genes by binding to their
promoter sequences [24, 29, 30]. Furthermore, along
with WRI1, WRI3 and WRI4 were also shown to
play a role in fatty acid biosynthetic pathway in floral
and other nonseed tissues [31]. Interestingly, high
transcript levels for homologs of WRI1, but not
WRI3 and WRI4, were noted in coordination with oil
accumulation in developing mesocarp of oil palm
[16, 18, 32]. Successful complementation of Atwri1
with EgWRI1 further suggested that WRI1 is not only
conserved between dicots and monocots but also
regulates fatty acid biosynthesis in both seed and
nonseed tissues [33].
While there has been major progress in our under-

standing of lipid biosynthesis in various plants and tissue
types, gaps still remain with regard to how carbon parti-
tioning is regulated and the oil content and composition
is dictated [14, 16, 18, 27, 32–34]. Additional tran-
scription factors that may play a role in controlling
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the enzymes, such as the acyltransferases, needed in
later steps of TAG accumulation, also remain elusive.
In this study we have asked which genes associated
with lipid biosynthesis are predominantly expressed
and how their expression patterns in the oil-rich
mesocarp tissue of a basal angiosperm vary com-
pared to those of monocot and dicot tissues. To ad-
dress these questions and to further examine the
evolutionary relationship of lipid biosynthesis genes
across plants, we conducted quantitative analysis of
RNA from developing mesocarp of avocado. Because of
the distinctive position P. americana occupies in plant
evolution it serves as an excellent system in which to
probe conservation of regulatory mechanisms in lipid
synthesis.

Results and discussion
Basal angiosperms, to which P. americana belongs,
originated before the separation of monocots and di-
cots and contain features that are common to both
groups. Transcriptome analysis of fatty acid biosyn-
thesis in oil-rich nonseed fruit tissue has been previ-
ously reported for mesocarp of olive, a dicot [15] and
oil palm, a monocot [16, 18]; similar studies of the
more highly diverged basal angiosperms have not
been reported. In this study, avocado mesocarp was
selected for investigation of lipid biosynthesis in oil-
rich tissue of an early angiosperm lineage. The meso-
carp tissue from five stages of avocado fruits (I-V),
with fresh weights ranging from ~ 125 to 200 g
(Fig. 1a), was used to generate temporal transcrip-
tome data, using next-generation sequencing methods
(Additional file 1: Table S1). In order to associate ex-
pression patterns of lipid biosynthesis genes with tem-
poral oil accumulation, the fatty acid content and
composition of mesocarp was also analyzed (Fig. 1b
and c). Details of the avocado RNA-Seq datasets
available are summarized in Additional file 1: Table
S1 and in NCBI BioProject PRJNA253536. Predicted
functional annotation of contigs represented by at
least 10 reads per kilobase per million mapped reads
(RPKM) was based on BlastP alignment to lipid bio-
synthetic pathway proteins of Arabidopsis thaliana
and is provided in Additional file 1: Table S2, along
with the contig sequences (Additional file 2: Data S1).
It must be noted that although transcript levels may
not always reflect protein abundance or enzyme activ-
ity, similar transcriptome data has been successfully
used previously to identify crucial steps in biochem-
ical pathways [14, 16, 18]. Gene functional predictions
most relevant to this study, along with their expres-
sion levels during mesocarp development are listed in
Additional file 1: Table S3.

Relationship of avocado mesocarp lipid accumulation
with fruit growth
The fruit of avocado is a single-seeded berry and its de-
velopment and growth lasts for more than nine months.
Typically, early stage fruits, harvested at about 50 days
after full bloom (DAFB) weigh ~ 10 g and their weight is
increased by ten-fold when harvested at 88 DAFB and
more than 20-fold by 230 DAFB [35]. The stage I ‘Hass’
fruits utilized in this study were harvested ~100 DAFB
and weighed about 125 g, while the mature fruits in
stage V reached an average weight of 230 g. The meso-
carp of fruit contributed to about two-thirds of the total
fruit weight and continued to increase with development
(Fig. 1b). The increase in fruit weight was highly corre-
lated with the accumulation of lipid content in the
mesocarp tissue (R2 = 0.978; Additional file 3: Figure S1).
The stage V fruits, with about 12 % oil by fresh weight,
contained three-fold higher oil content, relative to stage
I fruits (Fig. 1b). About one-fourth of the total oil con-
tent of the mesocarp was already accumulated in stage I
fruits used in this study, which suggests that the lipid
synthesis was initiated at an earlier stage of develop-
ment. Based on the lipid content and fruit weight, the
fruits harvested during October to February are esti-
mated to represent mid to mature stages of fruit devel-
opment (Fig. 1a). Interestingly, unlike mature oilseeds,
mature ‘Hass’ avocados are capable of maintaining oil
accumulation up to 18 % even after harvesting, until rip-
ening [36]. In contrast to the mesocarp, avocado seed oil
content was much lower and changed little throughout
the development (Fig. 1b).
The fatty acid composition was tissue-specific and var-

ied with development for mesocarp (Fig. 1c). Among the
major fatty acids, oleic acid (18:1) was most abundant in
mesocarp while in seeds linoleic acid was predominant
throughout the development (Fig. 1c). The variation in
mesocarp composition for 16:0, 16:1 and 18:0, during
mid to late stage of development was small; a steady in-
crease in 18:1 and concurrent decline in 18:2 proportion
was notable (Fig. 1c). Seeds showed almost no variation
in composition during the development and unlike in
mesocarp, they contained a higher proportion of lino-
lenic acid and lower 16:1 (Fig. 1c). Overall, the data indi-
cate that the rate of mesocarp oil accumulation and
changes in its composition were directly correlated with
fruit development and increase in its biomass (Fig. 1 and
Additional file 3: Figure S1). Fruit development and
growth, including accumulation of its storage metabo-
lites, are highly coordinated processes that are regulated
by cross talk between various hormones. Several studies,
indeed, have shown that exogenous ABA treatment en-
hances TAG accumulation by inducing the expression of
various lipid biosynthesis genes as observed in develop-
ing seeds of B. napus [37, 38] and castor [39]. The
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hormone-mediated mechanisms by which fruit develop-
ment and lipid accumulation are coordinated in avocado,
however, remain to be elucidated.

Transcript analysis of select lipid metabolic pathways of
avocado mesocarp revealed patterns similar to that of
other oil-rich species
The conversion of sucrose to TAG involves degrad-
ation of sucrose, generation of pyruvate in the plastid,
which involves glycolysis, pentose phosphate pathway
and plastid transporters, fatty acid synthesis in the

plastid and TAG assembly in the ER (Fig. 2a). These
six metabolic pathways require expression of over 200
genes (Additional file 1: Table S3). In avocado meso-
carp, about 45 % of the transcripts corresponded to
genes involved in glycolysis and 34 % to those in
plastidial fatty acid biosynthesis (Fig. 2b). The ana-
lyses we undertook were designed to discover con-
served functions in lipid biosynthesis and regulation
in avocado, without regard to separation of close para-
logs or allelic transcripts in the RNA datasets. There-
fore, multiple transcripts encoding for genes of the

Fig. 1 Lipid content and composition of developing fruits of avocado. a The five developing stages (I to V) of avocado fruits used for transcriptome
analysis. b Fresh weight of various developing tissues with fatty acid (FA) content in mesocarp and seed. c Fatty acid composition of developing
mesocarp and seed of avocado
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same protein family or protein complex were summed
and represented as RPKM/protein (Additional file 1:
Table S3). More detailed analyses using whole genome
assemblies will aid in further gene family member reso-
lution. Overall, the average RPKM/protein, based on
conserved protein annotation, across the five develop-
mental stages of the mesocarp, were also abundant for
those genes involved in glycolysis or the generation
of pyruvate and subsequently fatty acid synthesis
(Additional file 1: Table S3; Fig. 2c).
Notably, the high proportion and the high RPKM/pro-

tein of transcripts associated with acyl group synthesis in
the plastid, was in contrast to the pattern observed for
transcript levels for genes in phospholipid synthesis and
TAG assembly (Fig. 2b). In fact their relative abundance
remained the lowest among the six metabolic pathways
that were analyzed and the transcript levels did not vary
among developmental stages of the mesocarp (Additional
file 1: Table S3; Fig. 2c). A similar contrast in the pat-
tern of enhanced expression levels for genes involved
in plastid fatty acid synthesis and comparatively
minor changes in transcripts for most genes that par-
ticipate in later steps of TAG assembly was also ob-
served in oil-rich seed and nonseed tissues of dicots
and monocots [14, 16]. These data suggest that a
common enzyme stoichiometry and temporal regula-
tion of transcripts associated with oil accumulation is

conserved in different oil-rich tissues and in diverse
species.

Only some predominant orthologs of the fatty acid
biosynthetic pathway in avocado are similar to that of
monocots and dicots
The conversion of pyruvate to fatty acids in the plastid
involves at least fourteen enzymes and/or protein com-
plexes (Fig. 3a). Several of these proteins are encoded by
more than one gene in Arabidopsis (Additional file 1:
Table S3; [40, 41]. Comparison of the transcript levels of
the orthologs of the gene family members in oil-rich tis-
sues of avocado, oil palm, rapeseed and castor, while in-
dicating some similarities across diverse species and
tissues, also revealed several exceptions for avocado
(Fig. 4). For example, among the three enzyme compo-
nents of the pyruvate dehydrogenase complex (PDHC),
while the E1α subunit of a heterodimeric protein
(E1α2β2) is encoded by a single gene, the E1β subunit of
E1 component, and E2 (dihydrolipoamide acetyltransfer-
ase, LTA), and E3 (dihydrolipoamide dehydrogenase,
LPD) components are apparently encoded by two genes
[42–44]. While the transcripts for orthologs of all the
genes that encode for Arabidopsis PDHC components
were detectable in oil-rich tissues of B. napus, oil palm
and castor, only one ortholog for each of these compo-
nents was detected in avocado (Fig. 4). The expression

Fig. 2 Gene expression pattern for select pathways (Additional file 1: Table S3). a Schematic of the pathways involved in conversion of sucrose to
triacylglycerol (TAG). b The distribution of transcripts among the six pathways. c The number of reads per kilobase per million mapped reads (RPKM)
per protein in each pathway. Multiple protein isoforms or subunits of a multi-protein complex were considered as a single protein and their transcripts
were summed (Additional file 1: Table S3). The data are average transcript levels of five developing stages of mesocarp with error bars representing
their standard deviation
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of a single ortholog in avocado was also noted for other
enzymes that are typically encoded by more than one
gene in angiosperms (Fig. 4). In the case of biotin carb-
oxyl carrier protein (BCCP) of heteromeric acetyl-CoA
carboxylase (ACCase), only the ortholog for BCCP1
(AT5G16390) was represented in the avocado mesocarp
transcriptome. Both BCCP1 and 2 orthologs were

detectable in oil palm, rapeseed and castor but BCCP1
was the predominant isoform in oil palm mesocarp,
while BCCP2 was predominant in castor and rapeseed
(Fig. 4). Similarly a single ortholog was represented in
avocado transcriptome for hydroxyacyl-[acyl-carrier-
protein (ACP)] dehydratase (HAD), and acyl-ACP thioes-
terase A (FATA), while both orthologs were at least

Fig. 3 Expression levels for plastidial fatty acid synthesis genes. a Schematic of fatty acid synthesis pathway with protein names indicated in red color.
b Transcript levels for each protein. c The relative distribution of transcript levels for each protein during mesocarp development. The data, reads per
kilobase per million mapped reads (RPKM), are average transcript levels of five developing stages of mesocarp with error bars representing their standard
deviation. The RPKM values for subunits of a protein and for multiple isoforms were summed (Additional file 1: Table S3)

Kilaru et al. BMC Plant Biology  (2015) 15:203 Page 6 of 18



detectable in the transcriptome of oil palm mesocarp and
B. napus and castor seeds (Fig. 4). Furthermore, the ortho-
log that was expressed in avocado for PDHC-E1β, HAD,
and FATA was different from the one that was predomin-
antly expressed in oil-rich tissues of monocots and dicots
(Fig. 4; [14, 16]. The absence of the second ortholog for
PDHC-E1β, LPD, BCCP, and HAD genes in a basal angio-
sperm species was also observed at the genome level [17].
These data suggest that perhaps different/additional
orthologs may have evolved to participate in fatty acid
synthesis in seed and nonseed tissues of monocots or di-
cots, compared to a basal angiosperm.
More than 60 % of the transcripts encoding for fatty

acid biosynthesis pathway proteins mapped to stearoyl-
ACP desaturases (SAD/DES) and to ACP. In addition,
their transcript levels increased with the maturity of the
mesocarp (Fig. 3b and c), coinciding with the oil accu-
mulation pattern (Fig. 2b). In arabidopsis, SAD/DES and
ACP are encoded by seven and five member gene fam-
ilies, respectively, the largest gene families for any pro-
teins in plastid fatty acid synthesis [40, 41, 45]. The
ortholog for SAD that was expressed abundantly in oil-
rich tissues was the same across all seed and nonseed
tissues of diverse species that were compared (Fig. 4). In
contrast, the major ortholog that was expressed for ACP,
the cofactor that carries acyl-intermediates during fatty
acid synthesis, varied across the species (Fig. 4). In avo-
cado mesocarp, the expression levels of ACP transcripts
represented about 24 % of the total fatty acid synthesis
gene expression (Fig. 3a and b). Among the orthologs
for the five ACP genes, transcripts that mapped to ACP4
(AT4G25050) were by far the most abundant in avocado;
the other isoforms were either barely detectable or not
represented (Fig. 4). Interestingly, while ACP4 ortholog
transcripts were also abundant in oil palm [16], it was
the least expressed or undetectable in embryos of rape-
seed and nasturtium and embryo or endosperm of
castor, where ACP1, ACP3, and ACP2, respectively, were
predominant [14]. Previous studies have shown that
multiple isoforms of ACP evolved early in plant evolu-
tion and that their expression is primarily dependent on
the tissue type [46, 47] and differentially regulated, such
as the light-responsive induction of ACP4 [48]. The
abundance of the ACP4 ortholog in oil-rich mesocarp of
both a basal angiosperm and a monocot fruit mesocarp
suggests that ACP4 isoform might have evolved early to
respond to demand for fatty acid biosynthesis for storage
as TAG in photoheterotrophic nonseed tissues.

Expression pattern of stearoyl-ACP desaturase genes in
avocado reflects its lipid composition
During the development of avocado mesocarp, transcript
levels for the ortholog of Arabidopsis SAD (AT2G43710;
FAB2) were the most abundant than for any enzyme of

Fig. 4 Relative gene expression levels for protein isoforms associated
with fatty acid biosynthesis in oil-rich tissues of avocado (Pa), oil palm
(Eg), rapeseed (Bn) and castor (Rc). Protein abbreviations are provided
in Fig. 3a or Additional file 1: Table S3
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lipid biosynthesis considered in this study, and consti-
tuted about 44 % of all the plastidial fatty acid synthesis
gene expression (Fig. 3b and c). Although higher tran-
script levels for SAD in oil-rich tissues was not unex-
pected based on its very low catalytic turnover rate
(0.5 s−1; [49, 50], it is noteworthy that in avocado, its
levels were more than 100-fold higher relative to the ex-
pression levels for the ortholog of β-ketoacyl-ACP syn-
thase III (KAS III; AT1G62640; Fig. 4 and Additional file
4: Figure S2). Similarly, B. napus embryo and endosperm
of castor, which contain 30–90 % oleic acid or its deriva-
tives, the transcript levels were more than 50-fold higher
than KASIII (Additional file 4: Figure S2), correlating
with their oil composition [14, 16]. The isoforms of SAD
are responsible for introducing the first double bond
into stearoyl-ACP to produce oleoyl-ACP (18:1Δ9-ACP).
In contrast, oil palm mesocarp, which contains <40 % of
monounsaturated fatty acids, the SAD transcript levels
were only 16-fold higher than KASIII (Additional file 4:
Figure S2). In date palm mesocarp, which is almost oil-
free, transcripts for the orthologs of desaturases were
only 3-fold higher than that of KASIII (Additional file 4:
Figure S2). In Arabidopsis, fab2 mutants showed re-
duced levels of 18:1 that were not restored by the other
desaturase isoforms, except DES1 [51]. In avocado
mesocarp, the transcript levels for the FAB2 ortholog
were not only abundant but also increased with matur-
ation (Figs. 3c, 4, Additional file 4: Figure S2) and corre-
lated with increased 18:1 content (Fig. 1c), consistent
with its role as a key determinant of the avocado oil
composition.

ER- rather than plastid-associated acyl-CoA synthetase
transcripts are most highly expressed in avocado
mesocarp
Long-chain acyl-CoA synthetases (LACS) participate in
thioesterification of free fatty acids that is required for
the utilization of fatty acids by most lipid metabolic en-
zymes. In Arabidopsis nine isoforms of LACS have been
identified to participate in fatty acid and glycerolipid me-
tabolism [52, 53]. In avocado mesocarp, transcripts for
the ortholog of LACS4 were the most abundant,
followed by LACS8, LACS1, and LACS9 (Fig. 4). These
data were in contrast to the observations made in oil-
rich seeds [14, 54] and nonseed tissues [16], where
LACS9 transcripts were most abundantly expressed
(Fig. 4). Plastid LACS9 was indeed considered as the
major LACS isoform that is involved in the production
of acyl-CoA for membrane glycerolipid and storage TAG
synthesis in Arabidopsis [53] although transcripts for
LACS8, LACS4, LACS2 and LACS1 were also found to
be abundant in developing seeds of Arabidopsis [55].
Mutational studies in Arabidopsis revealed that TAG ac-
cumulation was not affected in loss-of-function lacs8

and lacs9 double mutant but the fatty acid levels re-
duced by 11 and 12 % in lacs1 and lacs9 double and
lacs1, lacs9, and lacs8 triple mutants respectively, which
suggested possible overlapping roles of LACS1 and
LACS9 [55]. In sunflower seeds, however, expression
levels for the ortholog of LACS9 and LACS8 isoform
were high during fatty acid synthesis and LACS8 has
been considered as a candidate functioning similarly to
LACS9 [54]. More recently, both LACS4 and LACS9
were shown to share an overlapping function in import-
ing fatty acids from the ER to the plastid [56].
In avocado mesocarp, with more than 80 % of the

transcripts of LACS orthologs represented by the ER-
associated isoforms (LACS1, LACS4 and LACS8) and
only 16 % contributed by the ortholog of plastidial
LACS9 (Fig. 4), it remains unclear as to which of the
LACS may contribute to acyl activation and where it
may occur. Recently, FAX1 (At3g57280), a plastid local-
ized protein was shown to mediate export of free fatty
acids from chloroplasts [57] and its ortholog is expressed
in the mesocarp tissue of avocado (42 RPKM; Additional
file 1: Table S2). Thus it is possible that the avocado
FAX1 ortholog contributes to export of free fatty acids
and that acyl activation may then occur in ER:envelope
contact sites or hemifusion [58], consistent with possible
‘channeling’ of acyl groups into phosphatidylcholine
(PC) by a lyso-PC acyltransferase (LPCAT; AT1G12640)
[59–61]. In this regard, an ortholog of LPCAT, repre-
sented by an average of 30 RPKM/stage, was identified
in avocado mesocarp (Additional file 1: Table S3). LACS
are also responsible for re-esterification of acyl groups
generated by phospholipase A2-mediated acyl editing in
the ER. To this extent, transcripts for orthologs of three
PLA2 isoforms (AT4G29070, AT3G18860, AT2G19690)
were detected in avocado mesocarp, which together
were represented by an average of 127 RPKM/stage
(Additional file 1: Table S3).
Among the other LACS isoforms, AtLACS2 and

AtLACS3 were shown to be associated with surface lipid
synthesis and AtLACS5 to be floral-tissue specific [52].
While LACS3 was not detectable in avocado mesocarp,
both LACS2 and LACS5 orthologs were poorly
expressed and therefore less likely to play a role in TAG
biosynthesis (Fig. 4). Barely detectable transcripts (<1
RPKM/stage) for orthologs of peroxisomal LACS6 and
LACS7 [62, 63] suggest that fatty acids undergo little β-
oxidation during mesocarp development in avocado
(Fig. 4; Additional file 1: Table S3).

Most TAG biosynthesis genes in the ER show similar
expression patterns among diverse oil-rich tissues
In avocado mesocarp, the orthologs of TAG biosynthesis
genes (Fig. 5a) were represented by an average of 75
RPKM/protein, which is seven-fold less than that of fatty
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acid synthesis gene expression per protein (Fig. 2b and
2c). Similar low expression levels for TAG synthesis
genes, relative to fatty acid synthesis genes, were noted
in other oil-rich seed and nonseed tissues [14, 16]. In av-
ocado mesocarp, the orthologs of all the genes involved
in sequential acylation of glycerol-3-phosphate (G3P),
via the Kennedy pathway to generate TAG, i.e. the
glycerol-3-phosphate acyltransferase (GPAT9), lysopho-
sphatidic acid acyltransferase (LPAAT), phospatidate
phosphatase (PP/PAH), and diacylglycerol acyltransfer-
ase (DGAT) were expressed during mesocarp develop-
ment (Fig. 5; Additional file 1: Table S3). The expression
levels for the ortholog of GPAT9 remained similar dur-
ing mesocarp development, but declined by two-fold for
LPAAT2, the predominant LPAAT isoform in the ER
(Additional file 1: Table S3; Fig. 5). Among the various
orthologs that encode for PP/PAH, transcripts for PAH1
and PAH2 were abundant and their levels remained

moderately similar during the development of mesocarp
(Additional file 1: Table S3).
Based on the source of the acyl groups that are avail-

able for the acylation of diacylglycerol (DAG) in the ter-
minal step to TAG synthesis, the reactions were referred
to as acyl-CoA-dependent or -independent (Fig. 5). The
key step in acyl-CoA-dependent TAG synthesis is cata-
lyzed by DGAT. Between the two predominant DGAT
forms, DGAT1 was most highly expressed in avocado
mesocarp with more than two-fold increase from stages
I to V (Fig. 5c). Transcripts for DGAT2 were also detect-
able but were eight-fold less abundant than those of
DGAT1 (Additional file 1: Table S3). In oilseeds, al-
though the expression of genes involved in TAG synthe-
sis remained relatively low, the expression levels for
DGAT were an exception. In rapeseed and castor, rela-
tive to GPAT9, the DGAT isoforms were expressed
seven- and nine-fold higher, respectively, and the

Fig. 5 Expression levels for genes associated with triacylglycerol (TAG) assembly. a Schematic of TAG pathway. b The average transcript levels for
each enzyme. c The relative distribution of transcript levels for each protein during mesocarp development. The data are expressed as reads per
kilobase per million mapped reads (RPKM). The RPKM values for subunits of a protein and for multiple isoforms were summed. Protein abbreviations are
provided in Additional file 1: Table S3
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increase in DGAT transcript levels coincided with their
oil accumulation (Additional file 1: Table S4; [14]. In
contrast, although both DGAT1 and DGAT2 were abun-
dantly expressed in the mesocarp of oil palm, which ac-
cumulates about 80–90 % TAG, the transcript levels, on
average, were only two-fold higher than that of GPAT9
(Additional file 1: Table S4; [16]. Similarly, in avocado,
the DGAT transcript levels were comparable to that of
GPAT9 (Additional file 1: Table S4).

Flux through PC might play an additional role in TAG
accumulation in avocado mesocarp
Multiple pathways exist in plants for the assembly of TAG
in the ER and it has been particularly challenging to de-
cipher the relative flux through the alternatives [13, 64]. In
addition to de novo DAG that is generated via the Kennedy
pathway, DAG precursors for TAG synthesis can also be
derived from PC by the reversible action of two enzymes,
PC:DAG cholinephosphotransferase (PDCT/ROD1; [65]
and/or cytidine-5′-diphosphocholine:DAG cholinephospho-
transferase (CPT; [66, 67]. In avocado mesocarp, the ex-
pression levels for the ortholog of AtCPT were on average
six-fold higher than that of PDCT (Fig. 5b; Additional file
1: Table S3). In addition, in avocado and also in oil palm,
but in contrast to oilseeds, an ortholog of phospholipid di-
acylglycerol acyltransferase (PDAT1; AT5G13640) showed
transcript levels that were comparable to that of DGAT
(Fig. 5; Additional file 1: Table S4). Furthermore, for rape-
seed and castor seed tissues, where DGAT levels were pre-
dominant, the PDAT1 transcripts were expressed at low
levels relative to GPAT9 (Additional file 1: Table S4).
Previously, Stobart and Stymne concluded that TAGs are
synthesized predominantly via the Kennedy pathway in av-
ocado since their microsomes were deficient in acyl ex-
change and interconversion of DAG to PC [68]. While it is
possible that DAG:PC exchange and PDAT do not contrib-
ute to a major flux in oleaginous mesocarp of avocado, par-
ticularly in postharvest ripening stage [68], the transcript
levels for CPT and PDAT, relative to other oil-rich tissues
(Additional file 1: Table S4) suggest the possibility for PC
as an intermediate in avocado TAG synthesis, particularly
during early fruit development and needs to be further
investigated.
Typically, acyl flux into PC is rapid by ‘acyl exchange/

editing’ processes, which allow for further modification,
such as desaturation. In avocado mesocarp, while about
18 % of the total lipids are polyunsaturated in stages I to
III, less than 10 % are polyunsaturated in stages IV and
V (Fig. 1c). Coinciding with the lipid composition, the
higher transcript levels for LPCAT and PDAT in stages I
to III, relative to IV and V (Additional file 1: Table S3)
suggest a possible role for acyl editing in the early stages
of mesocarp development. Consistent with this, the tran-
script levels for an ortholog of oleate desaturase (FAD2)

were also more than two-fold higher in the earlier stages
of development, relative to stages IV and V (Additional
file 1: Table S3). The FAD2 transcript levels were how-
ever, on average only 1.5 times higher than that of
GPAT9 (Additional file 1: Table S4), reflecting the over-
all oleaginous nature of avocado mesocarp. In contrast,
the FAD2 transcript levels in rapeseed, castor and oil
palm were 46, 49 and 144 times higher, respectively,
relative to GPAT9 (Additional file 1: Table S4). Collect-
ively, these results suggest that in avocado mesocarp and
other nonseed tissues, flux through PC may play an
additional role in achieving high amounts of TAG
accumulation.

Proteins different from that of seed tissues likely coat
lipid droplets in avocado mesocarp
Lipid droplet proteins such as oleosins, caleosins, steroleo-
sins have been widely recognized for their role in
compartmentalization of storage lipids, both in seed and
some nonseed tissues, such as anther and pollen [69–72].
Recently, proteomics, lipidomics and transcriptomics con-
tributed to the elucidation of two new lipid droplet-
associated proteins (LDAP1 and LDAP2, homolog of
At3g05500) in avocado mesocarp [20, 21]. The summed
transcript levels for LDAP1 and LDAP2 were more than
250 RPKM, on average, across the five developmental
stages of the mesocarp (Additional file 1: Table S2; [20].
These proteins have homology to small rubber particle
proteins and are predicted to bind to and stabilize lipid-
rich particles in avocado mesocarp tissues. The lipid drop-
lets of avocado and other oil rich tissues are much larger
than in oilseeds; in mesocarp of oil palm the lipid droplets
fuse when the tissue is homogenized [16]. Previous tran-
scriptome studies showed that oil-rich mesocarp tissues of
oil palm and olive barely expressed transcripts for oleo-
sins, caleosins and steroleosins and were considered un-
likely to play a significant role in stabilization of TAG
during fruit development [15, 16, 18]. Similarly, in avo-
cado mesocarp, although some of the orthologs for oleo-
sins (At3G18570), caleosins (At1G70670; At2G33380),
and steroleosins (At5G50700) were detectable their tran-
script levels were very low (<10 RPKM; Additional file 1:
Table S3), supporting a conclusion that these seed-
associated proteins are unlikely to participate in stabilizing
lipids in nonseed tissues.

Multiple orthologs of WRI are highly expressed in
avocado mesocarp
Transcriptome studies of oil palm mesocarp revealed
that WRI1, in addition to its high expression in seeds, is
also highly expressed in correlation with oil accumula-
tion in nonseed tissue [16, 18, 32, 33]. Interestingly, in
avocado mesocarp, in addition to WRI1, transcripts for
its isoforms WRI2 and WRI3 were also highly expressed.
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Furthermore, as in oil palm mesocarp, the orthologs of
upstream regulators of WRI1 in seed tissues, such as
LEC1, LEC2, and FUS3 were either not expressed or
barely detectable in avocado mesocarp (Additional file 1:
Table S3). Transcripts for ortholog of ABI3 (At3g24650)
were, however, on average 43 RPKM (Additional file 1:
Table S3). These data reinforce the conclusion that
WRI1 in nonseed tissues is likely regulated differently
than in seed tissues.
Recent studies in Arabidopsis showed that WRI3 and

WRI4 can each compensate for the low fatty acid levels
of the wri1-4 mutant; they are non-redundant in func-
tion and are required in floral tissues for cutin biosyn-
thesis [31]. Interestingly, in avocado mesocarp, the
overall expression pattern of WRI orthologs was similar
to that of genes that WRI1 is known to regulate such
as ACP, BCCP, KASII, and PDHC (Fig. 3a; [30] and to
the pattern of oil accumulation (Figs. 1b and 6a). Al-
though complementation and transcriptional activator
studies ruled out the role of WRI2 in Arabidopsis fatty
acid biosynthesis [31], the high expression levels of its
ortholog in mesocarp tissue of a basal angiosperm, dur-
ing oil accumulation, suggest that it may have a role in

nonseed tissue. A phylogenetic tree generated from
WRI homologs, from various plant families including
dicots, monocots, and a basal angiosperm, revealed a
possible gene duplication event of WRI early in land
plant evolution as the WRI2 proteins formed a mono-
phyletic group and separated from all other WRI ho-
mologs. Other WRI homologs formed two distinct
groups with a clade of WRI genes all belonging to P.
patens, a bryophyte, separated from the WRI1, WRI3
and WRI4 genes of higher plants (Fig. 6b). The tree
constructed for the WRI genes of various species sug-
gests that the PaWRI2-like and AtWRI2 are older than
the other WRI genes and have also diverged a great
deal from each other. The high expression levels for
WRI2-like in avocado mesocarp that were not previ-
ously reported in any other oil-rich tissues, along with
WRI1 and WRI3 but not WRI4, suggest that perhaps
through divergence, the AtWRI2 may have departed its
function in oil biosynthesis while the PaWRI2-like
retained its function. Although AtWRI2 did not com-
plement wri1 mutant, complementation studies with
PaWRI2-like are underway. Based on the gene expres-
sion data, it is predicted that WRI2 homolog of avocado

Fig. 6 Expression and phylogenetic analysis of Wrinkled (WRI) isoforms (a) Transcript levels for PaWRI-like isoforms in developing mesocarp of
avocado. b Phylogenetic analysis of AtWRI orthologs in Oryza sativa, Physcomitrella patens and Persea americana. An AP2 transcription factor
from Chlamydomonas reinhardi was used as outgroup. Bootstrap values for 1,000 replicates are indicated and arrows point to possible duplication events
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may play an additional role in TAG accumulation in
this basal angiosperm species.

The available carbon for oil biosynthesis in avocado fruit
may be atypical
Several studies showed that an increase in oil content in
mesocarp during fruit growth is accompanied by a de-
crease in the concentration of reducing sugars [73–75].
Typically, photosynthates are transported into the meso-
carp in the form of sucrose via the sugar transporters
between the apoplast, cytosol and vacuole and are hy-
drolyzed to hexoses that are utilized as the carbon
source for glycolysis. The transcripts that likely encode
for sugar transporters in the plasma membrane and
vacuolar membranes were however, poorly expressed in
avocado mesocarp with an average of 26 RPKM across
all the developmental stages (Additional file 1: Table S3).
The avocado fruit, especially in its early stages of growth,
in addition to fixation of CO2 via ribulose 1,5 bispho-
sphate carboxylase (RBC), is also capable of carboxyl-
ation of phosphoenolpyruvate (PEP) with bicarbonate
that is available in the intercellular space of the fruit by
PEP carboxylase (PEPC) to produce oxaloacetate and
subsequently to malate [76–79]. Akin to mechanisms
found in the leaves of C4 and CAM plants, malic en-
zyme can recycle CO2 produced in the non-green meso-
carp layers for subsequent fixation by RBC in the more
green tissues and concurrently release pyruvate for fatty
acid synthesis. Consistent with this notion, the transcript
levels for the orthologs of RBC, phosphoribulokinase
and PEPC were high and on average 183, 195 and 216
RPKM, respectively (Additional file 1: Table S3). The
abundance of these transcripts, particularly for the
ortholog of PEPC in the mesocarp tissue during its de-
velopment is consistent with its suggested role in carbon
assimilation (Fig. 7a).
The transcripts for the enzymes that hydrolyze sugars,

such as sucrose synthase (SuSy) in the cytosol were highly
expressed with more than 500 RPKM/protein, on average,
during mesocarp development (Additional file 5: Figure
S3a; Additional file 1: Table S3), implicating that SuSy
might be the major player in generation of hexoses neces-
sary for pyruvate synthesis. Among the invertases, how-
ever, the transcript levels for vacuolar invertases were
also abundant (Additional file 5: Figure S3a, Additional
file 1: Table S3). Typically, acid invertases hydrolyze the
sucrose stored in vacuoles and the hexoses generated
might be transported to the cytosol by a transporter or
via facilitated diffusion [80]. It remains to be deter-
mined if in avocado mesocarp the hexoses from vacu-
oles might also undergo glycolysis. Starch is also a
principal substrate for glycolysis in the plastids and in
avocado mesocarp, transcripts for starch synthesis and
degradation gene orthologs were abundant throughout

mesocarp development (Additional file 5: Figure S3c).
In the early stages of fruit set (June), about 44 % of the
flesh weight is contributed by the sugars, which con-
tinue to increase during the rapid growth period of the
fruit (until late October) and then begin to decline dur-
ing the period of oil accumulation [81]. At maturity, the
total carbohydrates in mesocarp contribute to about 10 %
of the flesh weight and are composed of about 10 %
starch, 20 % sucrose, 10 % hexoses and 60 % C7 sugars
and sugar alcohols (mannoheptulose and perseitol; [8].
Sedoheputlose-7-P is produced by the activity of trans-
ketolase (TK) and is further converted to mannoheptulose
by transaldolase (TA); it is not clear if mannoheptulose is
exclusively derived from translocated sugars or is also syn-
thesized in the mesocarp. Both TK and TA orthologs
showed higher expression levels in mesocarp plastids, with

Fig. 7 Transcript levels for genes associated with glycolysis. a The
expression levels for cytosolic glycolysis genes. b The expression levels
for plastidial glycolysis genes. c The relative distribution of glycolysis
genes in plastid and cytosol. The data, reads per kilobase per million
mapped reads (RPKM), are average transcript levels of five developing
stages of mesocarp with error bars representing their standard
deviation. The RPKM values for subunits of a protein and for multiple
isoforms were summed. Protein abbreviations are provided in
Additional file 1: Table S3
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TA being two-fold higher than TK (Additional file 5:
Figure S3c), suggesting a possibility for their synthesis in
mesocarp as well. The higher levels of C7 sugars in early
stages of fruit growth might therefore play a role in regu-
lating the initiation of oil biosynthesis. Their presence at
maturity was considered necessary as respiratory metabo-
lites for post-harvest fruit ripening [8, 82].

Plastidial and cytosolic glycolysis may cooperatively
generate the pyruvate necessary for fatty acid synthesis
The degradation of sucrose followed by glycolysis and
transport of its intermediates to the plastids is crucial for
providing carbon for fatty acid synthesis (Fig. 2a). Tran-
scriptome analysis of avocado mesocarp indicates that a
complete glycolytic pathway likely occurs in both cytosol
and plastids (Fig. 7; Additional file 1: Table S3). Addition-
ally, the high expression levels for several orthologs that
likely encode for plastid transporters also indicate that the
intermediates, hexoses and triose carbons or PEP, and
pyruvate generated by the cytosolic glycolytic pathway
may be transported to the plastid (Additional file 5: Figure
S3b) [83, 84]. Decarboxylation of imported malate by a
plastidial NADP-dependent malic enzyme (NADP-ME) is
also an alternate route for generation of pyruvate, as re-
ported in castor endosperm [85] and maize [86]. Although
the expression levels for ortholog of cytosolic malic acid
dehydrogenase (MDH) were fairly abundant (>60 RPKM,
Additional file 1: Table S3), transcripts for NADP-ME
were poorly represented in the plastid (<10 RPKM,
Additional file 1: Table S3). These data suggest that
malate synthesis in cytosol and its import to plastid for
further decarboxylation might not generate substantial
pyruvate in the plastids of avocado mesocarp (Add-
itional file 1: Table S3).
Comparing the transcript levels for the orthologs of

glycolytic enzymes in the plastid and cytosol revealed
features that support the generation of pyruvate in the
plastid necessary to drive fatty acid synthesis during
mesocarp development (Fig. 7). In both cytosol and plas-
tid, the orthologs for glycolysis enzymes were highly rep-
resented (>600 RPKM/enzyme; Fig. 2c), with putative
fructose-bisphosphate aldolase (FBA) being the most
abundantly expressed gene (Fig. 7a and b). Glycolysis is,
however, primarily regulated by those enzymes that
catalyze the reactions involved in the conversion of
hexose to hexose-P, fructose-6-P to fructose-1,6-diP, and
PEP to pyruvate [87]. The abundance of transcript levels
for orthologs of UDP-glucose pyrophosphorylase
(UGPase), fructokinase, and pyrophosphate-dependent
phosphofructokinase in the cytosol (Additional file 6:
Figure S4 and Fig. 7), along with high transcript levels
for SuSY and invertases (Additional file 5: Figure S3a)
suggest that cytosolic glycolysis is highly active and
might rely more on UGPase generated fructose as a

substrate. Interestingly, the higher abundance of tran-
script levels for the orthologs of hexokinase, glucose-6-
phosphate isomerase, which catalyzes the conversion of
glucose-6-P to fructose-6-P and ATP-dependent 6-
phosphofructokinase in the plastid than in the cytosol
(Additional file 6: Figure S4 and Fig. 7c), suggests the
early glycolysis is highly active in plastid as well and per-
haps relies primarily on glucose as the substrate. Fur-
thermore, the abundant gene expression levels for the
orthologs of plastidial transporters for glucose (GLT),
glucose-6-P (GPT), and nucleotide (NTT) through out
the mesocarp development (>100 RPKM; Additional file
5: Figure S3) suggests the scope for transport of glycoly-
sis precursors and intermediates to the plastid. The high
expression levels for pyruvate kinase in the plastid
(Fig. 7) additionally suggests that late glycolysis in oil-
rich tissues of avocado might be under plastidial control.
Overall, the means to generate pyruvate for fatty acid
synthesis in plastid in a basal angiosperm species ap-
pears to be a synergistic outcome of active glycolysis in
both the cytosol and plastid and transport of intermedi-
ates to the plastid, similar to those observations made
with oil-rich dicot and monocot tissues [14, 16].

Conclusions
Avocado, as a basal angiosperm with highly nutritious
fruit that is rich in oleic acid in its nonseed tissue,
serves as an elegant system for comparing TAG bio-
synthesis functions among oil-rich tissues of diverse
angiosperms. In this study, avocado mesocarp gene
expression was examined with a focus on pathways
and regulators responsible for the supply of carbon
and its conversion to oil in nonseed tissue. We also
addressed overall evolutionary conservation of genes
required for oil synthesis across multiple oil-rich spe-
cies. In general, genes expressed in processes from
sucrose degradation to TAG assembly that are known
to be upregulated in oil-rich tissues of monocots and
dicots [14, 16], were also upregulated in avocado
mesocarp (Fig. 2). Furthermore, consistent with other
studies for oil-rich tissues, the expression of tran-
scripts for fatty acid biosynthesis was several fold
higher than those of transcripts encoding later steps
of TAG assembly in the ER (Figs. 2, 3, and 5). Plastid
genes and transporters, necessary for pyruvate gener-
ation, were also highly expressed in the mesocarp tis-
sue (Fig. 7). Most notably, transcripts for orthologs of
multiple WRI isoforms were also abundant in the oil-
rich tissues of avocado (Fig. 6). Together, these data
indicate that the supply of carbon and perhaps regu-
lation of oil biosynthesis may primarily occur in the
plastid in basal angiosperms as well. Further comple-
mentation studies are essential to establish the func-
tion of various isoforms of WRI in nonseed tissues.
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Comparative analysis of transcription factors,
expressed across various oil-rich tissue types and spe-
cies, is necessary to identify potential candidates that
may play the role of upstream regulators to WRI.
Quantitative analysis of avocado mesocarp transcrip-

tome also revealed certain unique features that suggest
further studies using avocado to address several gaps in
our understanding of TAG synthesis in nonseed tissue,
such as regulation and determination of oil compos-
ition. For example, it is noteworthy that within the ER,
the most abundant transcripts, relative to GPAT9 in
avocado mesocarp, were of LACS orthologs (Fig. 4,
Additional file 1: Table S3 and Additional file 1: Table
S4) suggesting the potential for acyl activation in the
ER and/or the junction of ER and plastid. Oil-rich
nonseed tissues of avocado may therefore offer an in-
valuable system to determine roles for plastid versus
ER associated LACS activity and/or if a direct contact
between the plastid and ER [58] exists in basal angio-
sperms. Furthermore, avocado mesocarp could be
used to determine the preference for PDAT1 and to
explore its overlapping function with DGAT1 in TAG
synthesis. This oleaginous species also is suitable to
address if acyl editing occurs in mesocarp, where
there is little flux to desaturation, and if it either in-
volves phospholipase 2 and LACS or is mediated by
LPCAT. With the absence or poor expression of oil
storage protein such as oleosins, if or how TAG is
packaged in nonseed tissues has remained a mystery;
the identification of LDAP1 and LDAP2 in avocado
mesocarp, however, offers an alternative means to
study the stabilization of TAG.
Avocado fruit is distinctive among angiosperms in its

development and growth, particularly in aspects that in-
clude the nature of storage metabolites it accumulates.
The role of 7-carbon sugars and starch, in the early
stages of mesocarp development, in regulation of fruit
ripening and possibly in initiation of lipid synthesis re-
mains elusive. Comprehensive profiling of carbohydrate,
lipid and hormone content, concurrent with transcripto-
mics of mesocarp and seed tissues, is expected to pro-
vide a more in-depth understanding of the coordinated
process of fruit development and carbon partitioning.

Methods
Plant material
Avocado fruits (cv. Hass) were harvested from a tree
(44-15-11 Hass Scion on D7 clonal rootstock) during
October 2009 to February 2010 and were shipped over-
night at 4 °C to Michigan State University. The clonal
stocks are located at University of California South
Coast Research and Extension Center in Irvine, CA.
Fruits from five stages were weighed and dissected to
separate epicarp, mesocarp and seed (Additional file 1:

Table S1; Fig. 1). The isolated tissues were weighed and
flash frozen in liquid N2 and stored at −80 °C until fur-
ther use.

Lipid extraction and quantification
To determine the fatty acid content and composition of
avocado fruit tissues (mesocarp and seed), their total
lipids were extracted with hexane-isopropanol method
[88]. Extracted lipids were weighed and resuspended in
hexane and converted to fatty acid methyl esters, by a
base-catalyzed methylation reaction [89], and analyzed
using gas chromatography coupled with flame ionization
detector (Varian 3800), to determine the fatty acid com-
position [90]. Fatty acids were quantified against trihep-
tadecanoin that was added as an internal standard prior
to lipid extraction.

Total RNA extraction, cDNA library construction and
sequencing
Total RNA was extracted from 3 g of mesocarp tissue
that had been ground finely in liquid N2 and incubated
for 10 min in 30 mL of TRIzol® reagent (Life technolo-
gies) and for an additional 5 min with 6 ml of CHCl3.
After centrifugation at 12,000 g for 15 min at 4 °C, the
aqueous phase was incubated overnight with 1/3 volume
of 8 M LiCl. Samples were then centrifuged at 12,000 g
for 30 min at 4 °C and the pellet was resuspended in
1000 μL of RLT buffer of RNEasy kit (Qiagen) and RNA
was eluted following the manufacturer’s protocol.
RNA-seq data for developing mesocarp were generated

using Illumina sequencing techniques. Two technical rep-
licates (a and b) for stage I and stage III were included for
RNA-seq (Additional file 1: Table S1). RNA quality was
assed using the Agilent BioAnalyzer (Agilent Technolo-
gies) and all samples submitted for sequencing had a RIN
score of 6.4 or higher. Libraries were created using an Illu-
mina pre-release protocol for directional mRNA-seq li-
brary prep (v1.0). A single read 75 cycle run was then
performed on the Illumina GAIIx sequencer, following
manufacturers protocols. Reads were trimmed and filtered
based on quality with the Trim Sequences algorithm of
CLC Genomics Workbench software (Limit: 0.05, Max-
imum ambiguities: 2). Details on the RNA-seq datasets
(Additional file 1: Table S1) are available in the NCBI
Short Read Archive within BioProject PRJNA253536
(http://www.ncbi.nlm.nih.gov/bioproject/253536).
For 454 sequencing, mRNA was isolated from the

total RNA using Sera-Mag Oligo (dT) Magnetic Beads
(Thermo Scientific). cDNA libraries were generated
from pooled samples (five stages plus two technical
replicates) using the Roche cDNA Rapid Library Prep
Kit (Roche Diagnostics). Sequences were obtained on
the Roche 454 GS FLX sequencer using the titanium
chemistry (Roche Diagnostics).
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Bioinformatics and data analyses
A reference designed for comparative mapping of the
mesocarp RNAseq reads was prepared using Trinity v.2
[91] for de novo assembly with inputs of the above Illu-
mina reads plus 454 and Illumina paired reads generated
from sequencing of Hass leaf and flower mRNA of an
independent project, whose data and details are pro-
vided under NCBI BioProject PRJNA258225. This
allowed for more complete transcript references than
using the mesocarp single read Illumina data alone.
This generated 151,788 contigs that were then clus-
tered using CD-HIT-EST with default parameters
(sequence identity: 90 %, word size: 10), resulting in
134,329 sequence clusters (Additional file 1: Table S1).
Sample expression was estimated using CLC Genomics
Workbench version 5.5.1. Unique counts were gener-
ated by aligning the RNAseq reads to the assembled
contigs using the RNA-Seq Analysis algorithm for non-
annotated sequences (Parameters: Similarity 0.8; Length
fraction 0.75).
The RPKM values obtained by Illumina sequencing

were highly correlated between the technical repli-
cates of stage 1a and 1b (R2 = 0.96702; Additional file
7: Figure S5a) and stage 3a and 3b (R2 = 0.97526;
Additional file 7: Figure S5b). About 250 gene ortho-
logs that are likely associated with lipid metabolism
were considered in this study and their transcript
levels obtained by 454 sequencing, where all the sam-
ples were pooled, were also highly correlated with
average expression data for all the five mesocarp
stages obtained by Illumina sequencing (R2 = 0.91171;
Additional file 7: Figure S5c).

Phylogenetic analyses
Evolutionary relationship of WRI genes in a monocot
(maize), dicot (arabidopsis), basal angiosperm (avocado)
and bryophyte (Physcomitrella patens) was analyzed by
construction of a phylogenetic tree. The protein se-
quences for four AtWRI genes were identified from the
TAIR database and the avocado homologs were ob-
tained from the transcriptome data (Additional file 1:
Table S1). A UPGMA tree was constructed with MEGA
6.0 using a ClustalW alignment of protein sequences
[92]. The robustness of the tree was tested by bootstrap
analysis with 1,000 replicates. The orthologs of AtWRI1
in maize and moss were identified using BLASTP (NCBI).
In maize, two sequences that were homologous to
AtWRI3 and AtWRI4 were almost identical and were re-
ferred to as WRI3/4. Also maize is known to have a
species-specific duplication of the WRI1 gene and both
function to regulate fatty acid synthesis [93]. An AP2 tran-
scription factor from Chlamydomonas reinhardi was used
as an outgroup for the WRI tree.

Accession numbers
AtWRI1 (NP_001030857.1); AtWRI2 (NP_001189729.1);
AtWRI3 (NP_563990.1); AtWRI4 (NP_178088.2); ZmW
RI1a (NP001137064.1); ZmWRI1b (NP_001131733.1);
ZmWRI2 (NP_001145827.1); ZmWRI3/4a (XP_008656
570.1); ZmWRI3/4b (XP_008651355.1) (PpWRI1-like
(BAL04570.1); PpWRI2-like (XP_001765028.1); PpWRI3-
like (XP_001770958.1); PpWRI4-like (XP_001764166.1);
CrAP2 (XP_001699213.1).

Availability of supporting data
The supporting data associated with this publication are
included as additional files. RNA-seq data with details of
datasets are available on the NCBI Short Read Archive
Project - PRJNA253536 (http://www.ncbi.nlm.nih.gov/
bioproject/253536).
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Additional file 1: Table S1. Summary of RNA-seq data with details of
datasets available on the NCBI Short Read Archive. Table S2. Contigs
represented by at least 10 reads per kilobase per million mapped reads
(RPKM) and their annotation in relation to Arabidopsis proteins. Table S3.
Annotation and transcript levels for select genes associated with
conversion of sucrose to triacylglycerol, as shown in Fig. 2. Table S4.
Transcript levels for genes associated with TAG assembly in the ER,
relative to GPAT9 expression in avocado mesocarp (Pa Me), rapeseed
embryo (Bn Em), castor endosperm (Rc En), oil palm mesocarp (Eg Me),
and date palm mesocarp (Pd Me). (XLSX 1350 kb)

Additional file 2: Data S1. The sequence information for contigs
represented by at least 10 reads per kilobase per million mapped
reads (RPKM) and their annotation in relation to Arabidopsis proteins.
(TXT 13061 kb)

Additional file 3: Figure S1. Correlation (R2) of lipid content in
avocado mesocarp with that of total fruit weight during development.
(TIFF 14823 kb)

Additional file 4: Figure S2. Transcript levels for plastidial fatty acid
synthesis genes, relative to KASIII in avocado mesocarp (Pa Me), rapeseed
embryo (Bn Em), castor endosperm (Rc En), oil palm mesocarp (Eg Me),
and date palm mesocarp (Pd Me). (TIFF 14823 kb)

Additional file 5: Figure S3. Transcript levels for genes associated with
carbon metabolism. (a) sucrose degradation, (b) transport of glycolysis
intermediates and (c) starch and mannoheptulose metabolism. The RPKM
values for subunits of a protein and for multiple isoforms were summed.
Protein abbreviations are provided in Additional file 1: Table S3.
(TIFF 14823 kb)

Additional file 6: Figure S4. Comparison of transcript levels for genes
associated with early glycolysis in cytosol (C) and plastid (P). (a) UDP-glucose
pyrophosphorylase (UGPase), (b) hexokinase (HXK), (c) fructokinase (FK)
and (d) pyrophosphate-dependent phosphofructokinase (PFP) and ATP-dependent
6-phosphofructokinase (PFK). In plastids, PFK is predominant but PFP is
absent. (TIFF 14823 kb)

Additional file 7: Figure S5. Correlation analyses of RNA-seq data. (a)
Correlation between the technical replicates of stage 1, and (b) and stage
3, obtained by Illumina sequencing. (c) Correlation between the 454 data
and Illumina data obtained for ~ 250 gene orthologs used in the current
study. (TIFF 14823 kb)
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