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Abstract

Background: Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides
natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a
powerful method to identify single nucleotide polymorphism markers on a large scale for the construction
of a high-density genetic map for quantitative trait loci mapping.

Results: In this research, a recombinant inbred lines population developed from two upland cotton cultivars
0–153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified
fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism
markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without
gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative
trait loci and were detected in at least three out of 11 environments and explained 4.15–16.70 % of the
observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals
of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized
based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis
and eukaryotic orthologous groups analysis.
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Conclusions: This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with
a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus
amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and
identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would
provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding
breeding of functional genes as well as marker-assisted selection.

Keywords: Upland cotton (Gossypium hirsutum L.), Quantitative trait loci mapping, Specific locus amplified fragment
sequencing, Boll weight, Single nucleotide polymorphism marker

Background
Upland cotton (Gossypium hirsutum L., 2n = 52) is widely
grown because it provides superior natural fiber for the
textile industry and daily life [1–3]. Increased industrial
demand for the fiber makes it a challenge for cotton
breeders to increase their yield. Boll weight is one of
the important yield components of cotton. But cotton
breeders struggle to increase their yield without com-
promising other fiber traits [4]. Through molecular
marker assisted selection (MAS) we can directly select
the plants through their genotype. Based on the con-
struction of genetic linkage maps, further studies from
identifying the quantitative trait loci (QTLs) of the
target traits to identifying the functioning genes, to
pyramiding breeding, could be facilitated. Based on
MAS, the breeding efficiency could be improved while
the breeding cycle is shortened. For the MAS, the
density and quality of the genetic map is very important
since it forms the basis for the next set of research
activities including the detection of reliable and concise
QTL confidence intervals, further identification of the
functional genes in these concise confidence intervals.
Currently most of the genetic maps are based on the
simple sequence repeat (SSR) markers with low resolu-
tions. The low polymorphic rate of SSR markers makes
it difficult to construct a saturated SSR-based genetic
map that covers the whole genome. With the develop-
ment of the molecular markers, the single nucleotide
polymorphism (SNP) markers became widely applied to
genetic map construction and MAS due to its large
number with a high density across the whole genome.
Thus, it is a powerful tool to construct a high-density
genetic map (HDGM) and to identify QTLs [5, 6].
The next-generation sequencing (NGS) technique can

be used to detect large quantities of SNP markers in the
whole genome [7]. There are several methods of NGS in-
cluding restriction site-associated DNA sequencing (RAD-
Seq) [8], Genotyping-by-sequencing (GBS-Seq) [9] and
specific locus amplified fragment sequencing (SLAF-seq)
[10]. The common feature of these methods is that one or
more kinds of restricted DNA-endonuclease(s) were ap-
plied to the genome DNA based on the characteristics of

the genomes of different species to build a reduced
representation library (RRL) of genomic DNA without
knowing the detailed information of the whole genome.
Thus, each of these methods of NGS was used to con-
struct the HDGM of several species [7, 11, 12]. Zhang
et al. [13] constructed an HDGM of Prunus mume
using SLAF-Seq. The map linked 8007 makers and
spanned 1550.62 cM in length with an average marker
distance of 0.195 cM. Xu et al. [14] also construct an
HDGM of Cucumis sativus using SLAF-Seq. The
map included 1892 markers with a total distance of
845.7 cM and an average distance of 0.45 cM between
adjacent markers. Li et al. [15] construct an HDGM of
Glycine max with 5785 markers, with a total distance of
2255 cM and an average marker distance of 0.43 cM.
Wang et al. [4] constructed an HDGM of cotton using the
RAD-Seq method and the map linkage 3984 markers with
a total distance of 3499.69 cM.
In this study, a recombinant inbred line (RIL) popula-

tion, containing 196 individuals was developed from an
intra-specific cross between two upland cotton 0–153
and sGK9708. We attempted to use this population to
construct an intra-specific HDGM of upland cotton, to
identify QTLs and possibly, the candidate genes corre-
lated to cotton boll weight. Finally, a total 5521 SNP
markers were successfully applied to genotype these 196
RILs along with parents and an intra-specific HDGM
was thus constructed. This map was used to identify
QTLs for cotton boll weight across 11 environments.

Methods
Plant materials
The intra-specific F6:8 recombinant inbred lines (RIL)
population of upland cotton with 196 individuals was
developed from a cross between homozygous cultivars
0–153 and sGK9708. Cultivar 0–153 harbored superior
fiber quality traits while sGK9708 was derived from
CRI41 which maintained high yield potential and wide
adaptability. The details of the development of RILs have
been already described by Sun et al. [16]. Additionally,
the phenotypic evaluations of the RILs from 2007 to
2013 were detailed by Zhang et al. [17].
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Phenotypic data analysis
Thirty normally opened bolls within five to eight fruiting
branches and one to three fruiting nodes were sampled
in annually September. The total seed-cotton of the 30
bolls was weighted and average boll weight was calcu-
lated accordingly. One-way ANOVA was used to test the
significance of the differences in boll weight between
two parents. Additionally, EXCEL 2010 was used to
create the descriptive statistics including the mean value,
standard deviation, skewness and kurtosis of the boll
weight across the whole population.

DNA extractions and SLAF library construction and
high-throughput sequencing
The leaves of the parents and the RIL population were
sampled in July and stored at −70 °C. The genomic
DNA was extracted using the TaKaRa MiniBEST Plant
Genomic DNA Extraction kit (TaKaRa, Dalian) and
SLAF-seq strategy with some modifications was utilized
in the library construction. Briefly, the reference genome
of Gossypium hirsutum [18, 19] was referred to make
the pre-experiment in silico simulation of the number of
markers generated by various endonuclease combinations.
The SLAF library was constructed based on the SLAF
pilot experiment in accordance with the predesigned
scheme and eventually two endonucleases combination of
HaeIII and SspI (New England Biolabs, NEB, USA) was
applied to the genomic DNA digestion in our RIL popula-
tion. The details of SLAF-seq strategy was described by
Zhang et al. [13].

Grouping and genotyping of sequencing data
SLAF markers were identified and genotyped with pro-
cedures described by Sun et al. [10] and Zhang et al.
[13]. Briefly, after filtering out the low-quality reads
(quality score < 20e), the remaining reads were sorted to
each progeny according to duplex barcode sequences.
Then each of the high-quality read was trimmed off
5-bp terminal position. Finally 80 bp pair-end clean
reads were obtained from the same sample and were
mapped onto the genome of Gossypium hirsutum [19]
sequence using BWA software [20]. Sequences mapping
to the same position with over 95 % identity were defined
as one SLAF locus [13]. SNP loci in each SLAF locus were
then detected between parents using the software GATK.
SLAFs with more than three SNPs were filtered out first.
As the sequenced size of the fragments was only 160 bp,
three or more SNPs in one SLAF indicated a significantly
high heterozygosity of upland cotton (more than 1 %).
This would lead to a decreased accuracy and reliability of
the sequencing and genotyping. The SLAFs were geno-
typed depending on the tags of the parents sequenced
above tenfold depth and the individuals of the RIL popula-
tion were genotyped based on the similarity to the parents.

As each SLAF locus harbored at most three SNP loci, it
was possible that one SLAF locus could harbor at most,
four SLAF alleles. The SLAF repetitiveness and poly-
morphism were defined based on the criteria described by
Zhang et al. [13]. The repetitive SLAFs were discarded
and only the polymorphic SLAFs were considered as
potential markers. Only the SLAFs with consistency in the
parental and RIL were genotyped.
The procedure of all polymorphic SLAF loci genotyping

was described by Sun et al. [10] and Zhang et al. [13].
Before genetic map construction, all the SLAF markers
were filtered using a criteria detailed by Zhang et al. [13]
besides the markers with more than 40 % missing data
were filtered out.

Linkage map construction
Linkage map was constructed based on the procedure
detailed by Zhang et al. [13] and the cotton genome
database [19]. HighMap strategy for ordering the SLAF
and correcting genotyping errors within the chromo-
somes was detailed by Liu et al., Jansen et al. and van
Ooijen et al. [21–23]. SMOOTH was also applied to the
error correction strategy according to parental contribu-
tion to the genotypes of the progeny [24], and a k-nearest
neighbor algorithm was used to impute the missing geno-
types [25]. A multipoint method of maximum likelihood
was applied to add the skewed markers into the linkage
map. The Kosambi mapping function was applied to
estimate the map distances [26].

Segregation distortion analysis
As the distortedly segregated markers showing signifi-
cance between 0.001 and 0.05 (0.001 < p < 0.05) were still
maintained to construct the HDGM, the region on the
map with more than three consecutive adjacent loci that
showed significant (0.001 < P < 0.05) segregation distortion
was defined as a segregation distortion region (SDR) [11].
The size and distribution of SDRs on the map were
analyzed.

Collinearity and recombination hotspot analysis
All the sequences of SNP markers that were constructed
in the linkage map were aligned back to the physical
sequence of the upland cotton genome through local
Basic Local Alignment Search Tool (BLAST) to con-
firm their physical positions in the genome. Software
CIRCOS 0.66 was used to compare the collinearity of
markers based on their genetic positions and physical
positions. The recombination hotspot (RH) was esti-
mated based on the recombination rate of markers. If
the value that the genetic distance between adjacent
markers was divided by was higher than 20 cM/Megabase,
the region between the two adjacent markers was
regarded as RH [13].
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QTL analysis using HDGM
Windows QTL Cartographer 2.5 [27] was used to
identify QTLs by composite interval mapping method
[28] on the environment by environment basis of the
11 environments. The LOD threshold for declaring
significant QTLs included the QTLs across environ-
ments calculated by a permutation test with the mapping
step of 1.0 cM, five control markers, and a significance
level of P < 0.05, n = 1000. LOD score values between 2.0
and permutation test LOD threshold were used to declare
suggestive QTL. Positive additive effect means that the
favorable alleles come from the 0–153 parent while nega-
tive additive effect means that the favorable alleles come
from sGk9708. QTLs were named and the common QTLs
were identified as described by Sun et al. [16].

The candidate genes identification
The markers flanking the confidence intervals of the
QTLs which can be detected in at least three environ-
ments were selected to identify the candidate genes. The
sequences of these markers were aligned back to the
physical sequence of upland cotton genome database
[19]. Based on the position of these flanking markers, all
the genes within the confidence interval were identified
as candidate genes. For some of the QTLs with a large
confidence interval, if the position of one marker flank-
ing the confidence interval was too far from that of the
nearest marker harbored in that confidence interval, the
region between these two markers was excluded from
the candidate gene identification. All the candidate genes
were categorized through the gene ontology (GO) analysis.
The first ten terms that have the smallest Kolmogorov-
Smirnov (KS) values were considered as the enriched
terms. The pathways correlated to the candidate genes
were discovered by the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. The first ten pathways with

the smallest p values were considered as the enriched
pathways. The candidate genes were also categorized
based on their products through eukaryotic orthologous
groups (KOG) database analysis.

Result
Performance of boll weight of RIL populations
The one-way ANOVA result showed the p-value was
0.002, suggesting that significant differences of boll weight
were found between the two parents. The descriptive stat-
istical analysis results of the RIL population and parents
across 11 environments were shown in Table 1. The abso-
lute value of skewness of the mean value of the boll weight
in the RIL population across 11 environments was less
than one, indicating an approximately normal distribution.
In all 11 environments, both the positive transgressive
segregation (the observed values are higher than that of
sGK9708) and the negative transgressive segregation (the
observed values are lower than that of 0–153) of the boll
weight in the RIL population were observed (Table 1).

Analysis of SLAF-seq data and SLAF markers
After SLAF library construction and sequencing, 87.89 GB
of data containing 443.56 M pair-end reads was generated
with each read of 80 bp in length. Among them, 82.24 %
of the bases were of high quality with Q20 (means a
quality score of 20, indicating a 1 % chance of an error,
and thus 99 % confidence) and guanine-cytosine (GC)
content was 34.47 %. The SLAFs numbers of 0–153 and
sGK9708 were 53,123 and 53,238, and their correspondent
sequencing depths were 78.66 and 102.13 respectively.
The coverage of both parents was 35 %. In the RIL popu-
lation, the number of SLAFs ranged from 32,261 to 53,104
and the average number of SLAFs was 50,487. The average
sequencing depth was 14.50, and the average coverage was
33.37 % (Fig. 1).

Table 1 The results of the statistical analysis of the parents and the whole population

Env Parents Population

0–153 SGK9708 Range P-value Min Max Range Average Std.Sdv Var Skew Kurt

07ay 4.46 5.18 0.71 0.0021 3.92 5.91 1.99 4.71 0.41 0.17 0.38 0.05

08ay 4.49 5.74 1.24 3.50 6.20 2.70 4.78 0.47 0.22 0.06 0.42

08lq 4.40 5.72 1.32 3.97 6.29 2.32 4.91 0.47 0.22 0.35 −0.16

08qz 3.85 4.77 0.92 3.20 5.50 2.30 4.32 0.47 0.22 0.03 −0.56

09ay 3.56 4.65 1.09 2.99 5.40 2.41 4.15 0.44 0.19 0.14 −0.02

09qz 2.93 4.44 1.51 2.13 5.16 3.03 3.41 0.55 0.30 0.14 −0.39

09xj 5.20 5.40 0.20 3.73 6.94 3.21 5.17 0.57 0.32 0.15 0.24

10gy 3.20 3.79 0.59 1.78 4.65 2.87 3.40 0.48 0.23 −0.16 −0.04

10ay 4.20 5.44 1.24 3.32 5.83 2.51 4.61 0.48 0.23 0.09 −0.17

10zz 3.71 5.98 2.27 2.38 5.86 3.48 3.94 0.57 0.33 0.06 0.45

13ay 5.13 5.62 0.49 2.76 6.26 3.50 4.70 0.55 0.30 −0.24 0.86
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The 443.56 M pair-end reads, consisting of 53,754
SLAFs, totally harbored 160,876 SNP markers, as usually
one SLAF can harbor more than one and at most three
SNP markers. Among the 160,876 SNP markers, 23,519
markers were identified polymorphic across the whole
RIL population with a polymorphic rate of 14.62 %. All
the polymorphic SNP markers were classified into four
genotypes: aa × bb, hk × hk, lm × ll and nn × np. The
aa × bb meant that both of the parents were homozy-
gous in this SNP position, the genotype of one parent
was aa and the other was bb; the hk × hk meant that
both of the parents were heterozygosis, and the lm × ll
and nn × np meant that one of the parent was heterozy-
gosis and the other was homozygous. Only the geno-
type aa × bb, consisting of 18,318 SNPs, was used for
further analysis. Among 18,318 markers, the marker
with average sequence depths less than four were fil-
tered with 16,490 markers left. Then the markers with
polymorphism across the whole population but not
between parents were excluded leaving 15,076 markers
remaining. The 15,076 markers were further filtered
by a criterion of more than 40 % missing data and
10,588 markers left. Finally, Markers with significant
segregation distortion (P < 0.001) were filtered and the
remaining 5521 markers, including the ones that showed
significant segregation distortion between 0.05 and 0.001
(0.001 < P < 0.05) were used to construct the final genetic
map (Table 2).

Distribution of SNP markers’ type on the genetic map
In total, 5521 SNP loci were mapped on the final linkage
map and percentages of SNP types were investigated
(Additional file 1: Table S1). Most of the SNPs were
transitions of Thymine (T)/Cytosine (C) and Adenine
(A)/Guanine (G), accounting for 34.49 and 33.74 % of all
SNP markers respectively. The other four SNP types
were transversions including G/C, A/C, G/T and A/T
with percentages of 4.46, 8.08, 8.35 and 10.89 % respect-
ively and collectively accounted for 31.77 % of all SNPs
(Additional file 1: Table S1).

Construction of the genetic map
The map harbored 5521 SNP markers, spanning a total
distance of 3259.37 cM with an average marker interval
of 0.78 cM. The A sub-genome harbored 3550 markers
with a total distance of 1838.37 cM whereas the D sub-
genome harbored 1971 markers with a total distance of
1421 cM. The largest chromosome was chromosome 05,
which contained 434 markers with a genetic length of
242.56 cM, and an average marker interval of 0.56 cM.
The shortest chromosome was chromosome 15, which
only harbored 29 markers with a genetic length of
41.39 cM and an average marker interval of 1.43 cM.
The largest gap on this map was only 7.02 cM located
on chromosome 26. There were totally 11 gaps greater
than 5.00 cM, three of which were on chromosome 10
and with remaining eight on eight different chromo-
somes. The remaining chromosomes had no visible gaps
(Additional file 2: Table S2, Fig. 2, Table 3).

The quality analysis of the high-density genetic map
In total, 1225 markers of the mapped 5521 showed sig-
nificant (0.05 < P < 0.001) segregation distortion. These
segregation distortion markers (SDMs) were located in
the chromosomes with an uneven distribution in each.
Among the 1225 SDMs, 579 of them were located in the
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Table 2 The whole process of filtering markers

Filtered step Number

All the Reads 443.65 MB

The Reads of High Quality with Q20 364.86 MB

SLAFs in the Reads 53,754

SNPs in the SLAFs 160,876

Polymorphic SNPs across the Whole RIL Population 23,519

SNPs of AA × BB Genotype 18,318

Deep of SNPs More Than Four 16,490

Polymorphic SNPs between parents 15,076

Percentage of Missing Data less than 40 % 10,588

SNPs with non segregation distortion (p≥ 0.05) and with
significant segregation distortion (0.001 < P < 0.05)

5521
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A subgenome of upland cotton whereas 646 of them
were located in the D subgenome of upland cotton.
Chromosome 14 had the largest number of SDMs and
accounted for the highest percentage of SDMs of all the
mapped markers. The number of SDMs on c14 was 238
and accounted for 58.33 % of the total markers mapped
on it. Chromosome 22 had the smallest number of
SDMs (four). Chromosome 4 had 4.7 % SDMs, the low-
est overall percentage. In total, 93 SDRs were defined
in all the chromosomes, with 44 of them located in the
A subgenome of upland cotton and the other 49 located
in the D subgenome of upland cotton. Chromosome 14
had the most SDR number, 18 SDRs, while chromosomes
4, 8, 17, 20, 22, and 24 had no SDR (Additional file 3:
Table S3, Table 3).
Collinearity analysis of the SNP loci between the gen-

etic map and the physical map is shown in Fig 2. The
results indicated that the genetic map constructed by
the SNP markers which were discovered through SLAF-
seq had a sufficient coverage over the cotton genome.
Most of the SNP loci on the linkage map were in same
order as those on the corresponding chromosomes of
the physical map of the cotton genome. D subgenome
showed a better compatibility with the physical map as
compared to the A subgenome. Chromosomes 1, 2, 3,
5, 7, and11 in the A subgenome and chromosomes
14, 15, 16 and 18 in the D subgenome showed some
deviation in collinearity analysis (Additional file 4:
Table S4, Fig. 3).
The result of the RH analysis showed that among the

26 chromosomes, 21 have RHs, 9 and 12 of which were
in the A subgenome and D subgenome respectively.
Chromosome 13 harbored the largest number of 106 RHs
whereas the chromosomes 7, 15 and 18 only harbored
one RH. Chromosomes 3, 5, 8, 11 and 16 did not harbor
any RH. Additional information is shown in Additional file
5: Table S5, Fig. 4, and Table 3.

QTL mapping for boll weight in the RILs
A total of 146 QTLs for boll weight trait were detected
on 25 chromosomes across 11 environments (chromo-
some 8 was the exception). Sixteen of them were regarded
as stable QTLs as they could be detected in at least three
environments. In the confidence intervals of these stable
QTLs, qBW-chr13-7 harbored 26 markers whereas qBW-
chr02-3 and qBW-chr25-6 only harbored two markers.
Among these stable QTLs, qBW-chr13-7, detected in
seven environments, was located within the marker inter-
val of CRI-SNP8685-CRI-SNP8731, and could explain
6.13–14.70 % of the observed phenotypic variation (PV).
QTL qBW-chr13-4, detected in six environments, was
located within the marker interval of CRI-SNP8313-
CRI-SNP-8346, and explained 4.58–6.06 % of the ob-
served PV. QTLs qBW-chr01-1 and qBW-chr25-5, both
of which were detected in five environments, were
located within the marker intervals of CRI-SNP147-
CRI-SNP168 and CRI-SNP10564-CRI-SNP10569, and
explained 4.81–7.83 % and 4.29–10.76 % of the observed
PV respectively. QTLs qBW-chr02-3, qBW-chr07-1, qBW-
chr07-6, qBW-chr09-6 and qBW-chr25-7, all of which
were detected in four environments, located within the
marker intervals of CRI-SNP506-CRI-SNP519, CRI-SNP-
5634-CRI-SNP5581, CRI-SNP5454-CRI-SNP-5438, CRI-
SNP6432-CRI-SNP6455 and CRI-SNP10592-CRI-SNP
10615, and explained 5.62–6.41, 4.95–8.89, 5.35–10.89,
5.01–10.31 and 7.58–7.80 % of the observed PV respect-
ively. QTLs qBW-chr03-1, qBW-chr05-10, qBW-chr07-4,
qBW-chr16-4, qBW-chr22-3, qBW-chr23-5 and qBW-
chr25-6, all of which were detected in three environments,
were located within the marker intervals of CRI-SNP-
1241-CRI-SNP-1231, CRI-SNP-2294-CRI-SNP-2279, CRI-
SNP-5497-CRI-SNP5472, CRI-SNP12560-CRI-SNP12270,
CRI-SNP10330-CRI-SNP10341, CRI-SNP13838-CRI-SNP
13865 and CRI-SNP10569-CRI-SNP10571, and explained
4.56–9.00, 5.64–7.45, 6.92–8.45, 4.15–5.03, 6.64–8.80,
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4.26–5.26 and 4.82–11.85 % of the observed PV respect-
ively (Additional file 6: Table S6, Fig. 5, Table 4, Table 5).

The candidate genes annotation
In total, 344 candidate genes were identified in the
confidence intervals of stable QTLs. Except for the con-
fidence interval of qBW-chr02-3 which has no candidate
gene, the confidence intervals of all the remaining QTLs
have candidate genes. The confidence intervals of qBW-
chr07-4 and qBW-chr25-6 harbored only one candidate
gene whereas the confidence interval of qBW-chr23-5
harbored 65 genes (Additional file 7: Figure S1, Additional
file 8: Figure S2). In total, 340 of the 344 candidate genes
had annotation information, among which 201, 81 and
163 had annotation information in GO, KEGG and KOG
respectively. In GO analysis, 435 genes were identified in
the cellular component category, 221 genes in the molecu-
lar function category, and 549 genes in the biological

process category, as some of the genes had multiple func-
tions and could be categorized into two or more function
baskets. In the cellular component category, 102 genes
were related to cell and 101 genes were related to cell part.
In the molecular function category, 108 genes were related
to catalytic activity. In the biological process category, 133
genes were related to metabolic process and 108 genes
were related to cellular process (Additional file 9: Table
S7, Fig. 6). In the KEGG analysis, 81 genes were identified
in 55 pathways. Six genes were found in the plant hor-
mone signal transduction pathway, four genes were found
in both the ribosome and protein processing pathways in
endoplasmic reticulum In all the remaining pathways,
there were no more than three genes found (Additional
file 10: Table S8, Additional file 11: Table S9). In the
KOG analysis, 24 genes only had the general prediction
function and 12 genes had unknown function. Among
the other 127 genes, 25 of them were related to

Table 3 The detail information of the high-density genetic map

Chromosome
number

Marker
number

Total
distance

Average
distance

Largest gap Number of
gap (>5 cM)

Number
of SDMs

Percentage
of SDMs

X2_value P_value SDR region Number
of RHs

Chr01 297 140.42 0.47 4.48 0 82 27.61 % 2.50 0.28 9 32

Chr02 180 136.88 0.76 5.42 1 12 6.67 % 1.36 0.44 1 35

Chr03 218 159.93 0.73 4.15 0 47 21.56 % 2.36 0.40 4 0

Chr04 574 142.01 0.25 3.61 0 27 4.70 % 1.14 0.43 0 86

Chr05 434 242.56 0.56 4.22 0 106 24.42 % 2.46 0.29 10 0

Chr06 101 92.62 0.92 4.76 0 26 25.74 % 2.37 0.43 1 16

Chr07 318 132.96 0.42 3.56 0 36 11.32 % 1.58 0.35 1 1

Chr08 56 45.12 0.81 3.56 0 13 23.21 % 2.32 0.26 0 0

Chr09 274 156.33 0.57 5.07 1 60 21.90 % 2.30 0.32 5 55

Chr10 133 113.33 0.85 6.69 3 17 12.78 % 1.86 0.32 1 32

Chr11 88 112.62 1.28 5.71 1 24 27.27 % 2.50 0.30 3 0

Chr12 273 178.26 0.65 5.07 1 85 31.14 % 2.85 0.28 8 37

Chr13 604 185.33 0.31 4.15 0 44 7.28 % 1.43 0.40 1 106

Chr14 408 173.03 0.42 4.46 0 238 58.33 % 4.98 0.18 18 67

Chr15 29 41.39 1.43 3.56 0 8 27.59 % 2.76 0.33 1 1

Chr16 399 178.54 0.45 3.61 0 152 38.10 % 3.38 0.28 13 0

Chr17 102 101.64 1 4.79 0 9 8.82 % 1.28 0.43 0 29

Chr18 172 136.45 0.79 5.07 1 43 25.00 % 2.67 0.27 3 1

Chr19 109 94.13 0.86 4.76 0 18 16.51 % 2.10 0.35 2 24

Chr20 60 48.44 0.81 4.15 0 9 15.00 % 2.27 0.28 0 11

Chr21 174 163.73 0.94 5.71 1 29 16.67 % 1.77 0.43 2 40

Chr22 75 65.91 0.88 4.46 0 4 5.33 % 1.22 0.50 0 14

Chr23 142 127.61 0.9 4.76 0 31 21.83 % 2.26 0.32 3 36

Chr24 60 76.99 1.28 4.76 0 6 10.00 % 1.39 0.47 0 12

Chr25 166 124.21 0.75 5.39 1 84 50.60 % 4.62 0.16 6 39

Chr26 75 88.93 1.19 7.02 1 15 20.00 % 2.13 0.35 1 19

Total 5521 3259.37 0.78 7.02 11 1225 -- -- -- 93 693
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posttranslational modification, protein turnover, and
chaperones, 17 of them had a relation to signal trans-
duction mechanisms, 12 of them had a relation to
translation, ribosomal structure and biogenesis, 11 of
them had a relation to carbohydrate transport and me-
tabolism and 11 of them had a relation to transcription.
No more than 10 genes were found in other functions
in KOG classification (Fig. 6, Additional file 12: Table
S10, Additional file 13: Table S11, Table 5).
Among all 344 candidate genes, 44 were identified at

the nearest positions of the markers, of which the
genetic position had the highest LOD values in the QTL
mapping analysis (Additional file 7: Figure S1, Additional
file 8: Figure S2). Among them, 43 candidate genes had
annotation information except the gene Gh_D06G0216.
In the KEGG analysis, eight cand genes had annotation
information, five of which were related to hypothetical
protein, with the other three related s-adenosylmethionine
synthetase, polygalacturonase precursor and indole-3-
acetic acid-amido synthetase GH3.3 respectively. In KOG
analysis, 18 candidate genes had annotation information.
Two had unknown function, three were correlated to
signal transduction mechanisms, two were correlated to
translation, ribosomal structure and biogenesis, two were
correlated to posttranslational modification, protein turn-
over, and chaperones, two were correlated to inorganic
ion transport and metabolism, two were correlated to
secondary metabolites biosynthesis, transport and catabol-
ism and two were correlated to carbohydrate transport
and metabolism. There was an additional gene correlated
to lipid transport and metabolism, one correlated to the
cytoskeleton, one correlated to coenzyme transport and

metabolism, one correlated to energy production and
conversion, one correlated to RNA processing and modifi-
cation and one correlated to cell cycle control, cell div-
ision, and chromosome partitioning. In the GO analysis,
26 of the 43 had annotation information, among which,
21 were correlated to biological process, 21 were corre-
lated to molecular function and 15 were correlated to
cellular component.

Discussion
The characteristics of the method SLAF-seq
For the simplified genome sequencing, the key step was
to make the simplified genome representative of the
whole genome. This was completed through the election
of suitable restriction endonuclease(s). When restriction
endonuclease(s) were applied to the genome digestion
and selected properly, the fragments generated by next-
step sequencing would be a better representation of the
genome. In the previous studies, usually a few common
restriction endonucleases such as EcoRI, SbfI and PstI
were used to digest the genome of various species [29].
Typically, only one restriction endonuclease was applied
to the genome digestion [30–32]. The genome specificity
of the species was ignored [29–33]. This might lead to
uneven distribution of the selected fragments in the
whole genome and thus make the simplified genome less
representative. Eventually the number of markers devel-
oped and reliability of the genetic map might both be
negatively affected [29, 33]. The SLAF-seq strategy, an
effective NGS-based method for large-scale SNP discov-
ery and genotyping, has been applied successfully in
various species [12–14]. Compared with other tools for
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Fig. 3 Collinearity between the genetic map and the physical map. a Collinearity of the A sub-genome between the genetic map and the physical
map. b Collinearity of the D sub-genome between the genetic map and the physical map
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large-scale genotyping with NGS technology, such as
RAD-seq and GBS, SLAF-seq displayed some unique
superiorities. First, the pre-design scheme with different
restriction endonuclease combinations was applied to
simulate in silico the result script of endonuclease diges-
tions based on the sequencing database of A, D and AD
genomes of Gossypium [19, 34, 35] (Fig. 7). The

information on genomic GC content, repeat conditions
and genetic characteristics were referred to make up the
digestion strategy. After two endonucleases combinations
were applied to the genome digestion, the fragments ran-
ging from 500 to 550 (including adapter) base pairs we
harvested for sequencing create a better representation of
the genome of Gossypium hirsutum L. Second, a dual-

chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 chr11 chr12 chr13

chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chr23 chr24 chr25 chr26

Fig. 4 The genetic position of the recombination hotspots in the whole 26 chromosomes
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index will provide a higher sequence quality and more
stable sequence depth among each sample, which is the
key to developing high quality marker. Third, the marker
underwent a series of dynamic processes to discard the

suspicious markers during each cycle, until the average
genotype quality score of all SLAF markers reached the
cut-off value. As a result, the markers we developed might
have a consistent distribution throughout the genome and
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Table 4 The detail information about the stable QTLs

QTL name Environment Position LOD Additive R2 Marker interval (P < 0.01) Marker interval (P < 0.05) LOD_L (P < 0.01) LOD_R (P < 0.01) LOD_L (P < 0.05) LOD_R (P < 0.05)

qBW-chr01-1 10GY 45.41 2.43 0.25 5.32 % CRI-SNP161-CRI-SNP168 CRI-SNP147-CRI-SNP168 45.10 47.00 44.30 47.70

07AY 46.41 2.20 0.20 4.81 % 46.00 47.70 45.40 50.30

08AY 47.41 2.52 0.18 5.19 % 45.10 48.20 42.50 50.30

08LQ 47.41 3.35 0.19 7.05 % 46.00 49.50 44.70 50.30

08QZ 47.41 3.44 0.28 7.83 % 45.60 49.20 45.40 50.30

qBW-chr02-3 08AY 21.11 2.82 0.15 6.15 % CRI-SNP511-CRI-SNP512 CRI-SNP506-CRI-SNP519 20.70 23.00 20.70 25.10

08LQ 21.11 2.52 0.15 5.62 % 19.70 23.00 18.40 25.10

08QZ 21.11 2.85 0.16 6.41 % 20.70 22.50 19.40 24.30

10AY 21.11 2.57 0.15 5.67 % 19.30 23.80 18.40 27.30

qBW-chr03-1 08AY 34.01 4.50 0.16 9.00 % CRI-SNP-1241-CRI-SNP-1235 CRI-SNP-1241-CRI-SNP-1231 32.60 34.80 31.40 34.80

08LQ 34.01 3.85 0.16 8.29 % 33.40 35.80 33.20 38.10

10AY 34.01 2.28 0.11 4.56 % 31.40 36.80 31.40 45.30

qBW-chr05-10 09AKS 195.81 3.52 −0.16 7.45 % CRI-SNP-2294-CRI-SNP-2279 CRI-SNP-2294-CRI-SNP-2279 195.00 197.50 195.00 197.90

07AY 199.21 3.50 −0.11 7.43 % 199.00 200.50 197.60 200.50

13AY 199.21 2.85 −0.16 5.64 % 199.10 200.30 197.60 200.50

qBW-chr07-1 09AKS 31.51 3.97 0.17 8.89 % CRI-SNP-5633-CRI-SNP5596 CRI-SNP-5634-CRI-SNP5581 30.40 32.10 30.40 32.20

08AY 32.01 2.85 0.20 6.32 % 31.40 32.80 30.00 33.50

08QZ 32.01 2.41 0.20 4.95 % 31.40 32.50 31.40 32.50

09AY 32.01 3.80 0.19 8.07 % 31.40 32.30 29.60 33.00

qBW-chr07-4 13AY 50.61 3.66 −0.24 7.64 % CRI-SNP5490-CRI-SNP5481 CRI-SNP-5497-CRI-SNP5472 50.10 51.10 49.80 51.10

09QZ 51.11 3.34 −0.23 6.92 % 50.10 52.30 49.30 53.20

10AY 51.11 4.08 −0.23 8.45 % 50.30 51.50 50.10 51.60

qBW-chr07-6 10AY 58.61 4.38 −0.22 9.03 % CRI-SNP5452-CRI-SNP-5441 CRI-SNP5454-CRI-SNP-5438 57.80 59.30 56.80 60.10

10ZZ 58.61 5.21 −0.28 10.89 % 57.80 59.20 57.80 59.70

09QZ 59.11 2.55 −0.19 5.35 % 57.80 60.20 57.80 60.70

13AY 60.21 2.58 −0.19 5.45 % 59.90 60.50 59.90 60.80

qBW-chr09-6 07AY 114.11 4.77 −0.14 10.31 % CRI-SNP6432-CRI-SNP6455 CRI-SNP6432-CRI-SNP6455 113.70 115.40 112.80 115.40

09QZ 114.11 2.44 −0.13 5.01 % 113.00 116.70 112.80 116.70

09AKS 114.11 2.75 −0.16 5.80 % 112.70 114.60 112.00 114.60

09AY 114.61 3.27 −0.14 6.54 % 112.90 115.40 112.80 115.40
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Table 4 The detail information about the stable QTLs (Continued)

qBW-chr13-4 08LQ 58.71 2.43 −0.12 4.58 % CRI-SNP8317-CRI-SNP-8338 CRI-SNP8313-CRI-SNP-8346 57.40 60.00 56.10 60.00

13AY 60.01 2.55 −0.17 5.24 % 58.60 63.10 58.20 66.30

09AY 62.81 2.33 −0.11 5.05 % 58.10 66.30 57.90 70.10

07AY 64.51 2.99 −0.12 6.06 % 63.70 66.80 63.70 68.30

08AY 64.51 2.76 −0.13 5.17 % 63.70 67.80 63.70 68.90

10AY 64.51 2.46 −0.12 4.87 % 62.10 66.80 58.70 68.90

qBW-chr13-7 09AKS 114.61 2.95 0.34 6.13 % CRI-SNP8690-CRI-SNP8726 CRI-SNP8685-CRI-SNP8731 113.90 115.90 113.20 116.50

08LQ 114.91 8.37 0.52 16.70 % 114.60 115.30 114.50 115.50

08QZ 115.11 7.21 0.50 14.76 % 114.70 116.20 114.50 115.80

10AY 115.11 4.14 0.38 8.36 % 114.90 115.40 114.60 115.50

08AY 115.41 6.97 0.49 13.72 % 114.90 115.90 114.90 115.70

09QZ 115.41 2.99 0.34 6.45 % 114.60 116.30 114.30 117.30

07AY 115.61 4.03 0.33 8.21 % 115.40 117.10 115.40 116.50

qBW-chr16-4 09AY 80.21 2.97 −0.14 6.46 % CRI-SNP12560-CRI-SNP12271 CRI-SNP12560-CRI-SNP12270 79.40 81.00 79.40 81.20

10AY 80.21 4.12 −0.22 8.48 % 79.80 84.30 79.40 83.30

07AY 83.01 3.25 −0.13 6.85 % 82.00 86.00 82.00 87.00

qBW-chr22-3 09AY 52.61 2.10 −0.10 4.52 % CRI-SNP10333-CRI-SNP10341 CRI-SNP10330-CRI-SNP10341 51.00 54.20 49.20 56.80

10GY 55.81 1.97 −0.10 4.15 % 51.00 59.90 55.80 55.80

10AY 55.81 2.25 −0.11 5.03 % 54.20 58.30 54.20 58.90

qBW-chr23-5 08AY 101.81 2.14 0.12 4.26 % CRI-SNP13840-CRI-SNP13862 CRI-SNP13838-CRI-SNP13865 98.00 106.50 96.80 107.30

10ZZ 102.61 2.46 0.16 5.26 % 99.00 105.00 96.90 105.80

08QZ 103.61 2.40 0.13 5.17 % 100.90 104.70 97.00 105.80

qBW-chr25-5 08AY 22.41 4.39 0.19 9.36 % CRI-SNP10565-CRI-SNP10569 CRI-SNP10564-CRI-SNP10569 20.40 23.50 20.40 24.40

10ZZ 22.41 5.17 0.25 10.76 % 20.40 24.20 20.40 26.30

08LQ 22.51 2.20 0.13 4.29 % 20.40 26.40 20.40 27.10

09AY 23.51 4.08 0.18 9.26 % 20.40 24.40 20.30 24.40

09QZ 25.41 2.52 0.17 6.11 % 23.80 29.20 23.50 29.20

qBW-chr25-6 10ZZ 28.11 3.06 0.20 7.08 % CRI-SNP10569-CRI-SNP10568 CRI-SNP10569-CRI-SNP10571 27.10 32.80 27.10 32.80

09AY 30.81 5.68 0.21 11.85 % 27.70 32.50 24.40 32.90

09QZ 30.81 2.17 0.15 4.82 % 29.20 32.50 29.20 32.90
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Table 4 The detail information about the stable QTLs (Continued)

qBW-chr25-7 10GY 45.91 3.51 −0.22 7.79 % CRI-SNP10592-CRI-SNP10614 CRI-SNP10592-CRI-SNP10615 44.90 47.60 44.40 47.00

10AY 45.91 3.83 −0.15 7.70 % 44.70 48.00 44.40 48.00

09AY 49.61 3.83 −0.15 7.80 % 48.30 53.00 48.00 53.50

10ZZ 52.71 3.63 −0.18 7.58 % 52.50 53.20 52.50 53.20
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the thus-built map might have a better coverage of the
genome and be more reliable for the next step research
activities.

Genetic map construction
In previous studies, most of the genetic maps of cotton
were based SSR markers. The low polymorphic rate of
the SSR markers makes the SSR marker based maps
unable to harbor a sufficient number of markers with a
comparative poor coverage of the genome and low
resolution. In most cases, these maps have large gaps,
and sometimes the gap divides the chromosome into
two or more linkage groups [16, 36, 37]. When the pop-
ulations developed from interspecific crosses between
G. hirsutum and G. barbadense were applied to the
genetic map construction, the coverage and resolution
of the map could be greatly improved [38–40]. How-
ever, the pragmatic applications of the genetic map
developed from the interspecific populations have lim-
ited values as the polymorphic loci between G. hirsu-
tum and G. barbadense may not show polymorphism
within the cultivars of G. hirsutum. SNP markers could
improve the coverage and resolution of the genetic map
efficiently. Wang et al. [4] used SNP markers to con-
struct a map through the RAD-seq, which harbored
3984 markers with a total distance of 3499.69 cM and
an average distance of 0.88 cM. In our research, we
constructed an HDGM through the SNP markers de-
veloped through the SLAF-seq method. Even though
the map harbored a great number of markers and was
more saturated than most of the previous ones, the
total distance it covered was approximately the same as

the previous studies. Some of the chromosomes only
spanned very short genetic distances on the map. The
shortest three chromosomes (chromosomes 15, 8 and
20) only spanned 41.39 cM, 45.12 cM and 48.44 cM,
harboring 29, 56 and 60 markers respectively. Previous
studies showed that different populations might gener-
ate varied chromosome genetic distances of the Gossy-
pium hirsutum genome. In the initial steps of marker
development through SLAF-seq, the quantities of SLAFs
developed were about the same sizes in the different chro-
mosomes. After several steps of screenings, the remaining
numbers of SNPs for map construction varied greatly
among the chromosomes, and the reduced number of
remaining SNPs contributed to the shortness of some
chromosomes. The collinearity comparison between the
genetic map and the physical one validates the reliability
of the constructed map. However, a better understanding
of the genetic structure of these chromosomes might need
an integrative analysis.

The QTL of boll weight traits identification
Previous QTL studies were primarily focused on the
fiber quality traits [1, 2, 40], while the research activities
on yield traits especially the boll weight were seldom
reported. The boll weight trait was significant and made
a considerable contribution to the yield of cotton. Qin et
al. [41] used the four-way cross (4WC) population to
construct a map and identified only one QTL of boll
weight on chromosome D2. The confidence interval of
this QTL harbored three markers and spanned a distance
of about 14.5 cM. Liu et al. [42] used RIL population to
construct a map and identified the QTL of boll weight

Table 5 The markers and the candidate genes in the confidence intervals of the stable QTLs

QTL name Marker interval (P < 0.01) Gene interval Physical distance interval Number of markers Number of genes

qBW-chr01-1 CRI-SNP161-CRI-SNP168 CRI-SNP161-CRI-SNP166 21363529–22191102 5 8

qBW-chr02-3 CRI-SNP511-CRI-SNP512 CRI-SNP511-CRI-SNP512 2428231–2465227 2 None

qBW-chr03-1 CRI-SNP-1241-CRI-SNP-1235 CRI-SNP-1241-CRI-SNP-1235 93109282–93363954 6 3

qBW-chr05-10 CRI-SNP-2294-CRI-SNP-2279 CRI-SNP-2294-CRI-SNP-2281 11840100–12807341 11 51

qBW-chr07-1 CRI-SNP-5633-CRI-SNP5596 CRI-SNP-5633-CRI-SNP5596 41686619–43069600 18 15

qBW-chr07-4 CRI-SNP5490-CRI-SNP5481 CRI-SNP5490-CRI-SNP5481 26629060–26694814 10 1

qBW-chr07-6 CRI-SNP5452-CRI-SNP-5441 CRI-SNP5452-CRI-SNP-5441 26153119–26450470 7 11

qBW-chr09-6 CRI-SNP6432-CRI-SNP6455 CRI-SNP6432-CRI-SNP6455 55762226–57316457 15 28

qBW-chr13-4 CRI-SNP8317-CRI-SNP-8338 CRI-SNP8317-CRI-SNP-8338 5157441–5989840 13 34

qBW-chr13-7 CRI-SNP8690-CRI-SNP8726 CRI-SNP8690-CRI-SNP8726 41941944–43033838 26 10

qBW-chr16-4 CRI-SNP12271-CRI-SNP12560 CRI-SNP12483-CRI-SNP12560 15223879–15984482 19 37

qBW-chr22-3 CRI-SNP10333-CRI-SNP10341 CRI-SNP10333-CRI-SNP10341 47103662–47711028 8 39

qBW-chr23-5 CRI-SNP13840-CRI-SNP13862 CRI-SNP13840-CRI-SNP13862 43266988–43944781 7 65

qBW-chr25-5 CRI-SNP10565-CRI-SNP10569 CRI-SNP10565-CRI-SNP10569 1826714–2154361 5 32

qBW-chr25-6 CRI-SNP10569-CRI-SNP10568 CRI-SNP10569-CRI-SNP10568 2129899–2154631 2 1

qBW-chr25-7 CRI-SNP10592-CRI-SNP10614 CRI-SNP10592-CRI-SNP10614 2861896–3087983 10 10
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using the mean value of the data from four environments.
Eighteen QTLs for boll weight were detected on 15
chromosomes. The confidence intervals of these QTLs
harbored two or three markers. Yu et al. [43] used an
interspecific backcross inbred line (BIL) population

developed with a G. hirsutum and a G. barbadense to con-
struct a genetic map and identified 10 QTLs on eight
chromosomes (chromosomes 5, 11, 18, 21, 22, 24, 25, and
26). The confidence intervals of these QTLs also harbored
two or three markers and spanned distances from 2 to
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30 cM. In our study, we identified the QTL of the boll
weight in 25 chromosomes except chromosome 8. Among
them 16 QTLs were detected in at least three environ-
ments and were present on 11 chromosomes (chromo-
somes 1, 2, 3, 5, 7, 9, 13, 16, 22, 23, and 25 respectively).
The confidence intervals of these QTLs harbored from
two to 26 markers ranging from 0.7 to 13.9 cM. This im-
plies that our results of QTL identification are more con-
cise and accurate than previous studies and could be
useful for future research looking at gene identification or
cloning from these QTLs, or even breeding practices
using MAS.

The direction of the QTLs
Among the 16 stable QTLs that can be detected in at least
three environments, eight had positive additive effects
whereas the other eight had negative additive effects. This
indicates that both the higher boll weight value parent
sGK9708 and lower boll weight value parent 0–153 could
contribute positive additive QTLs to increase the boll
weight. This could be a possible factor behind the differ-
ence in the boll weight trait between the parents 0–153
and sGK9708. Theoretically, the greater the difference of
one trait between the two parents, the higher the possibil-
ity that the positive additive effect of the QTLs would
come from one parent. The RIL population was con-
structed primarily based on differences in fiber quality
traits especially fiber strength between the parents 0–153
and sGK9708, therefore, the difference of fiber strength
is larger than that of any other traits between 0–153
and sGK9708. In Sun’s report [16], seven QTLs of fiber
strength were identified using this population, among
which only one QTL had negative additive effects whereas

the remaining six QTLs had positive additive effects. In
Zhang’s report [17], seven QTLs of fiber strength on
chromosome 25 were identified using the same popula-
tion, all of which had a positive additive effect. In iden-
tifying the QTL clusters, the clusters that harbor all
desired QTL alleles would make the greater contribu-
tion to the breeding practice when MAS is applied.

Candidate gene functioning analysis
Among all 340 candidate genes being annotated in at
least one channel of KOG, KEGG, and GO, some might
be related to the boll weight trait. In KOG analysis, there
were 21 function baskets. The posttranslational modifi-
cation function, protein turnover, chaperones and signal
transduction mechanisms harbored the largest number
of candidate genes. Among the 44 genes located clos-
est to the markers of genetic position, three genes
Gh_A07G1188, Gh_A07G1197and Gh_D09G1606 had
a relation to signal transduction mechanisms. Two
genes, Gh_A05G1210 and Gh_D04G1531 were related
the function posttranslational modification, protein turn-
over, and chaperones. Two genes, Gh_A07G1187 and
Gh_A13G0858, had the translation function, ribosomal
structure, and biogenesis, though this function basket did
not harbor a large number of candidate genes. As the
posttranslational modification, protein turnover and ribo-
somal structure were relative to the protein synthesis, it is
probable that the genes correlated to this function con-
tribute to the boll weight trait.
In KEEG analysis, the first three pathways which har-

bored the largest number of genes were plant hormone
signal transduction, and protein processing in endoplas-
mic reticulum and ribosome, harboring six genes, four
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genes and four genes respectively. Of these 14 genes, three
were located at the nearest positions of the markers, gen-
etic position of which had the highest LOD values in
the QTL mapping analysis. The gene Gh_A13G0858
has a relationship to the ribosome, whereas genes
Gh_A13G0392 and Gh_D06G0187 have a relationship
to the plant hormone signal transduction. As the ribo-
some has a relationship to protein synthesis and some
plant hormones such as auxin and gibberellin, these
genes could contribute to the plant growth and eventu-
ally to the boll weight trait, particularly the gene
Gh_A13G0858.
Although these genes were located the nearest position

of the markers, genetic position of which had the highest
LOD values in the QTL mapping analysis, but there still
lacks direct evidence to prove that the function of these
genes was correlated to the boll weight trait.

Conclusions
This research reported the first HDGM of Upland Cotton
(Gossypium hirsutum) with a RIL population using SNP
markers developed by SLAF-seq. The HDGM had a
total number of 5521 markers and a total distance of
3259.37 cM with an average marker interval of 0.78 cM.
There were no gaps greater than 10 cM.We also identified
QTLs of boll weight trait across 11 environments and
identified candidate genes. Totally, 146 QTLs of boll
weight was identified and 16 of them were detected in at
least three environments with a stable QTL. Three hun-
dred forty-four candidate genes were identified in the
confidence intervals of stable QTLs and 44 of them were
located in the nearest positions of the markers. The result
of this research would provide information for the next
phase of research such as fine mapping, gene functional
analysis, pyramiding breeding and marker-assisted selec-
tion (MAS) as well.
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