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Maize network analysis revealed gene
modules involved in development,
nutrients utilization, metabolism, and stress
response
Shisong Ma1* , Zehong Ding2 and Pinghua Li3*

Abstract

Background: The advent of big data in biology offers opportunities while poses challenges to derive biological
insights. For maize, a large amount of publicly available transcriptome datasets have been generated but a
comprehensive analysis is lacking.

Results: We constructed a maize gene co-expression network based on the graphical Gaussian model, using
massive RNA-seq data. The network, containing 20,269 genes, assembles into 964 gene modules that function in a
variety of plant processes, such as cell organization, the development of inflorescences, ligules and kernels, the
uptake and utilization of nutrients (e.g. nitrogen and phosphate), the metabolism of benzoxazionids, oxylipins,
flavonoids, and wax, and the response to stresses. Among them, the inflorescences development module is
enriched with domestication genes (like ra1, ba1, gt1, tb1, tga1) that control plant architecture and kernel structure,
while multiple other modules relate to diverse agronomic traits. Contained within these modules are transcription
factors acting as known or potential expression regulators for the genes within the same modules, suggesting
them as candidate regulators for related biological processes. A comparison with an established Arabidopsis
network revealed conserved gene association patterns for specific modules involved in cell organization, nutrients
uptake & utilization, and metabolism. The analysis also identified significant divergences between the two species
for modules that orchestrate developmental pathways.

Conclusions: This network sheds light on how gene modules are organized between different species in the
context of evolutionary divergence and highlights modules whose structure and gene content can provide
important resources for maize gene functional studies with application potential.

Keywords: Comparative genomics, Gene network analysis, Maize development, Maize metabolism pathways, Plant
nutrient uptake and utilization

Background
Advances over the past two decades have generated nu-
merous transcriptome datasets. Increasingly, ever more
complete transcriptome data can be merged and inte-
grated with gene and genome structures. They provide
unbiased snapshots of gene expression dynamics within

organisms under various conditions. While cell-, organ-,
or condition-specific expression profiles abound, it re-
mains a key challenge to deduce the underlying gene
regulatory circuits that control and give rise to the ob-
served gene expression dynamics. To address this, gene
network analysis has emerged as a tool that can filter
and refine the analysis of large gene expression datasets.
Such gene networks consist of genes (nodes) and con-
nections (edges) between genes that represent co-
expression dynamics or association patterns underlying
the expression data. According to a ‘guilt-by-association’
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paradigm, connected genes may have similar functions,
be part of the same complex or pathway, or participate
in the same signaling circuits [1]. Gene networks can as-
sign putative functions to unknown genes based on
functions revealed by their associates, or to identify
novel genes for existing pathways [2, 3].
Different from random networks, gene networks gen-

erally identify gene modules categorizing and tracing
groups of highly inter-connected genes that share similar
expression patterns and, often, are recognizable by their
relationship to a function in a particular biological
process. Each module can be viewed as a unit in control
of one or several biological functions. As such, modules
identify and bring together segments of a biological sys-
tem. Gene network analysis has been used to detect gene
modules associated with, for example, human diseases
or plant seed germination, and to study the transcrip-
tome landscapes and gene module organization in
yeasts, plants, and animals [4–10].
Gene networks derived from microarray data have

been described for plant species such as Arabidopsis,
maize, and rice [6, 8, 11–13]. These networks have been
constructed via a variety of approaches that employed
different ways to measure interactions between genes.
Most common are co-expression networks that utilize
the Pearson correlation coefficient (PCC) to measure ex-
pression similarity between genes, where gene pairs with
PPC larger than a chosen threshold value are considered
to interact with each other. Examples included two
Arabidopsis networks: one identified clusters of genes
involved in processes such as photosynthesis, vitamin
metabolism, or cell cycle-regulation, while a second net-
work revealed groupings with cellular organelles and
tissue-specific functions [8, 11]. Rice and maize networks
were also assembled via the Weighted Gene Coexpression
Network Analysis (WGCNA) method, which utilizes a
power function of PCC to assess expression similarity
[6, 12–14]. Specifically, Downs et al. used WGCNA
to construct a maize developmental gene co-expression
network that captured modules with tissue and develop-
mental stages specificity, while Ficklin and Feltus com-
pared WGCNA networks from maize and rice to identify
conserved modules [6, 13].
Yet another way to approach co-expression network

analysis uses the graphical Gaussian model (GGM),
which utilizes partial correlation (Pcor) to identify asso-
ciation relationships between genes [15–17]. Signifi-
cantly, Pcor determines the correlation that remains
between two genes after removing the effects of all other
genes. Pcor measures direct association between genes,
while PCC often fails to differentiate between direct and
indirect associations [15, 16]. Thus, Pcor is deemed as a
better metric than PCC for gene network analysis [16, 18].
However, the utilization of GGM has been impeded by a

requirement that the number of samples must be far lar-
ger than the number of genes. The original design was
able to calculate Pcor data among a few thousand genes
only [16]. Previously, we developed a random sampling-
based method to overcome this obstacle and constructed
the first genome-wide GGM network for Arabidopsis,
followed by an updated network model termed
AtGGM2014 [7, 17]. Compared to other networks,
AtGGM2014 contained more genes and identified add-
itional modules participating in a large variety of plant
processes, like development, metabolism, response to
stresses, and response to hormones [7]. For example,
among many informative gene modules, it included hor-
monal signaling modules for phytohormones like auxin,
abscisic acid, jasmonic acid, gibberellins, cytokinins, ethyl-
ene, and salicylic acid, demonstrating the network’s poten-
tial to facilitate systems biology studies on Arabidopsis
gene functions.
More recently, a large collection of RNA-Seq based

maize gene expression datasets have been generated by
different groups and deposited in the public domain.
Among these datasets are a gene expression atlas for 79
maize tissues [19, 20], as well as expression datasets for
specific organs like inflorescences [21], leaves [22], lig-
ules [23], embryos and endosperms [24], and transcrip-
tome datasets for different compartments in the
endosperm [25, 26]. Others resulted from monitoring
maize responses to abiotic stresses [27, 28], fungal infec-
tions [29], and different nutrition regimes [30]. These
datasets provide extremely valuable information for
maize functional genomics research. A maize RNA-Seq-
based gene network focused exclusively on development
has been constructed from expression data of 23 differ-
ent tissues, which identified 19 gene modules via the
WGCNA method [31]. However, to our knowledge,
missing so far is a comprehensive gene network analysis
that combines the wealth of many different maize data-
sets and merges them into an inclusive network to out-
line future research opportunities.
Here, we constructed a maize GGM gene co-

expression network using expression data from 787
RNA-Seq runs deposited in the NCBI SRA database. 964
gene modules were identified from this network,
highlighting functions in various cell organization, devel-
opment, nutrients, metabolism, and stress responses
pathways. As examples, we describe in detail modules
involved in the development of inflorescences, ligules,
and kernels, the uptake and utilization of nitrogen and
phosphate, the metabolism of benzoxazionids, oxylipins,
flavonoids and wax, and the response to heat stress,
endoplasmic reticulum (ER) stress, and fungal infections.
These modules provide a general picture for the relevant
biological processes and identified both known genes as
well as potential, so far unconnected, candidate genes
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for future functional studies. Importantly, many of these
modules contain transcription factor genes that act as
potential gene expression regulator for the genes within
the same modules. In addition, the maize network has
been compared to a previous published Arabidopsis net-
work [7]. This juxtaposition revealed conserved as well
as diverging modules in the two species. The identified
gene modules were further used to analyze a dataset on
a maize leaf developmental series [22], demonstrating
the usefulness of this network for systems biology
analysis.

Results
Overview of the maize GGM gene network
A maize gene co-expression network based on GGM
was constructed using maize RNA-Seq transcriptome
datasets deposited in the NCBI Sequence Read Archive
(SRA) database. The publicly available raw data files
(.sra) were downloaded, mapped against the maize refer-
ence genome (AGP_v3.22), and processed into gene ex-
pression values. After removing files with mapping rates
<70%, 787 RNA-Seq runs from 36 different studies
(Additional file 1: Table S1) were retained and their
Fragments Per Kilobase of transcript per Million
mapped reads (FPKM)-normalized gene expression
values were combined into a large gene expression
matrix. These datasets monitor maize transcriptomes
from various tissues and developmental stages, after a
variety of biotic and abiotic stress treatments, or from
well-characterized mutants. The genes with maximum
FPKM values <20 were filtered out, resulting in a gene
expression matrix that included 29,316 maize genes
(rows) and 787 RNA-Seq runs (columns). Similar to
other RNA-Seq data, these maize RNA-Seq data showed
a mean-variance dependency [32], i.e. genes with higher

mean expression values were more likely to have larger
variances. The gene expression matrix was transformed
via log-transformation to reduce such mean-variance de-
pendency (Additional file 2: Fig. S1), making the dataset
more suitable for correlation analysis [32]. Log-
transformation has been used before for gene co-
expression and gene clustering analysis with RNA-Seq
data [33–40]. The log-transformed gene expression
matrix was then used for the calculation of partial cor-
relation coefficients (Pcor), following a procedure de-
scribed before [17]. Figure 1a shows the distribution of
the Pcors between all genes pairs, 98.4% of which are in
the range between −0.01 and 0.01. The gene pairs with
|Pcor| > = 0.035 (pValue = 2.22E-16) were kept for net-
work construction. Additionally, Pearson Correlation
Coefficients (PCC) was also calculated for all gene pairs
and those with |PCC| < 0.35 were removed, reasoning
that a low PCC very likely indicates independence be-
tween genes. As a result, 123,093 genes pairs with Pcor
> = 0.035 and PCC > = 0.35 and 573 gene pairs with
Pcor <= −0.035 and PCC < = −0.35 were selected for
gene network construction (Additional file 3: Table S2).
This reasoning resulted in a maize GGM network in-

cluding 20,269 genes and 123,666 co-expressed gene
pairs (0.06% of all possible gene pairs). The clustering
coefficient (C) of the network is 0.209, while the ex-
pected C of a random network of the same size is only
0.0006 [41]. Since C measures a network’s potential
modularity [42], the large C of the maize GGM network
indicates high characteristics of modularity. Indeed, a
network clustering procedure using the MCL program
[43] identified 964 gene modules that contain 5 or
more genes each, and these 964 modules encompass
16,668 genes in total. These modules can be viewed
as co-expression modules, whose genes share similar

a b

Fig. 1 An overview of the maize GGM network. a A histogram showing the distribution of the partial correlation coefficients of all the gene pairs.
Most genes pairs have their Pcors in the range between −0.01 and 0.01, indicating no interactions. b A sub-network for the largest 25 modules
identified from the network. Each dot represents a gene, and a connection between two genes indicates interaction between the two. The color
of a node indicates its module identity, as shown in the legend
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co-expression patterns and, according to the ‘guilt-by-
association’ paradigm, might have similar functions or
participate in the same pathways. The rest 3601 genes
were assigned to small modules with 4 or less genes,
which were not considered in further analysis. Within our
network, the largest 222 modules containing between 15
and 306 genes (Fig. 1b, Additional file 4: Table S3). Based
on Gene Ontology (GO) enrichment analysis, many of
these modules fall into 5 distinct categories, with func-
tions in: i. Cell organization; ii. Development; iii, Nutrient
uptake & utilization; iv. Metabolism, including primary &
secondary metabolism; and v. Stress responses (Table 1 &
Additional file 1: Table S4). Modules for cell organization
and primary metabolism include those for cell cycle regu-
lation (Module #60), DNA replication (#64), cytoskeleton
organization (#69), nucleosome assembly (#49), photosyn-
thesis (#20 and 129), and mitochondria-related functions
(#14 and 86) (Table 1). Several of these modules are highly
conserved when compared to similar modules reported in
a published Arabidopsis network, AtGGM2014 [7].
Shown in Fig. 2a is Module #129 for photosynthesis,

and Fig. 2b is a subnetwork for Arabidopsis homologues
of the genes in this module extracted from the
Arabidopsis network AtGGM2014. The similarity of the
structure and gene content in both species is significant.
To enable direct comparison between the two networks,
we consider a maize gene to have conserved interactions
between the two networks if the maize gene and its
Arabidopsis homologue share at least one homologous
neighboring gene across the networks (Fig. 2c). Accord-
ing to this criteria, 9.7% of the genes in the whole maize
network have conserved interactions. In contrast, 65% of
the genes in Module #129 show conserved interactions
in Arabidopsis, much higher than the network-wide
level, indicating high conservation for the genes within
this module. Within the modules for cell organization
and mitochondria-related functions, 19% to 80% of the
genes also revealed conserved interactions. We will de-
scribe modules in other GO categories with varied de-
grees of conservation between the two species.

Gene modules revealing developmental features
Maize plant architecture is a major yield-determining trait.
Our gene network identified three particularly relevant
modules. Module #16 is enriched with genes involved in
the development of ears and tassels, and contributes to
shaping the maize inflorescences architecture (Fig. 3a,
Table 1, and see Additional file 4: Table S3 for the
complete list of genes within this module and the modules
discussed below). According to published gene expression
datasets on maize development [19–21, 23–26], the 139
genes within this modules are mainly expressed in ears,
tassels, and immature cobs (Additional file 5: Fig. S2), and
56 of them encode transcription factors (TF). Included

within the module are ra1 (ramosa1) and ba1 (barren
stalk1), two TF genes with opposite roles in tassels devel-
opment [44, 45]. Maize recessive mutants of ra1 and ba1
have increased and zero number of tassel branches re-
spectively. A number of genes for the development of ears
and tassels were included as well: ra3 (ramosa3), sk1
(silkless ears1), spi1 (sparse inflorescence1), tb1 (teosinte
branched1), gt1 (grassy tillers1), and bd1 (branched
silkless1), [46–51]. Also contained is tga1 (teosinte glume
architecture1), a gene conferring the naked kernel pheno-
type in maize [52]. Uncharacterized genes within the mod-
ule include GRMZM2G022606 and GRMZM2G026556,
two genes homologous to BOP2 in Arabidopsis. In
Arabidopsis, BOP1, BOP2, and PUCHI (a bd1 homologue)
redundantly promote floral meristem fate [53], raising the
possibility that the two maize genes might have a similar
function. Also uncharacterized are ereb161 and nactf114,
homologous to Arabidopsis genes ANT and CUC3 that
regulate ovule and embryonic apical meristem formation,
respectively [54, 55]. In addition, the module contains
other potential development related genes as well, in-
cluding 8 YABBY, 4 AP2/EREBP, 3 SHI RELATED
SEQUENCE (SRS), and 3 SQUAMOSA PROMOTER
BINDING PROTEIN (SBP) type TF genes. The genes in
Module#16 could possibly form an elaborate yet balanced
network orchestrating maize inflorescences development.
And at least five of them, ra1, ba1, gt1, tb1, and tga1,
have been subjected to selection during maize domes-
tication and were designated as domestication genes
[44, 45, 47, 51, 52, 56]. Interestingly, when compared
to the Arabidopsis network, only 18 of the 139 genes
within the maize module show conserved interac-
tion(s), among them 7 YABBY TFs. Thus, only 8.4%
of the genes revealed conserved interaction(s) when
the YABBY genes are not considered. This indicates
extensive pathways re-shuffling between the two spe-
cies for inflorescences development.
Ligules are fringe-like tissues located at the junction of

the leaf blade and leaf sheath. In maize ligules control
leaf angles and affect vegetative architecture [57, 58].
Two modules involved in ligules development were
identified. Module #48 (Fig. 3b, Table 1 & Additional
file 4: Table S3) is specifically expressed in the pre-ligule
region of the leaf primordia (Additional file 5: Fig. S2). A
key gene within the module is lg1 (liguleless1), encoding
a SBP TF that acts as a mater regulator of ligule devel-
opment [58]. The recessive lg1 mutations in maize
erases ligules and renders leaves more upright compared
to wild type leaves [57]. Interestingly, the genes within
this module have their promoters enriched with a SBP
TF binding motif “CGTAC” (pValue = 1.04E-6) [59], in-
dicating they might be targets of Lg1. Two other SPB
genes, sbp3 and sbp28, are also included within the mod-
ule, although their functions remain uncharacterized.
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Other potential development regulators included myb44,
a homologue of Arabidopsis LOF1 that functions in organ
boundary specification [60], GRMZM2G480687, encoding
a MEMBRANE-ASSOCIATED KINASE REGULATOR
(MARK) proteins, and GRMZM2G145909, homologous
to an Arabidopsis atypical bHLH gene IBL1. MARKs and
atypical bHLH TFs in Arabidopsis participate in develop-
mental processes mediated through brassinosteroids (BR)
[61, 62], while BR-signaling also regulates ligules develop-
ment in maize [63].Module #210 contains 15 genes, eight
of which encode TFs in the KNOX family (Table 1 &
Additional file 4: Table S3). Among these TFs are gn1
(gnarley1), kn1 (knotted1), rs1 (rough sheath1), lg3 (ligule-
less3), and lg4 (liguleless4), none of which show any ex-
pression in the pre-ligule regions of the wild type plants
(Additional file 5: Fig. S2). However, ectopic expression of
any of these genes in their corresponding dominant mu-
tant background affects and distorts leaf and ligule devel-
opment [64–66]. It remains to be tested if the other 3
KNOX TFs within the module have similar functions and
if and how these TFs function together to regulate ligules
development.
Kernels development represents yet another critical

process determining maize grain yield and quality. Five
relevant gene modules are identified. Among them,

Module #46 (Fig. 3c, Table 1 & Additional file 4:
Table S3), including 73 genes, is specifically expressed
in the endosperm (Additional file 5: Fig. S2) and
enriched with genes indicating nutrient reservoir ac-
tivity (GO pValue = 6.32E-64). The module contains
16 genes encoding α-, δ-, or γ-zein proteins, the
major seed storage proteins in maize, and 4 genes for
starch biosynthesis (bt1, bt2, sh2, and wx1) [67, 68].
Notably, also included are a bZIP TF gene o2 (opaque
endosperm2) and a Dof TF gene pbf1 (prolamin-box
binding factor1), two master regulators of zein gene
expression [69, 70]. It is recognized that within the
maize network transcription factors and their target
genes are often contained within the same modules,
providing an edifying way to identify those modules’
expression regulator(s). Module #42 includes other TF
genes as well, such as ereb167, platz12, nrp1, nactf130, as
potential transcription regulators. Module #6 is expressed
in both embryo and endosperm tissues at late develop-
mental stages (Additional file 5: Fig. S2) and enriched with
genes functioning in seed maturation (pValue = 7.39E-6).
The module includes many lipid storage genes (e.g. oleo-
sin1), desiccation tolerance genes (e.g. genes encoding late
embryogenesis abundant proteins), and the TF gene vp1
(viviparous1), a master regulator of seed maturation and

a

c

b

Fig. 2 Network comparison between maize and Arabidopsis. a A maize module functioning in photosynthesis. Red color indicates the gene has
conserved interaction(s) in the Arabidopsis network. The maize genes’ Arabidopsis homologues are shown in parenthesis. b An Arabidopsis
sub-network for the homologues of the maize genes in (a). c A maize gene is considered to have conserved interaction(s) in Arabidopsis if its
homologues and at least one of its interactors’ homologue also interact within the Arabidopsis network
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dormancy (Additional file 4: Table S3) [71]. 36% of the
genes within this modules possess conserved interactions
when compared with the Arabidopsis network, including
the key seed development genes like vp1, ole1, ole3, and
mlg3. Additional modules were recovered with specific ex-
pression in different compartments of the maize endo-
sperm, such as the basal endosperm transfer layer (BETL)
(#11), the embryo-surrounding region (ESR) (#32), and
the placento-chalazal region (PC) (#53) (Additional file 6:
Fig. S3), similar to a previous report [26]. These examples
indicate that our network delineates different modules

corresponding to different functional domains of kernels
development and provides a general picture of the
process.
Other modules were identified that draw attention to

the development of other tissues and organs (Additional
file 1: Table S4, Additional file 7: Fig. S4), such as an-
thers (#3, 17 and 22), meiotic tassels (#18), roots (#30),
carpels (#92), Casparian strip (#76), and epidermal cells
(#155). Furthermore, identified were modules for pri-
mary (#543) and secondary cell wall biosynthesis (#13),
and for the signaling pathways of development related

a

b c

Fig. 3 Three modules for the development of inflorescences (a), ligules (b), and kernels (c). Genes discussed in the text were highlighted in red.
Due to the large sizes of the modules, only genes with 2 or more connections are shown
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hormones, such as auxin (#158) and cytokinins (#183)
(Additional file 1: Table S4). These modules are valuable
resources for future functional studies on distinct and
related developmental processes.

Modules for nutrients uptake and utilization
Nutrient use efficiency is a key objective for crop im-
provement. Modules can be pinpointed from the maize

network as functioning in nitrogen, phosphate, iron, and
sulfate uptake and utilization. In general, these modules
are conserved between maize and Arabidopsis. For ex-
ample, Module #72 (Fig. 4a, Table 1 & Additional file 4:
Table S3) shows enrichment for nitrate-responsive genes
that encode the key enzymes for reducing and incorpor-
ating nitrate into glutamine, including nitrate reductases
(GRMZM5G878558 and nnr1), nitrite reductase (nii2),

a

b

Fig. 4 Modules for nitrogen uptake and utilization (a) and phosphate starvation response (b). Genes discussed in the text were highlighted in red
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and glutamine synthetase (gln1, gln3, gln6) [72–74]. Also
contained are GRMZM2G161459 and GRMZM2G057616,
homologues of the Arabidopsis genes NRT1.1 (encoding a
nitrate transporter and sensor) and CLC-A (encoding a
vacuole nitrate transporter required for high nitrate up-
take capacity) [75, 76]. Compared with the Arabidopsis
network, 22 out of the 51 genes in this module showed
conserved interaction(s). Among them are two unknown
genes, GRMZM2G047474 and GRMZM2G133684, whose
homologues in Arabidopsis AT5G39590 (encoding a TLD
domain containing protein) and AT5G62720 (encoding
an integral membrane HPP family protein) are also
included in an Arabidopsis nitrate-responsive module
but they remain uncharacterized. Their appearance in
nitrate responsive modules in both species strongly
suggests functions in nitrate sensing, uptake and/or
utilization. Also conserved are two uncharacterized
LOB-type TF genes lbd6 and lbd11, homologous to
one Arabidopsis nitrate response regulator gene
LBD37 [77], indicating lbd6 and lbd11 arguably could
have similar functions in maize. Additionally, the
maize module includes genes encoding G2-like, HB,
and C2H2 type TFs, whose functions in nitrate re-
sponse have not yet been tested.
Module #36 includes genes involved in the phos-

phate starvation response (pValue = 9.62E-17) (Fig. 4b,
Table 1 & Additional file 4: Table S3). The maize
module includes homologues of Arabidopsis phosphate
starvation response genes, such as SPX2, SPX3, SQD1,
SQD2, MGD2, and PS2 [78], although their functions
have not been characterized in maize. A P1BS motif
“GNATATNC”, the binding site of the Arabidopsis
G2-like transcription factor PHR1, a master regulator
of phosphate starvation response gene expression [79],
is enriched in the promoters of the genes in this module
(pValue = 9.40E-24). Interestingly, the maize module

contains three G2-like TFs, glk4, glk5, glk7, which could
also act as master regulators.
Maize modules involved in the uptake and utilization

of iron (#43) and sulfate (#79) were also identified
(Additional file 1: Table S4). It should be noted that,
compared to Arabidopsis, fewer transcriptome datasets
are available for maize. As more data become available,
more maize modules for nutrient uptake and usage
should be revealed in future analysis.

Modules for metabolic processes
Gene modules were identified for various processes in
maize metabolism. In addition to those involved in pri-
mary metabolisms, numerous modules functioning in sec-
ondary metabolism emerge as well. Some of these
modules are unique to maize, while others share consider-
able similarities between Arabidopsis and maize. Among
them, genes in Module #80 (Fig. 5a, Table 1 & Additional
file 4: Table S3) provide functions in the production of
benzoxazinoids and oxylipins, which are secondary metab-
olites effective in anti-herbivore defense [80]. Benzoxazi-
noids are mainly found in Poaceae species, including
maize, wheat, and rye, but appear only infrequently in di-
cots and are absent in Arabidopsis [81]. Module #80 in-
cludes most known genes of the maize benzoxazinoids
biosynthesis pathway – bx1 (benzoxazinless1), bx2, bx3,
bx4, bx5, bx6, and bx8 that form a gene cluster in chromo-
some 4, and bx9 in chromosome 1 [81]. Interestingly,
none of these bx genes share any conserved interactions
with the Arabidopsis network, consistent with the absence
of benzoxazinoids biosynthesis pathway in Arabidopsis.
Additionally, the module is enriched with oxylipins bio-
synthesis genes (pValue = 2.22E-10), such as lox2, lox3,
lox5, lox6, and lox10. The inclusion of both benzoxazi-
noids and oxylipins biosynthesis genes implies this mod-
ule’s function in defense response.

a b

Fig. 5 Modules for the biosynthesis of benzoxazinoids and oxylipins (a) and flavonoids (b). Genes discussed in the text were highlighted in red
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Module #154 (Fig. 5b, Table 1 & Additional file 4:
Table S3) is enriched with flavonoids biosynthesis path-
way genes (pValue = 2.26E-08), including fht1, a1, a2,
bz1, bz2 [82]. The module also contains pl1 (purple
plant1) and r1 (colored1), two TF genes controlling
anthocyanin biosynthesis [82], and two potential regula-
tory TFs myb105 and wrky33. In Arabidopsis, TTG2, a
homolog of wrky33, regulates tannin level in the seed
coat [83], while the function of maize wrky33 remains to
be tested. The maize module also includes the gene
mrpa3, encoding a tonoplast-localized anthocyanin
transporter [84], and two uncharacterized transporter
genes mrpa6 and AC206266.3_FG001. In addition to
Module #154, involvement in flavonoids biosynthesis is
indicated for Module #65 as well.
Waxes, deposited on the aerial surface of plants as a

water-proof layer, are essential for plants in that they not
only significantly limit water loss, but also counteract
environmental stresses [85]. Module #40 (Additional
file 8: Fig. S5, Table 1 & Additional file 4: Table S3)
of the maize network is enriched with wax biosyn-
thesis genes (pValue = 2.25E-13), i.e. gl1, gl2, and gl3
[86]. Among the 84 genes within this module, 23
have conserved interactions when compared with the
corresponding Arabidopsis network. Conservation ex-
tends to uncharacterized genes that are homologous
to Arabidopsis wax biosynthesis genes like KCS1,
KCS6, KCS12, CER3, and LACS1 [86]. Another con-
served gene pair are fdl1 (fused leaves1) in maize and
MYB94 in Arabidopsis, homologous to each other,
both identified recently as TF regulators of wax bio-
synthesis [87, 88]. The maize module also contains
gl3 (glossy3), another MYB TF as a master regulator
of wax production [89]. Other potential TF regulators
within the module include 3 AP-EREBP type TFs,
ereb12, ereb60, and ereb143. Among them, ereb60
shows homology to Arabidopsis WRI1 that regulates
the accumulation of fatty acids – precursors for wax
biosynthesis [90]. Additionally, another related module
for fatty acid biosynthesis (#73) was also identified
from the network (Table 1).
In addition to benzoxazinoids, oxylipins, flavonoids,

wax, and fatty acids, modules were also identified for the
metabolism of suberin (#42), trehalose (#61), glucose
(#234), glucan (#278), and lignins (#712) (Additional file 1:
Table S4). Based on these modules, promising candidate
genes can be selected for future functional studies.

Modules for stress responses
Modules involved in abiotic stress responses were also
identified. For example, the genes in Module #10
(Additional file 8: Fig. S6, Table 1 & Additional file 4:
Table S3) show relationships to heat stress responses.
Enriched are heat shock stress response genes

(pValue = 8.75E-49). 74 of the 157 genes within this
module share conserved gene interaction(s) with an
Arabidopsis heat shock related gene module [7]. The
conserved genes include 6 heat shock transcription fac-
tor genes (hsft7/8/12/20/24) and a co-activator gene
MBF1C (GRMZM2G051135), highlighting their over-
arching importance in regulating heat activated gene ex-
pression regulation. The splicing regulator genes SR45a
(GRMZM2G073567) and SR30 (GRMZM2G331811) are
also included in the list of conserved genes, suggesting
alternative splicing could play important roles in the heat
shock response in both species. Similarly, Module #95
(Additional file 8: Fig. S7, Table 1 & Additional file 4:
Table S3) is enriched with ER stress response genes
(pValue = 6.89E-15). 23 out of the 35 genes within the
module shared conserved interactions with Arabidopsis,
including bip1, bip2, pdi1, and der1 [91]. Interestingly,
contained within the maize module is a putative master
regulatory TF gene bzip60 [92], whose homologue in
Arabidopsis, bZIP60, is a major regulator of the ER stress
response [93], indicating bzip60 might have similar func-
tion in maize.
Also identified from the network were modules related

to biotic stress responses. For example, Module #5
(Additional file 8: Fig. S8, Table 1 & Additional file 4:
Table S3) is enriched with genes functioning in defense
responses to fungal infections (pValue = 3.27E-09), such
as cta1, wip1, prp1, and tps6. It contains a NAC type TF
gene nactf7, a homologue of the Arabidopsis NAC042
gene. In Arabidopsis, NAC042 is a master TF that regu-
lates the biosynthesis of the anti-fungal compound
camalexin [94]. Although maize does not produce cama-
lexin, the inclusion of nactf7 in this anti-fungal module
indicates that it may modulate other secondary metabol-
ism processes to produce anti-fungal compounds. In-
deed, within the module are many metabolism-related
genes, including 9 genes encoding cytochrome P450 en-
zymes, whose roles in maize anti-fungal defenses remain
to be studied. Interestingly, the module also encom-
passes genes for gibberellin biosynthesis (ks1, ks4, ko2,
and cpps2), consistent with previous reports that infec-
tion by certain fungal pathogens upregulates gibberellin
related genes in maize [95].
Additional defense related modules were identified

from the network, for example Module #2 and #47
(Additional file 1: Table S4). These modules provide use-
ful targets for future functional studies.

Gene network comparison between maize and
Arabidopsis
The examples discussed above demonstrate that some
maize gene modules are conserved between maize and
Arabidopsis, while others display greater divergence.
The percentage of genes with conserved interaction(s)

Ma et al. BMC Plant Biology  (2017) 17:131 Page 10 of 17



ranged from 0% to 83% for different modules (Fig. 6,
Additional file 1: Table S5). Among them, the cell
organization related modules retain the highest degree
of conservation, in particular those for DNA replication
and nucleosome assembly. Many modules in the nutri-
ent uptake, stress-response, and metabolism categories
display conservation above the network-wide average
level, except for Module #80 with focus on benzoxazi-
noids and oxylipins biosynthesis. For the development
modules, conservation varies significantly. Those in-
volved in carpels, Casparian strip, epidermis, and cell
wall development are conserved, all of which constitute
the basic building blocks of the plant body. However,
much more divergence is seen for modules for kernel/
seed metabolism, anthers, inflorescences structure, or
root development. Such difference can be attributed to
the obvious biological differences between the two spe-
cies, which define development, growth habitus and
structure defining the two species. Nevertheless, both
differences and similarities of genes identified in our
high-stringency module structure can provide clues
about unidentified functions in either one of the two
species. The monocot/dicot comparison may further be
exploited for additional gains in knowledge.

Gene expression dynamics of gene modules in maize
leaves
The maize gene modules identified from our network
were used to re-analyze a previously published dataset
that had measured transcriptomes from 15 segments of
maize leaves, from the base to the tip, representing pro-
nounced developmental gradients [22]. Owing to the
pronounced differences in development and physio-
logical functions in maize leaf segments, distinct expres-
sion dynamics are revealed in these modules. The
average gene expression levels in each module for every
segment was computed (Fig. 7). As expected, Module
#60, involved in cell cycle regulation, is mainly expressed
in Segment 1 at the base of the leaves, where cell

division is most active. Other modules with peak expres-
sion at the base include those for DNA replication (#64),
cytoskeleton organization (#69), nucleosome assembly
(#49), ribosomal functions (#125, 140), plastid develop-
ment (#308), primary cell wall biosynthesis (#543), and
ER stress response (#95). These modules appear to be
involved in the early development and building of leaf
cells, and high expression of ER related genes might be
indicators of intense protein synthesis. Peak gene expres-
sion for four modules is observed in the mid part of the
leaves (Segments 2 to 5), including those for the biosyn-
thesis of secondary cell walls (#13), waxes (#40), suberin
(#42), and lignin (#331), likely representing maturation
of the leaf tissue. Module #129, containing mainly light
reaction-related photosynthesis genes, was highly
expressed and peaked around Segments 9 and 10, which
can be an indicator of overall light reaction intensity.
Several modules functioning in carbohydrate metabolism
or transport show peak expression at late stages
(Segments 12 to 14), including #61 for trehalose biosyn-
thesis, #278 for glucan metabolism, and #105 for
carbohydrate transport (containing genes such as
sweet13a/b/c). Thus, combining the modular arrange-
ments revealed by the gene network with detailed leaf
segment RNA-Seq datasets provided a coherent and de-
tailed picture of maize leaf development, maturation,
and biochemical activities. The results were consistent
with the previous report [22, 96], and similar analysis
can be applied to other maize datasets as well.

Discussion
We report on the construction of a maize GGM gene
co-expression network that includes 20,269 genes based
on large-scale RNA-Seq transcriptome data. The result-
ing gene network was then analyzed and clustered via
the MCL clustering algorithm [43]. Although the algo-
rithm partitioned the network purely based on its top-
ology, the analysis resulted in 964 distinct and
informative gene modules that included functions in a

Fig. 6 Network comparison between maize and Arabidopsis. For selected maize gene modules, the percentage of genes with conserved
interaction in Arabidopsis were shown. Modules are organization by 5 categories: I, cell organization; II, development; III, nutrient uptake &
utilization; IV, metabolism; V, stress response. The red line indicates the percentage of genes with conserved interaction(s) in the whole
maize network
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wide range of maize physiological processes. These mod-
ules are particularly useful in that they can assign puta-
tive functions to unknown/uncharacterized genes and
identify participating genes (including novel genes) for
specific developmental or physiological processes, as
demonstrated by the selected examples. Module struc-
ture and the nature of the genes assembled in a module
may then be used to analyze individual gene expression
datasets, for example the expression data on maize leaf
segments.
The modules identified in our network analysis cov-

ered many aspects of maize biology. Compared to a pre-
viously published maize transcriptional network that
contained 49 modules [6], our model defined 964 mod-
ules in total. Sizes of previously identified modules were
large. Considering that 87% of all genes in previous net-
work [6] were included in modules with more than 1000
genes it was difficult to pinpoint potential key regulatory
genes as candidates for future studies. In contrast, our
GGM network identified modules containing between 5
and 306 genes, which facilitated ranking of potentially
interesting genes, as demonstrated by the presentation
above for various modules. Also, we were particularly

encouraged by the numerous examples in which individ-
ual GGM modules identified control genes that had pre-
viously been revealed and verified experimentally by
mutants analysis, such as ra1/3 in Module #16, o2, pbf1
in Module #46, bx1/2/3/4/5/6/8 in Module #80, and pl1,
r1 in Module #154 [44, 50, 69, 70, 81, 82]. In an add-
itional contrast to Downs et al. (2013), where the focus
on developmental microarray data sets recovered mod-
ules with tissue-specific expression, our maize GGM
gene network is condition-independent, constructed
from transcriptome datasets related to development,
stresses, nutrition, as well as other treatments. This facil-
itated the distinction between modules involved in cell
organization, development, nutrients utilization, metab-
olism, and stress responses. These modules could poten-
tially play critical roles in determining important maize
agronomic traits. For example, the inflorescences devel-
opment related Module #16 includes 5 genes ra1, ba1,
gt1, tga1, and tb1 that have been shown by mutants ana-
lysis to regulate maize inflorescences architecture, and
these 5 genes are designated as domestication genes
since they were subjected to selections in the history of
maize domestication as they control desirable traits

Fig. 7 The average expression level for the genes within selected modules in the maize leaves transcription datasets. On top is a diagram of the
15 leaf segments. In the middle is a heatmap showing the relative expression level of each module in each segments compared to the highest
expression level for that module over all segments, as indicated by the number on the right. A legend indicating the relative expression level is
shown on the bottom
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[44, 45, 47, 51, 52, 56], while other genes within this
module might also control maize architecture and
performance. As well, modules for ligules and kernels
development, for nitrogen and phosphate uptake and
utilization, for primary and secondary metabolisms,
and for responses to fungal infections include a
wealth of information potentially useful for crop
improvement.
An important feature of our network is that transcrip-

tion factors and their target genes are often contained
within the same module, suggesting shared expression
characteristics. One example is the endosperm develop-
ment Module #46, which is enriched with zein storage
protein genes. The regulatory genes for zein biosyn-
thesis, TF o2 and pbf1, are contained within this mod-
ules as well. In yet another example, the master
regulator TF of seed maturation, vp1, is included within
the seed maturation Module #6. The ligule-related
Module #48 contains the master regulator gene lg1, en-
coding a SPL TF. The genes within this module are
enriched a SPL binding motif, indicating they are targets
of Lg1. Similarly, the heat-induced Module #10 contains
6 heat shock TF genes hsft7/8/12/20/24, the ER-stress
response Module #95 includes a putative maser regula-
tor bzip60, and the phosphate starvation response
Module #38 possesses three putative master regulator
glk4, glk5, glk7. Significantly, many identified modules
also included genes encoding unknown and uncharacter-
ized TFs that may represent novel gene expression regu-
lators. The modular structures, as revealed by our
network, provide an expedient and edifying way to iden-
tify putative TF regulators for various maize pathways.
The maize gene network also enables cross-species

comparison between maize and Arabidopsis. The com-
parison revealed an unexpected degree of insight into
different degrees of conservation in different pathways.
Not surprisingly, cell organization modules showed the
highest percentage of conserved genes, indicating the
evolutionary stability of such basic cellular pathways.
Among development related modules, those involved in
generating basic building blocks of the plant body are
shown to be conserved as well, i.e. carpels, Casparian
strip, epidermis, and cell walls. However, divergence was
found for functions in modules related to the overall
architecture of the plants, for example the development
of inflorescence structures. Such comparison sheds light
on pathways that might have been “hot targets” for evo-
lutionary changes. In the near future, with RNA-Seq
transcriptome datasets rapidly accumulating, such net-
work comparison analysis can be extended into more
plant species to identify steps that highlight and deter-
mine plant evolutionary trajectories. As shown here for
maize and Arabidopsis, conversation and similarity in
modular comparisons will assist in pinpointing key

regulators in various modules that can then be analyzed
in detailed studies.

Conclusions
In conclusion, the maize GGM network presented here -
in juxtaposition with a corresponding Arabidopsis net-
work [7] - sheds light on similarities and differences in
the organization of gene modules between different spe-
cies in the context of evolutionary separation and differ-
ent life histories. Additionally, our analysis highlights
modules whose structure and gene content can provide
important new resources for maize gene functional stud-
ies with application potential.

Methods
Maize RNA-Seq data collection
The publicly available maize RNA-Seq transcriptome
datasets deposited in the NCBI SRA database were used
in the analysis. These datasets were organized by studies.
The studies were manually inspected to filter out those
focusing on non-coding RNAs or those measuring tran-
scriptome of the same tissues from a large number of
maize varieties. Also removed were the studies with less
than five RNA-Seq runs or without published articles.
As a result, 36 studies were kept and their raw data files
(sra) were downloaded. For RNA-Seq data processing,
adapter sequences, if present, were removed from raw
sequence reads using FASTX-toolkit pipeline version
0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). Se-
quence quality was examined using FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), and
low quality read was filtered by FASTX-toolkit. The
remaining reads were then mapped to the maize genome
AGP v3.22 (Ensembl Plants, http://plants.ensembl.org)
using Tophat v2.0.10 [97] with default settings. After
removing files with mapping rate smaller than 70%,
the bam files from 787 RNA-Seq runs were analyzed
to obtain gene expression values (FPKM) via Cufflinks
v2.1.1 [98].

Maize GGM network construction
The gene expression data were then merged into a single
gene expression matrix with 787 columns, and the low
expressed genes (maximum FPKM values among all
samples being less than 20) were filtered out, resulting
in a matrix with 29,316 genes and 787 columns. The
matrix was log-transformed [32–40] via the log2
(FPKM + 1) function, a procedure that significantly
reduced the dataset’s mean-variance dependency
(Additional file 2: Fig. S1). The log-transformed gene ex-
pression matrix was then used for partial correlation cal-
culation, following a method described before [17].
Briefly, the calculation involved a procedure with 25,000
iterations. In each iteration, 2000 genes were randomly
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selected and the partial correlation coefficients between
gene pairs were estimated via the “ggm.estimate.pcor”
function in the GeneNet v1.2.13 package in R [16]. The
Pcors were recorded in every iteration. After 25,000 iter-
ations, for every gene pair, the Pcor with the lowest ab-
solute value was chosen as its final Pcor. The PCC
between all gene pairs were also calculated. The gene
pairs with Pcor > = 0.035 and PCC > = 0.35 and those
with Pcor <= −0.035 and PCC < = −0.35 were selected
for gene network construction (Additional file 2: Table
S2), resulting in a maize GGM gene network based on
the log-transformed gene expression data.
To evaluate the effect of log-transformation on the

network quality, another gene network was also con-
structed directly from the gene expression matrix with
the original FPKM values without data transformation,
designated as non-transformed FPKM network, keeping
all other parameters the same as in the log-
transformation-based network outlined above. These
two networks were then evaluated and compared via the
EGAD package in R regarding their capacities to con-
nect maize genes with shared GO terms [99]. The results
indicated the log-transformation-based network out-
performed the non-transformed FPKM network
(Additional file 8: Fig. S9). Additionally, the log-
transformation-based network identified gene modules
that were not recovered by the non-transformed FPKM
network, such as those related to ER stress response
(#95) and nitrate response & assimilation (#72) (data not
shown). These modules identified only by the log-
transformation-based network contained genes that have
been identified in different analyses to be related to the
modules in question [73, 74, 91, 92].
Thus, we considered the higher power of the log-

transformation-based network, and only results using
the log-transformation-based network, designated as the
Maize GGM Network, were further analyzed and
discussed.

Gene network properties and gene module identification
The R package of RBGL v 1.44.0 (http://bioconductor.org/
packages/RBGL/) is used to calculate the clustering coeffi-
cient of the maize GGM network. The network was clus-
tered via the MCL clustering algorithm, using these
parameters “-I 1.5 -Scheme 7” [43]. The genes within each
module were then analyzed for Gene Ontology enrichment
via GOStats [100], with GO annotation file downloaded
from the Gramene database (ftp://ftp.gramene.org/). The
maize genes and their Arabidopsis homologues were fur-
ther annotated with annotation files from MaizeGDB,
TAIR, and PlnTFDB [101–103]. Selected modules were
also tested for promoter motifs enrichment via the
binomial distribution. An R script, included in the accom-
panied program MaizeGGM2016, was developed to extract

sub-networks for gene modules and to draw development
heatmaps for the genes within selected modules, with ex-
pression data from published datasets [19–21, 23–26]. The
whole GGM network and the extracted sub-networks were
layout and visualized with BioLayout Express 3D and
Cytoscape 3.3, respectively [104, 105].

Gene network comparison between the maize network
and the Arabidopsis network
To enable comparison between the maize GGM net-
work and the Arabidopsis network AtGGM2014, the
InParanoid program (v 4.1) [106] was used to identify
the maize genes’, if present, most similar homologues
in Arabidopsis. For any gene within the maize net-
work, if there exists a homologous gene within the
Arabidopsis AtGGM2014 network, the maize gene’s
immediate neighboring genes within the maize net-
work were extracted as group A. Also extracted, as
group B, were its homologous gene’s neighbors within
the Arabidopsis network. If any of the gene within
group A has a homologous gene in group B, the ori-
ginal maize gene was considered to have conserved
interaction within the Arabidopsis network. For any
given module, the percentage of genes with conserved
interaction was calculated as an indicator of evolution
conserveness or divergence.

Additional files

Additional file 1: Table S1. The RNA-Seq studies used in the analysis.
Table S4. Selected gene modules identified from the network. Table S5.
The percentage of genes with conserved interactions within each
module. (XLSX 45 kb)

Additional file 2: Figure S1. Log-transformation reduced the mean-
variance dependency of the maize RNA-Seq data. a The standard
deviation of each gene’s non-transformed FPKM expression values across
all 787 RNA-seq runs are shown against the rank of genes. Genes are
ranked by their mean expression values, from low (left) to high (right).
The red line depicts a trend line of standard deviation, which indicates a
clear mean-variance dependency. b The standard deviation of each
gene’s expression values after log transformation across all RNA-Seq runs
against the rank of genes. The mean-variance dependency is greatly
reduced. (PDF 5820 kb)

Additional file 3: Table S2. The 123,666 gene pairs used for the maize
GGM gene network construction. (TXT 4378 kb)

Additional file 4: Table S3. The 964 gene modules identified from the
network. Listed are the genes’ names and their module identity, and the
results of gene ontology enrichment analysis. (XLSX 3251 kb)

Additional file 5: Figure S2. A heatmap showing the tissue-specific
gene expression patterns for the inflorescences, ligules, and kernels
development related modules. The data source of the SRA studies were
labeled in the sample names. Listed are the maize genes names and its
symbol in lowercase letters, or, if it has no symbols, the names of its
Arabidopsis homologues. (PDF 2927 kb)

Additional file 6: Figure S3. A heatmap for modules related to
endosperm development. (PDF 2005 kb)

Additional file 7: Figure S4. A heatmap for additional modules related
to development. (PDF 4276 kb)
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Additional file 8: Figure S5. A module for wax biosynthesis. Figure S6.
A module for heat-shock stress response. Figure S7. A module for ER-stress
response. Figure S8. A module for stress response to fungus. Figure S9.
Comparison between the non-transformed FPKM network and the log-
transformation-based network. Both networks were evaluated via the EGAD
package [99] in R regarding their capacities to connect genes with shared
GO terms. For each GO term, the maize genes with that GO were
considered as a gene set, and an AUROC value was calculated for
each network using the EGAD package. A higher AUROC value
indicates genes within that gene set are more likely to have each
other as neighbors, and thus a better performance of the network.
The histogram shows the overall distribution of the AUROC values
for 1728 GO terms calculated for the non-transformed FPKM network
(green bar) and for the log-transformation-based network (transparent
bar with black border). The log-transformation-based network has
more GO terms with higher AUROC values, thus it performs better
than the other network. (PDF 795 kb)
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