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Abstract

Background: Long non-coding RNAs (IncRNAs) play important roles in plant growth and stress responses. Studies
of IncRNAs in non-model plants are quite limited, especially those investigating multiple dehydration stresses. In
this study, we identified novel INcRNAs and analyzed their functions in dehydration stress memory in switchgrass,
an excellent biofuel feedstock and soil-conserving plant in the Gramineae family.

Results: We analyzed genome-wide transcriptional profiles of leaves of 5-week-old switchgrass plantlets grown via
tissue culture after primary and secondary dehydration stresses (D1 and D2) and identified 16,551 novel IncRNAs,
including 4554 annotated IncRNAs (targeting 3574 genes), and 11,997 unknown IncRNAs. Gene ontology and pathway
enrichment analysis of annotated genes showed that the differentially expressed INcRNAs were related to abscisic acid
(ABA) and ethylene (ETH) biosynthesis and signal transduction, and to starch and sucrose metabolism. The upregulated
INcRNAs and genes were related to ABA synthesis and its signal transduction, and to trehalose synthesis. Meanwhile,
IncRNAs and genes related to ETH biosynthesis and signal transduction were suppressed. LncRNAs and genes involved
in ABA metabolism were verified using quantitative real-time PCR, and the endogenous ABA content was determined
via high performance liquid chromatography mass spectrometry (HPLC-MS). These results showed that ABA
accumulated significantly during dehydration stress, especially in D2. Furthermore, we identified 307 dehydration stress
memory INcRNAs, and the ratios of different memory types in switchgrass were similar to those in Arabidopsis and maize.

acid, Dehydration stress memory

Conclusions: The molecular responses of switchgrass INcCRNAs to multiple dehydration stresses were researched
systematically, revealing novel information about their transcriptional regulatory behavior. This study provides new
insights into the response mechanism to dehydration stress in plants. The INncRNAs and pathways identified in this study
provide valuable information for genetic modification of switchgrass and other crops.
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Background

Drought stress is one of the most widespread and harmful
abiotic stresses; it includes atmospheric drought and soil
drought. Both of these drought types lead to dehydration
stress in plants. Under natural conditions, plants suffer
thousands of dehydration stresses throughout their life-
cycle, and may even experience multiple stresses over a
few days. To deal with this situation, plants have evolved

* Correspondence: sunof1981@126.com; xiyajun2002@126.com
Equal contributors

'College of Agronomy, Northwest A & F University, Yangling 712100,
Shaanxi, China

Full list of author information is available at the end of the article

K BMC

dehydration stress memory, which has been identified in
Arabidopsis [1, 2], maize [3], and other species [4-7].
Using this ability, plants can respond rapidly and strongly
to dehydration stress and thus improve their survival
rates. The formation of dehydration stress memory in-
volves chromatin methylation (especially histone methyla-
tion, such as trimethylation of histone H3 on lysine 4,
H3K4me3) [2, 8, 9], plant hormone biosynthesis, and sig-
nal transduction [2, 10, 11]. In the Arabidopsis genome,
distinct regions were found to be susceptible to DNA (de)
methylation in response to hyperosmotic stress, and long
non-coding RNAs (IncRNAs) regulate the expression of
targeted genes in response to stress [12, 13]. Furthermore,
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animal IncRNAs can interact with trithorax group pro-
teins via H3K4me3 and positively regulate transcription
activity [14, 15]. Therefore, we infer that IncRNAs likely
have important functions in dehydration stress memory
and regulating the responses to multiple dehydration
stresses.

LncRNAs are a type of non-coding RNA that are at least
200 nt in length, including natural antisense transcripts,
long intronic non-coding RNAs, and long intergenic non-
coding RNAs (lincRNAs) [16]. Among plants, a large num-
ber of IncRNAs have been found in Arabidopsis [17-20],
maize [21], wheat [22], rice [23], and other species [24, 25].
LncRNAs play roles in plant growth and development
[23, 26-28], biotic stress responses [18, 29, 30], and
abiotic stress responses [21, 31, 32]. For example, 2224
IncRNA candidates were discovered in rice, one of which
was confirmed to play a role in panicle development and
fertility [23]. LncRNA-regulated photoperiod-sensitive male
sterility has also been discovered in rice [26]. In Arabidopsis,
2708 expressed lincRNAs [20] and 20 Fusarium oxysporum-
responsive IncTARs (long non-coding transcriptionally ac-
tive regions) were identified [18], with 245 poly(A) + and 58
poly(A)— IncRNAs differentially expressed under various
stress stimuli (drought, salinity, cold, and heat) [17]. Aside
from Arabidopsis [33] and rice, stress-responsive IncRNAs
have also been identified in cotton [25], maize [21], wheat
[22], and Medicago truncatula [31].

Although numerous IncRNAs have been identified and
some of their functions have been described, research in
non-model plants has been very limited. The mechanism
of IncRNA regulation and its function in dehydration
stress are unclear, especially under repetitive dehydration
stress conditions. Investigation, functional prediction, and
dissection of IncRNAs in response to multiple dehydration
stresses will be beneficial for understanding the process of
dehydration stress memory, as well as for uncovering the
functions and regulatory mechanisms of IncRNAs.

Switchgrass is a perennial, drought-resistant C4 grass in
the Gramineae family [34, 35]. It is grown worldwide as
an important lignocellulosic biofuel feedstock, soil-
conserving plant, and pasture crop [35-37]. Common
switchgrass has two ecotypes: the lowland ecotype (tetra-
ploid) and upland ecotype (hexaploid and octoploid) [38].
These ecotypes are allogamous and have strong genetic
self-incompatibility, which seriously limits research into
biofuel production and stress resistance. In a previous
study, we established an in vitro tissue culture system
[39]. Using this system, large-scale production of
homogenous switchgrass plantlets with a single genotype
was carried out from the axillary buds of a single plant.
The use of tissue culture avoids the unreliability of cross-
pollination and will facilitate future studies of switchgrass.

To date, the majority of studies into drought stress re-
sponses of switchgrass are related to its morphological and
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physiological responses, while the studies on molecular
mechanisms of drought resistance have been very limited.
Under drought stress, switchgrass improved its drought tol-
erance by increasing the levels of reactive oxygen species
induced by abscisic acid (ABA), causing the water potential,
gas exchange rate, and photochemical processes in leaves
to decline significantly [40, 41]. Assessment of drought re-
sistance in 49 switchgrass genotypes suggested that
drought-tolerant genotypes tend to have higher levels of
ABA, spermine, trehalose, and fructose [42]. Furthermore,
microRNAs that respond to drought stress were discovered,
which were involved in the biosynthesis of carbon com-
pounds, glucose, starch, fatty acids, and lignin [43, 44].

ABA biosynthesis and signal transduction is the key path-
way of the drought stress response, involving stomatal
closure and osmotic adjustment [45, 46]. In Arabidopsis, 9-
cis-epoxycarotenoid dioxygenase (NCED) -catalyzes the
rate-limiting step of the ABA biosynthesis pathway [47],
and the signal transduction elements include the PYR/PYL
receptor, protein phosphatase 2C (PP2C), serine/threonine-
protein kinase SRK (SnRK), and ABA-responsive element
binding factors (AREBs/ABFs) [48, 49].

LncRNA can play its role through regulating the tran-
scription machinery, as it can directly regulate the Pol II
transcription machinery in various ways [15]. LncRNAs
located upstream or downstream of genes may interact
with promoters, cis-acting elements, or other regulatory
factors, and thus regulate gene transcription [50-52].
Meanwhile, IncRNA may be involved in gene silencing,
transcription, and mRNA stability through complemen-
tary base-pairing with the sense strand of mRNA [53].
At present, switchgrass IncRNAs have not been identi-
fied, and their functions in drought stress, and especially
in repeated drought stress, are unknown.

In this study, switchgrass plantlets of a homogeneous
genotype were used for transcriptional and physiological
assays. We identified 16,551 novel IncRNAs, and anno-
tated 4554 IncRNAs expressed during multiple dehydra-
tion stresses. Functional analysis of the target genes of
differentially expressed IncRNAs indicated that the path-
ways with key roles in repeated dehydration stress re-
sponse include ABA and ethylene biosynthesis, signal
transduction, and starch and sucrose metabolism. These
pathways were confirmed using orthologous alignment,
quantitative real-time PCR, and chemical assays. Fur-
thermore, we identified dehydration stress memory
IncRNAs, and compared dehydration stress memory be-
haviors among Arabidopsis, maize, and switchgrass.

Methods

Plant materials and experimental design

Switchgrass is allogamous plant with strong genetic self-
incompatibility. To avoid differences among seedling geno-
types, plantlets developed through in vitro tissue culture
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were used in this study. They were acquired from a single
bud of the Alamo cultivar (introduced from the USA)
grown in MS medium supplemented with 13.3 pM-L™' 6-
benzylaminopurine [39]. Multiple dehydration stresses were
induced based on designs used previously with Arabidopsis
[1, 2] and maize [3]. Five-week-old plantlets were removed
from the soil, washed of residual substrate, and acclimated
overnight in an incubator at constant temperature and hu-
midity with their roots in water. The next morning, the
plantlets were removed, patted dry on filter paper, and then
air-dried for 2 h (the first dehydration stress, D1). The
plantlets under normal conditions were sampled as a con-
trol (C1). D1 plants were then placed in a 22-h recovery
treatment at 25 °C (first recovery, R1), and R1 plants were
subsequently air-dried for 2 h and sampled as the second
dehydration stress (D2). These procedures were repeated
for R2, D3, etc. (Fig. 1a). To investigate the altered expres-
sion of IncRNAs/genes, we sequenced the non-coding
RNAs and mRNAs of leaves, and determined the transcrip-
tional expression by gqRT-PCR. At morphophysiology level,
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we determined leaf water loss and endogenous ABA con-
tents in different treatments (Fig. 1a).

RNA isolation, IncRNA and mRNA library construction

The second fully expanded leaves of plants were col-
lected, frozen immediately in liquid nitrogen and stored
at — 80 °C for RNA extraction and physiological and bio-
chemical assays. Total RNA was isolated and purified
using Trizol reagent (Invitrogen Life Technologies, USA)
and RNase-Free DNase I (Takara, 2270A) following a
published protocol [54]. RNA concentration was de-
tected using a Qubit fluorometer and a NanoDrop One
spectrophotometer (Thermo Scientific, USA), OD260/
280 and OD260/230 (absorbances under 260 nm,
280 nm, and 230 nm ultraviolet light) were detected via
a NanoDrop One spectrophotometer, and the RNA in-
tegrity (RIN) was measured with an Agilent 2100 bioa-
nalyzer (Agilent Technologies, USA). Two biological
replicates of four treatments (C1, D1, R1, and D2) were
sequenced, for a total of eight samples. RNA sequencing
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Fig. 1 Experimental design and analysis procedures for the systematic identification of INCRNAs in switchgrass. a Experimental design for
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(RNA-seq) was performed by the BGI-Shenzhen Com-
pany (http://www.genomics.cn/en/) using the Illumina
GAII platform (HiSeq2500), and IncRNA and mRNA li-
braries were constructed. To remove adapter sequences
and low quality sequences, the raw data was filtered
using SOAP software (http://soap.genomics.org.cn/) with
the default parameters. Gene and IncRNA expression
levels were calculated as FPKM (Fragments Per Kilo-
base of exon per Million fragments mapped) values
using the Cufflinks program [55]. RNA-seq quality
and the repeatability of biological replicates are shown in
Additional file 1: Figure S1. The raw sequencing files of
transcriptomic data were uploaded to the NCBI sequence
read archive (SRA) under accession number PRINA394165.

Identification of differential expression of genes and
IncRNAs

Genes and IncRNAs were predicted based on the switch-
grass genomic database (https://phytozome.jgi.doe.gov/
pz/portal.html#!info?alias=Org_Pvirgatum) [56]. Differ-
entially expressed genes and IncRNAs were identified
using the following threshold values: q value <0.05 and |
log (base2) fold change | > 1 with the Cuffdiff tool in the
Cufflinks package (http://cole-trapnell-lab.github.io/cuf-
flinks/) [55]. Common and differentially expressed genes
and IncRNAs in various samples were compared and
identified using Venny 2.1 software (http://bioinfogp.
cnb.csic.es/tools/venny/index.html).

Dehydration stress memory IncRNAs were identified
using methods published for Arabidopsis and maize [1, 3].
They were identified by comparison of fold changes in ex-
pression between D1/Cl and D2/D1, using threshold
values of q value <0.05 and | log (base2) fold change | = 1.
LncRNAs that were upregulated, downregulated, and
those that exhibited no significant change in expression
are indicated by the symbols “+”, “~” and “=”, respectively.
Eight types of differentially expressed IncRNA were de-
fined: [+/+], [+/-], [-/+], [-/-], [+/=], [-/=], [=/+] and
[=/-]. The first four types were considered to be dehydra-
tion stress memory IncRNAs, because their responses
changed between D1 and D2. The [+/=] and [-/=]
IncRNAs were considered non-memory IncRNAs, and
[=/+] and [=/-] genes were defined as late-response
IncRNAs. A list of all identified dehydration stress mem-
ory IncRNAs is provided in Additional file 2: Table S1.

Annotation and functional analysis of IncRNAs

To date, many IncRNAs located upstream or downstream
of genes have been identified, which are involved in tran-
scriptional regulation via interaction with promoters, cis-
acting elements [50, 51] or other regulatory functions [52].
Meanwhile, IncRNAs may be involved in gene silencing,
transcription, and mRNA stability through complementary
base-pairing with the sense strand of mRNA [53]. In this
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study, IncRNAs were annotated by scanning regions within
2000 bp upstream and downstream of genes, and analyzing
the complementary base-pairing between antisense
IncRNAs and mRNAs using RNAplex software [57].

Genes targeted by IncRNAs were annotated using NCBI
Blast tools (version 2.2.8) in conjunction with the NCBI
non-redundant protein sequences (nr) database, the Ara-
bidopsis Information Resource Proteins database (release
TAIR10), the maize B73 RefGen_v3 database, and the Rice
Genome Annotation Project (RGAP) release 7. All target
genes and differentially expressed target genes were ana-
lyzed. Gene ontology (GO) was analyzed using AgBase
GORetriever and GOSlimViewer [58], and enriched path-
ways were identified using NCBI Flink (https://www.ncbi.
nlm.nih.gov/Structure/flink/flink.cgi) based on KEGG
(Kyoto Encyclopedia of Genes and Genomes) databases.
Specific pathways were verified using Blastp with the
switchgrass genomic database and the TAIR10 database.
Orthologous genes belonging to larger families were ana-
lyzed with reference to published works.

Quantitative real-time PCR, physiological indices assays
and statistical analysis

Total RNA was reverse-transcribed to cDNA using the
PrimeScript RT reagent Kit (RR047A, Takara) following
the standard protocol. Quantitative real-time PCR (qRT-
PCR) was performed with the QuantStudio 7 Flex Real-
Time PCR System (Thermo Scientific, USA) using the
SYBR Premix Ex Taq II Kit (RR820A, Takara). A re-
ported housekeeping gene, PveEF-1a (eukaryotic elong-
ation factor la) [59], was chosen as a reference gene.
Three biological replicates were performed, with each
biological replicate having three technical replicates. The
AACT method was used to calculate gene expression
levels, and all primers were designed using Primer Prem-
ier 6 software (http://www.premierbiosoft.com/primer
design/index.html; Additional file 2: Table S2).

To verify the ABA biosynthesis pathway indicated by
transcriptomic data, the second fully expanded leaves were
collected from four treatments. Endogenous ABA con-
tents were determined using high performance liquid
chromatography mass spectrometry (HPLC-MS) with an
Agilent 1290 Infinity II liquid chromatograph (Agilent
Technologies, USA) and a QTRAP 6500 MS/MS System
(AB SCIEX, USA). Reference standards (ABA, LC grade)
were purchased from Sigma-Aldrich (USA). The water
loss was determined by measuring the leaves’ weight at a
fixed time interval after their detachment from the plants.

More than three biological replicates were used in all
physiological and chemical substance assays. Each bio-
logical replicate contained more than 12 plantlets, and
only the second fully expanded leaves were utilized for
experiments. All data were analyzed with SAS software
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(http://www.sas.com/en_us/software/sas9.html) with the
Duncan test [60].

Results

General features of dehydration stress response IncRNAs
Prior to RNA sequencing, we investigated the drought re-
sistance of switchgrass under multiple water-deficit
stresses. The results showed that the water loss from leaves
during the second and third dehydration stresses was 14.6
and 18.0% slower than during the first dehydration stress
after 24 h dehydration treatment, and that water-deficit
training significantly improved the survival rates of the
plantlets (Additional file 1: Figure S2). In this study, we ac-
quired homogeneous switchgrass plantlets through shoot
bud culture, extracted the leaf RNAs under repeated dehy-
dration stresses, and constructed a transcriptional database
of IncRNA and mRNA (Fig. 1b). The ratio of clean reads in
each sample exceeded 96.5%, and the average replication
rate of gene expression numbers in two biological repli-
cates was 90.2% (Additional file 1: Figure S1). For differen-
tially expressed IncRNAs and genes, the average coefficient
value between two biological replicates was 99.1%
(Additional file 1: Figure S1), indicating excellent repeat-
ability of the results across biological replicates.

The expression, location, and length of IncRNAs were an-
alyzed in this study. In total, 16,551 IncRNAs and 98,007
genes were predicted, and 16,284 (98.39%) IncRNAs and
47,207 (48.17%) genes were expressed during dehydration
stress (Fig. 1¢; Additional file 2: Table S3). In all eight sam-
ples, 11,142 (68.4%) IncRNAs and 40,545 (85.9%) genes
were expressed. On average, each sample had 19,414 novel
transcripts, 38.8% (7549) of which were novel noncoding
transcripts (Additional file 2: Table S3). These transcripts
were distributed across all chromosomes, and there were
some hot-spots in each chromosome with many enriched
transcripts (Fig. 2a). We identified differentially expressed
IncRNAs using the threshold values: | log (base2) fold
change | > 1, < 0.05. In total, 1597 differentially expressed
IncRNAs were identified under repeated dehydration
stresses (Additional file 2: Table S4), and they were distrib-
uted across all chromosomes, similar to the distribution of
total IncRNAs (Fig. 2b, c). Notably, numerous differentially
expressed IncRNAs were found on chromosomes 05b, 02a,
and 09b (Fig. 2¢). In addition, we counted the frequency of
different IncRNA lengths. Our results demonstrated that
53.7% of IncRNAs were shorter than 800 bp (base pair),
and 59.2% of differentially expressed IncRNAs were shorter
than 400 bp (Fig. 2d), suggesting that the lengths of differ-
entially expressed IncRNAs are relatively short.

Annotation and identification of differentially expressed
IncRNAs

LncRNAs located upstream of genes may be involved in tran-
scriptional regulation through interaction with promoters or
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other cis-acting elements [50, 51], and downstream
IncRNAs may take part in other regulatory activities
[52]. Similar to the action mode of microRNA, IncRNA
may be involved in gene silencing, transcription, and
mRNA stability through complementary base-pairing
with the sense strand of mRNA [53]. In this study, we
annotated IncRNAs by scanning up to 2000 bp upstream
and downstream of genes, and analyzing the comple-
mentary base-pairing between antisense IncRNAs and
mRNAs using RNAplex software [57]. In total, 4554
(28.0%) IncRNAs were annotated, including 2129 anti-
sense IncRNAs and 2425 upstream or downstream
IncRNAs involved with 2018 and 1556 genes, respect-
ively (Additional file 2: Table S5). During multiple de-
hydration stresses, 47.3% (1689) of the annotated
genes were expressed (Table 1; Fig. 1c). Furthermore,
we identified 441 differentially expressed IncRNAs
and 175 differentially expressed annotated genes
(Additional file 2: Table S6). Among these, 39
IncRNAs were annotated and were differentially
expressed genes (Additional file 2: Table S7; Fig. 1c),
which probably play important roles in the repeated
dehydration stress response. These genes were in-
volved in ABA and ethylene (ETH) biosynthesis and
signal transduction, starch and sucrose metabolism,
and other functions. (Additional file 2: Table S7).

GO and pathway enrichment analysis of IncRNA target
genes
GO analysis provided information on the functional
categorization of IncRNA target genes. We investigated
the functions of all annotated genes and differentially
expressed annotated genes. The categories of membrane
and intracellular (for cellular components) and transfer-
ase activity and catalytic activity (for molecular func-
tions) were enriched in all annotated genes, while plastid
and catalytic activity were significantly enriched in dif-
ferentially expressed genes (Fig. 3a, b). For biological
process analysis, the terms of biosynthetic processes,
nucleobase-containing compound metabolic processes,
and cellular protein modification processes were
enriched in all annotated genes as well as in differentially
expressed genes, while carbohydrate metabolic processes
and translation were enriched only in differentially
expressed genes (Fig. 3c). The stress response and signal
transduction categories were also enriched (Fig. 3c). We
analyzed the GO term ‘response to stress, and identified
15 IncRNAs annotated with 15 genes related to ABA
and ETH biosynthesis and signal transduction, starch
and sucrose metabolism, osmotic adjustment, and other
functions. (Additional file 2: Table S8).

To investigate the roles of IncRNA, we analyzed pathways
related to antisense genes, upstream and downstream
genes, and differentially expressed annotated genes. The
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common enriched pathways were biosynthesis of amino
acids, plant hormone signal transduction, aminoacyl-
tRNA biosynthesis, ribosome, phenylpropanoid bio-
synthesis, starch and sucrose metabolism, and glycoly-
sis (Additional file 2: Table S9).

Based on these analyses, we find that the ABA, ETH
biosynthesis and signal transduction, and starch and su-
crose metabolism pathways were significantly enriched
in the switchgrass IncRNA annotation, GO analysis, and
pathway enrichment during multiple dehydration
stresses. These pathways probably play important roles
in the dehydration stress response, and we next identi-
fied related IncRNAs and genes.

Table 1 Statistic data of annotation IncRNAs and genes

LncRNAs involved in plant hormone biosynthesis and
signal transduction

ABA biosynthesis and signal transduction

ABA biosynthesis and signal transduction were enriched
in the differentially expressed IncRNA annotation
(Additional file 2: Table S7), GO, and pathway analysis
(Additional file 2: Table S7, S8). ABA is the most im-
portant plant hormone expressed in response to drought
stress, as it is involved in signal perception and transduc-
tion, stomatal closure, and osmotic adjustment [11, 46, 61].
In Arabidopsis, NCEDs are the key enzymes in ABA bio-
synthesis, and abscisic-aldehyde oxidases (AAQOs) catalyze
the last step of this process [47]. During ABA signal

Annotation Type Number of Differentially Annotation Expressed genes Differentially Differentially expressed
INCRNAs expressed genes expressed INncRNAs annotated
IncRNAs genes (DEGs) with DEGs
antisense-mRNA 2129 142 2018 701 63 13
Up/Down Stream 2425 299 1556 988 112 26

pre-miRNA Known:9 Novel:47
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transduction, clade A protein phosphatase 2C (PP2CA)
enzymes play important roles in ABA signaling and re-
spond positively to ABA level increases or stress-
induced ABA biosynthesis [62, 63]. In this study, an
IncRNA (XLOC_053020) located 1229 bp upstream of
Pavir.Ia01153, an ortholog of AtNCED3 (AT3G14440,
encoding the rate-limiting enzyme of ABA biosyn-
thesis), was upregulated significantly in D1 and D2.
Meanwhile, Pavir.Ja01153 was also upregulated (Fig. 4a, b;
Additional file 2: Table S10). XLOC 014465 and its

antisense gene (Pavir.Bb00347), an ortholog of AAOI,
were upregulated in D1 and D2. Furthermore, the PP2CA
gene PavirEb01847 and its upstream IncRNA XLOC_
033252 were both upregulated in D1 and D2 (Fig. 4;
Additional file 2: Table S10). These data suggest that ABA
biosynthesis and signal transduction were significantly en-
hanced during multiple dehydration stresses in switch-
grass, especially in D2, and the IncRNAs XLOC_053020,
XLOC_014465, and XLOC_033252 probably have import-
ant functions in stress-induced responses.
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ETH biosynthesis and signal transduction

In drought stress, ETH is an important gas hormone, regu-
lating plant growth and senescence [64—66]. In plants, ETH
is synthesized from L-methionine, and the rate-limiting en-
zymes are l-aminocyclopropane-1-carboxylate synthase
(ACS) and aminocyclopropane carboxylate oxidase (ACO)
[67, 68]. After synthesis, ETH acts through ETH receptors
(ethylene response, ETRs; ethylene response sensors, ERSs;
and ethylene insensitive proteins, EINs) [69] and ethylene-
responsive transcription factors (ERFs) [70-72]. In this
study, two orthologs of AtACOS5 (AT1G77330), Pavir.J23169
and Pavir.Ca01179, were upregulated in D1 and downregu-
lated in D2. Another ortholog of AtACO4 (AT1G05010),
Pavir.J04626, was downregulated in both D1 and D2. Three
IncRNAs, XLOC_090250, XLOC_ 016922, and XLOC_
067866, are located upstream of the associated genes. The
expression patterns of IncRNAs were similar to those of the
related genes (Fig. 5; Additional file 2: Table S11). One gene
encoding an EIN-like protein, Pavir.J10665, was upregulated
in D1 and downregulated in D2. Its antisense IncRNA,
XLOC_074836, was upregulated in D2 (Fig. 5;
Additional file 2: Table S11). These data suggest that ETH
biosynthesis and signal transduction were slightly upregu-
lated in D1, but significantly downregulated in D2.

LncRNAs involved in starch and sucrose metabolism

The starch and sucrose metabolism pathway is involved in
photosynthesis, energy utilization, and osmotic adjustment.
Beta-amylases (BAMs) are important enzymes with roles in
starch degradation and sustained stomatal opening [73, 74],
which can be transcriptionally induced by heat or cold
stress in Arabidopsis [75]. In switchgrass under dehydration
stress, one ortholog of AtBAM1/5, Pavir.Ba00729, was sig-
nificantly downregulated in D1 and D2, and its antisense
IncRNA, XLOC_008122, was also downregulated (Fig. 6;
Additional file 2: Table S12). These results indicated that
Pavir.Ba00729 was suppressed under water-deficit stress,
and therefore suppressed stomatal opening.

Under normal conditions, starch is degraded to glucose-
1-phosphate by plastidic alpha-glucan phosphorylase
(PHS) [76], and then indirectly converted to trehalose-6-
phosphate (T-6-P) and trehalose by trehalose phosphatase
(TPP) and trehalose phosphate synthase (TPS), respect-
ively [77]. Trehalose has important roles in osmotic ad-
justment [46]. T-6-P is implicated in the regulation of
sugar metabolism [78], and the genes for its synthesis en-
code TPSs. In Arabidopsis, TPS8—11 belongs to the Class
II group, and Class II TPSs are likely regulated by known
nutrient signal transduction integrators, such as SnRK1
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[77]. In switchgrass exposed to multiple dehydration
stresses, an ortholog of PHS was upregulated, and its up-
stream IncRNA, XLOC_081155, was downregulated in D2.
An ortholog of AtTPS10, Pavir.Ab03141, and its upstream
IncRNA, XLOC_005809, were significantly upregulated, es-
pecially in D2 (Fig. 6; Additional file 2: Table S12). These
results demonstrate that the starch and sucrose metabolism
pathway was altered during dehydration stresses, and that
the biosynthesis of T-6-P and trehalose was enhanced, im-
proving sugar metabolism, signal transduction, and osmotic
adjustment.

Verification of IncRNAs and ABA metabolism via
quantitative real-time PCR (qRT-PCR) and hormone
determination

The RNA-seq results were validated using qRT-PCR in a
previous study (Additional file 1: Figure S3). In this
study, we quantified the expression of two IncRNAs and
three genes involved in ABA biosynthesis and signal
transduction, as well as two dehydration stress memory
IncRNAs. The expression of all seven transcripts was
consistent with transcriptomic data (Fig. 7), indicating
that analysis based on transcriptomic data is reliable for
determining the response network of switchgrass under
multiple dehydration stresses.

We further verified the ABA biosynthesis and signal
transduction pathway at the transcriptional and physio-
logical levels. The dynamic change in ABA concentration
in leaves was determined using HPLC-MS. The results in-
dicated that ABA accumulated significantly during D1, and
increased continuously in R1 and D2 (Fig. 7d). Based on
this as well as RNA-seq data and qRT-PCR results, we de-
termined that the upstream IncRNA (XLOC_053020) and
orthologs (Pavir.]a01153 and Pavir.J24772) of the rate-
limiting enzyme (NCED), ABA accumulation in leaves, and
downstream genes of ABA signal transduction (ABA re-
sponsive element binding factor, Pavir.Aa00597 and Pavir.
J00256) were upregulated in switchgrass under dehydration
stresses, especially in D2 (Fig. 4; Fig. 7; Additional file 2:
Table S10). These data indicate that ABA biosynthesis and
signal transduction were strongly enhanced during repeated
dehydration stresses in switchgrass.

Dehydration stress memory IncRNAs in switchgrass

During the first round of dehydration stress (D1), 183 and
134 IncRNAs were upregulated and downregulated, re-
spectively, while these numbers increased to 521 and 516
in the second dehydration stress (D2) (Fig. 8a, b). This re-
sult indicated that the dehydration stress responses in D1
and D2 differed greatly. In this study, we identified
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dehydration stress memory IncRNAs in switchgrass using
screening methods for dehydration stress memory genes
reported in Arabidopsis and maize [1, 3]. These genes
were identified through comparison of fold changes in ex-
pression between D1/C1 and D2/D1. LncRNAs that were
upregulated, downregulated, and exhibited no significant
change in expression are indicated by the symbols “+7,
“~”, and “=”, respectively. Nine IncRNAs were identified
as [+/+] memory type IncRNAs, meaning that these
IncRNAs were upregulated between D1 and C1 and also
between D2 and D1 (Fig. 8c). Similarly, the numbers of
[+/-], [-/+], and [-/-] IncRNAs were 70, 24, and 4, re-
spectively (Fig. 8c, d). Most dehydration stress memory
IncRNAs (76.6%) were not annotated, and thus their func-
tions remain unknown (Additional files 2: Table S1).

Discussion
Under natural conditions, plants are frequently subjected
to dehydration stress due to vapor pressure deficit or soil

drought. They are exposed to repeated dehydration
stresses throughout their lifecycle, often in quick succes-
sion. When the quantity of water lost from leaves
through transpiration is greater than the water taken up,
plants will suffer from dehydration stress during the day-
time. At night, they will recover, but may suffer from de-
hydration stress again the next day. In the process of
evolution, plants have developed dehydration stress
memory to adapt to repetitive dehydration stresses. This
phenomenon was discovered in Arabidopsis [1, 2], then
identified in maize [3]. In stress memory, plants improve
their survival rates by rapidly and strongly responding to
dehydration stress. Previous studies showed that dehy-
dration stress memory is related to chromatin methyla-
tion (especially histone methylation) [2, 8, 9], and
IncRNA plays important roles in chromatin methylation
and dehydration stress responses [12, 13, 21, 31]. There-
fore, we imitated the diurnal cycle of dehydration stress
in this study, then constructed IncRNA and mRNA
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libraries, and annotated, identified, and verified IncRNAs
involved in multiple dehydration stresses.

LncRNA was annotated by scanning 2000 bp upstream
or downstream of genes based on the switchgrass gen-
omic database [50-52], and then analyzing complemen-
tary base-pairing between antisense IncRNAs and
mRNAs using RNAplex software [57]. In this study,
4554 IncRNAs were annotated, and 9.7% (441) of these
were differentially expressed (Table 1; Fig. 1c). We ana-
lyzed the functions of the predicted target genes of all
IncRNAs as well as differentially expressed IncRNAs.
GO and pathway enrichment analysis showed that ABA
and ethylene biosynthesis, signal transduction, and
starch and sucrose metabolism were significantly
enriched under repetitive dehydration stresses (Fig. 3;
Additional file 2: Table S9). In addition, when the above
pathways were analyzed, we found that most functional
IncRNAs were located upstream of genes, and 85.7% had
similar expression patterns with their downstream genes
(Figs. 4—6; Additional file 2: Tables S10-12). The sequence
2000 bp upstream of a target gene is the promoter region,
and therefore we inferred that these IncRNAs functioned
by interacting with the promoter, cis-acting elements, or
other regulatory activities, and thus influenced the tran-
scription of downstream genes [15, 50-52].

To date, ABA is considered the most important hor-
mone involved in plant drought stress responses, and
plant drought resistance can be improved significantly
by increasing ABA biosynthesis or signal transduction,
such as enhancing ABA receptors [79, 80]. In our study,
the orthologs of the rate-limiting enzyme of ABA bio-
synthesis, Pavir.Ia01153 and Pavir.J24772, were signifi-
cantly upregulated in D1 and D2 (Figs. 4, 7). The
IncRNA XLOC_053020, located 1229 bp upstream of
Pavir.[a01153, was upregulated in D1 and D2 (Figs. 4, 7;
Additional file 2: Table S10). The signal transduction
factors ABF (Pavir.Aa00597, Pavir.J00256) and PP2C
(Pavir.Eb01847) were also upregulated during repeated
dehydration stresses. The IncRNA XLOC_033252, lo-
cated 150 bp upstream of Pavir.Eb01847, has the same
expression pattern as Pavir.Eb01847 (Fig. 4). The expres-
sion levels of these key genes and IncRNAs were verified
using qRT-PCR, and the dynamic change in ABA levels
was also determined with HPLC-MS (Figs. 4, 7). These
data demonstrated that ABA biosynthesis and signal
transduction were significantly enhanced during multiple
dehydration stresses, and thus the related IncRNAs likely
played important roles in these processes. Enhanced
ABA metabolism will result in changes in stomatal clos-
ure, osmotic adjustment, or metabolic pathways [46, 61].

In contrast to ABA metabolism, ETH biosynthesis and
signal transduction were weakened, especially in D2. In
Arabidopsis, many key enzymes and factors of this path-
way respond to hyperosmotic stress, such as ACOs,
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ACSs, ERFs, RTRs, ERSs, and EINs. For example, 7uACO1
(wheat) negatively regulates salinity stress in Arabidopsis
[81], and three ACO genes, two ETR genes, and four EIN
genes were significantly upregulated in physic nut leaves
under severe drought stress [82]. In this study, three ACO
ortholog genes and one EIN ortholog were downregulated
in D2, three IncRNAs located upstream of ACO genes
were also downregulated in D2, and one antisense
IncRNA of an EIN gene was upregulated in D2 (Fig. 5;
Additional file 2: Table S11). These results indicated that
ETH biosynthesis and signal transduction were downregu-
lated in D2, demonstrating that switchgrass plants adapted
rapidly to repeated dehydration stress in D2. The decrease
in ETH is beneficial to plant growth and suppresses leaf
senescence [66, 83]. In addition, the differential expression
patterns of upstream and antisense IncRNAs with target
genes indicated differing action modes of upstream
IncRNAs and antisense IncRNAs.

Aside from the plant hormone biosynthesis and signal
transduction pathways, starch and sucrose metabolism
were also enriched in the functional analysis of IncRNA
target genes (Fig. 3; Additional file 2: Table S9). Starch
can be degraded to maltose by beta-amylases, and sus-
tains stomatal opening [73, 74]. In this study, an ortho-
log of beta-amylase was significantly downregulated in
D1 and D2 (Fig. 6; Additional file 2: Table S12), which
would promote stomatal closure. On the other hand,
starch can be degraded to glucose-1-phosphate by PHS
[76], and then indirectly converted into T-6-P and tre-
halose by TPP and TPS, respectively [77]. In switchgrass
under dehydration stress, orthologs of PHS and TPS
were significantly upregulated in D1 and D2, and one
IncRNA located 428 bp upstream of the TPS gene was
also significantly upregulated. These results suggest that
starch metabolism was affected and trehalose biosyn-
thesis was enhanced under dehydration stress, which
greatly improved carbohydrate metabolism and osmotic
adjustment [46].

Following identification and functional analysis of
IncRNAs, we sought transcriptional memory IncRNAs
expressed under repetitive dehydration stresses. Using a
method and threshold values reported for Arabidopsis
and maize [1, 3], we identified 107 dehydration memory
IncRNAs, including 9 upregulated memory ([+/+])
IncRNAs, 4 downregulated memory ([-/-]) IncRNAs, 70
[+/-] memory IncRNAs, and 24 [-/+] memory IncRNAs
(Fig. 8¢, d; Additional file 2: Table S1). Remarkably, the
number of [+/-] IncRNAs (65.4%) was significantly
greater than the other three types, and this phenomenon
is apparent in the ratios of dehydration stress memory
genes in switchgrass (51%), Arabidopsis (44%), and
maize (65%) (Fig. 8c, d; Additional file 2: Table S13). The
mechanism of this phenomenon is unknown, and 76.6%
of the dehydration stress memory IncRNAs were not



Zhang et al. BMC Plant Biology (2018) 18:79

annotated, and thus their functions remain unknown
(Additional file 2: Table S1). High-throughput RNA se-
quencing may allow elucidation of dehydration memory
genes and IncRNAs, and the information acquired in
this study provides a strong foundation for analysis of
the sophisticated network.

Conclusions

In this study, switchgrass plantlets of a homogenous
genotype were exposed to multiple dehydration stresses.
We identified 16,551 IncRNAs, of which 441 were differ-
entially expressed. We annotated 4554 IncRNAs in up/
downstream or complementary base-pairing analysis,
while GO and pathway enrichment analysis demon-
strated that these IncRNAs were involved in ABA and
ETH biosynthesis and signal transduction, as well as
starch and sucrose metabolism. Subsequent analysis in-
dicated that ABA and trehalose were synthesized signifi-
cantly in D1 and D2, and ABA signal transduction was
also enhanced. Meanwhile, ETH biosynthesis and signal
transduction was suppressed. Transcriptomic data, in-
cluding genes involved in ABA metabolism and the asso-
ciated IncRNAs were verified using qRT-PCR. HPLC-
MS showed that ABA accumulated significantly during
dehydration stress, especially in D2. Furthermore, 307
dehydration stress memory IncRNAs were identified and
we found that the ratios of different memory types are
similar in switchgrass, Arabidopsis, and maize. In this
study, we identified and characterized IncRNAs in
switchgrass repetitive dehydration stress, and the
IncRNAs and genes identified in this paper provide
novel resources for genetic modification of switchgrass
and other crops in the Gramineae family, in particular
wheat, rice, and maize.

Additional files

Additional file 1: Figure S1. Overview of the RNA-Seq results and
repeatability of different biological replicates. The first eight figures show
the proportion of clean reads in the sequenced samples; the next three
figures show the repeated expression of genes in two biological replicates;
the last eight figures showed the correlations between differentially expressed
genes in two biological replicates, and the distributions of upregulated and
downregulated genes/IncRNAs in multiple dehydration stresses. C, control;
D1-2, the first and second dehydration stresses; R1, the first recovery period.
Figure S2. Water loss and survive rates in multiple dehydration stresses. A.
Water loss from leaves during the first, second and third dehydration stresses.
B. Survival rates of trained and non-trained switchgrass. Figure S3. Verification
of four types of dehydration memory genes by quantitative real-time PCR. C,
control; D1-2, first and second dehydration stresses; R1, first recovery period.
Relative gene expressed levels were calculated using the AACT method with
PveEF-1a as the internal control, and three biological replicates were
performed for each experiment. (ZIP 1905 kb)

Additional file 2: Table S1. List of memory IncRNAs. Table S2. Primers
used in gRT-PCR. Table S3. Expression summary of different samples and
treatments. Table S4. List of differentially expressed IncRNAs. Table S5.
LncRNAs annotated by antisense and upstream or downstream. Table S6.
Differentially expressed INcRNAs and the annotated genes. Table S7.
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Differentially expressed INcRNAs annotated with differentially expressed
genes. Table S8. GO term _ response to stress. Table S9. Top 20 pathway
enriched in annotation genes. Table S10. LncRNAs and genes involved in
ABA biosynthesis and signal transduction. Table S11. LncRNAs and genes
involved in ETH biosynthesis and signal transduction. Table S12. LncRNAs
and genes involved in starch and sucrose metabolism. Table S13.
Dehydration response and transcriptional memory genes or INncCRNAs
in switchgrass, maize and Arabidopsis. (ZIP 3778 kb)
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“" Downregulated significantly between A and B; "+": Upregulated
significantly between A and B; “=": No significant change between A and B;
AAO: Abscisic-aldehyde oxidase; ABA: Abscisic acid;

ACO: Aminocyclopropane carboxylate oxidase; ACS: 1-aminocyclopropane-1-
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