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analysis of the internal causes of nutrient
changes in alfalfa at different growth
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Abstract

Background: Alfalfa (Medicago sativa L.) is one of the most important forage resources in the world due to its high
nutritive value. However, its nutritional quality decreases during the transition from budding to flowering. Previous
research revealed a decreased crude protein content and increased fibre content in alfalfa forage harvested at later
maturity stages, leading to a reduction in nutritional quality. However, the reasons for this phenomenon have not
been explained at the molecular level.

Results: In this study, leaves from the WL319HQ alfalfa cultivar were harvested at two developmental stages (budding
and mid-flowering). The leaves were used to test the variable expression of proteins and metabolites during these
stages. TMT-based quantitative proteomics and LC-MS/MS-based untargeted metabolomics methods were employed
in this study. A total of 415 proteins and 49 metabolites showed at least a 1.2-fold difference in abundance during
these stages. Most of the differentially expressed proteins and metabolites were involved in metabolic processes,
including carbohydrate metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, and biosynthesis
of amino acids. Alfalfa leaves in mid-flowering contain less crude protein due to the decrease in L-glutamic acid
content. Carbohydrate metabolism provides the raw material for the synthesis of hemicellulose, resulting in an increase
in the hemicellulose content of the alfalfa leaves, leading to an increase in the NDF content. In addition, the increase in
L-phenylalanine content could have provided the conditions necessary for lignin synthesis. These are the main factors
leading to reductions in alfalfa relative feed value (RFV) and quality.

Conclusions: This study used joint proteomic and metabolomic analyses to elucidate the relationship between the
reduction in the nutritional value of alfalfa and complex biological processes. This provides a theoretical basis for
producing high-quality alfalfa hay and sets the stage for further research.
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Background
Alfalfa (Medicago sativa L.) is a well-known forage crop
that has been cultivated since antiquity. It is the most
widely grown leguminous crop in the world and exhibits
high protein, amino acid, vitamin and mineral contents [1,
2]. Hay making is the most important method of alfalfa
utilization and conservation [3]. Alfalfa is referred to as the

“queen of forage” because of the high nutritive value of its
leaves and the fact that animals will readily eat it both when
it is green and as hay [4]. However, the nutritive value of al-
falfa hay is influenced by many factors, including the har-
vest period [3, 5, 6]. Alfalfa harvested at the budding stage
has a greater leaf yield than stem yield, but the early flower
leaf and stem yields are nearly the same. At the late flower-
ing stage, the stem fraction of forage is greater than that of
the leaves [7]. Many researchers have also reported de-
creased crude protein (CP) and increased fibre contents in
alfalfa forage harvested at advancing maturity stages [8].
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Cutting alfalfa at the optimum growth stage can improve
both hay yield and quality [9]. Harvesting at the early flower
stage is currently thought to result in high yields and nutri-
ent concentrations in alfalfa forage. However, this is difficult
to achieve in China, where alfalfa is always harvested from
the budding stage until the mid-flowering stage due to the
temperate semi-arid continental climate and the lack of
mechanical equipment. Many metabolites and nutrients,
especially proteins, may decrease during this time, resulting
in a reduction in the relative feed value (RFV), which is a
widely accepted forage quality index [10], indicating a large
impact on the production of high-quality alfalfa hay and
the stable and sustainable development of animal
husbandry.
To determine exactly what happens to the nutrients

during these changes, we considered the use of omics
methods. Metabolomics and proteomics offer an effect-
ive approach for identifying metabolites, proteins and as-
sociated pathways that are crucial for understanding the
nutrient contents of alfalfa and the mechanisms under-
lying nutrient metabolite changes during different
growth stages. Most of the current research on alfalfa fo-
cuses on using proteomics to identify stress resistance
genes [11]. However, few studies have focused on the
nutrient metabolism and internal factors that affect the
quality of alfalfa hay during alfalfa development. Recent
advances in metabolomics and proteomics technologies
are greatly expediting the identification and
characterization of natural products and their associated
metabolites [12, 13]. In this regard, integrated metabolo-
proteomics [11, 14], using high-resolution nano-liquid
chromatography coupled to tandem mass spectrometry
(nanoLC-MS/MS) [12], is a good method for identifying
metabolites or proteins that may lead to reductions in
the nutritional quality of alfalfa.

In this study, we conducted an integrated untargeted
metabolomics and tandem mass tag (TMT)-based prote-
omic analysis. Our objective was to gain a comprehen-
sive understanding of the nutrient changes in alfalfa and
the causes of these changes from the budding to flower-
ing stages. We also wanted to identify key regulatory
pathways and proteins that contribute to changes in me-
tabolites and nutrient contents in alfalfa.

Methods
Plant material
Alfalfa (Medicago sativa L.) was grown in a field at the
Inner Mongolia Agricultural University field experimen-
tal station in Baotou (40.60°N, 109.75°E), Inner
Mongolia, China, in 2015. We had permission to use
this field for our study, and all experiments were con-
ducted in accordance with local legislation. Leaves were
selected as samples. The harvest times corresponded to
three distinct stages: budding (large area of alfalfa bud-
ding), early flowering (10% flowering) and mid-flowering
(45% flowering) (Fig. 1). Leaf samples of 150 g were col-
lected from alfalfa at each of these three stages and then
dried at 65 °C for nutrition quality analysis. At the bud-
ding stage and mid-flowering stage, 50 g leaf samples
were collected from alfalfa and immediately frozen in li-
quid nitrogen, then stored at − 80 °C for protein and
metabolite extraction. The treatments were repeated in
triplicate for proteomics and nutrition analyses and were
repeated nine times for metabolomics analysis.

Nutrition quality analysis
Crude protein (CP) was analysed using the AOAC [15]
method and calculated as N × 6.25. Fibre was measured
as described by Van Soest et al. [16], with the samples
being sequentially digested using an Ankom 220 Fiber

Fig. 1 Alfalfa at different growth stages. Alfalfa at different growth stages. a Alfalfa in the budding stage. b Alfalfa in the early flowering stage. c
Alfalfa in the mid-flowering stage
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Analyzer (Ankom Technology, Fairport, NY, USA) in ac-
cordance with the recommendations for neutral deter-
gent fibre (NDF) and acid detergent fibre (ADF)
analyses. The relative feed value (RFV) index was esti-
mated as the digestible dry matter (DDM) content of the
samples based on ADF values. First, the dry matter in-
take (DMI) potential (as a percentage of body weight,
BW) was calculated from NDF values, and the index was
then calculated as DDM multiplied by DMI as a % of
BW and divided by 1.29 [17].

DDM ¼ 88:9− 0:779�%ADFð Þ:
DMI ¼ 120= %NDFð Þ
RFV ¼ DDM� DMIð Þ=1:29

TMT analysis methods
Protein extraction, digestion, TMT labelling and strong
cation exchange chromatography
Proteins were extracted using TCA/acetone precipitation
and the SDT (4% SDS, 100 mM DTT, 150 mM Tris-HCl
pH 8.0) lysis method [18]. Samples of approximately
200 mg were frozen in liquid nitrogen and ground with
a mortar and pestle before being transferred to a 10–
15 ml centrifuge tube. Next, five volumes of TCA/acet-
one (1:9) were added to the powder, followed by vortex-
ing. The mixture was then precipitated at − 20 °C for 4 h
and centrifuged (6000 g, 4 °C, 40 min), and the super-
natant was discarded. Pre-cooling acetone was subse-
quently added, and washing was performed three times.
The precipitate was then air dried, and 30 volumes of
SDT buffer was added to 20 mg of the powder, followed
by mixing and boiling for 5 min. Thereafter, the lysate
was sonicated (80 W, 10 s, 10 times) and boiled for
15 min. After centrifugation (14,000 g, 4 °C, 40 min), the
supernatant was filtered with 0.22 μm filters. The filtrate
was then quantified using a BCA Protein Assay Kit (Bio-
Rad, USA), and the sample was stored at − 80 °C. Pro-
tein digestion and peptide quantification were performed
according to the FASP procedure described by Wis-
niewski et al. [19]. The digested peptides of each sample
were desalted in C18 Cartridges (Empore™ SPE Car-
tridges C18, standard density, bed I.D. 7 mm, volume
3 ml, Sigma), concentrated via vacuum centrifugation
and reconstituted in 40 μl of 0.1% (v/v) formic acid. The
peptide content was estimated based on the UV light
spectral density at 280 nm, with an extinction coefficient
of 1.1 for a 0.1% (g/l) solution, which was calculated
based on the frequency of tryptophan and tyrosine in
vertebrate proteins.
For labelling, each TMT reagent was dissolved in 70 μl

of ethanol and added to the respective peptide mixture.
For each sample, 100 μg of the peptide mixture was la-
belled using the 6-plex TMT reagent according to the

manufacturer’s instructions (TMT Mass Tagging Kits
and Reagents. Thermo Fisher Scientific). The samples
were labelled as (XLQ-1)-126, (XLQ-2)-127, (XLQ-3)-
128, (ZHQ-1)-129, (ZHQ-2)-130 and (ZHQ-3)-131 and
then multiplexed and vacuum dried.
A Pierce high-pH reverse-phase fractionation kit

(Thermo Scientific) was employed to fractionate the
TMT-labelled digested samples into ten fractions via in-
creasing acetonitrile step-gradient elution according to
the manufacturer’s instructions.

Mass spectrometry
Each fraction was injected for nanoLC-MS/MS analysis.
The peptide mixture was loaded onto a reverse-phase
trap column (Thermo Scientific Acclaim PepMap100,
100 μm × 2 cm, nanoViper C18) connected to a C18
reverse-phase analytical column (Thermo Scientific Easy
Column, 10 cm long, 75 μm inner diameter, 3 μm resin)
in buffer A (0.1% formic acid) and separated with a lin-
ear gradient of buffer B (84% acetonitrile and 0.1% for-
mic acid) at a flow rate of 300 nl/min, controlled by
IntelliFlow technology. The analysis gradient was a 1-h
gradient consisting of 0–50% buffer B for 50 min, 50–
100% buffer B for 5 min, and holding in 100% buffer B
for 5 min.
LC-MS/MS analysis was performed on a Q Exactive

mass spectrometer (Thermo Scientific) coupled to an
Easy nLC system (Proxeon Biosystems, now Thermo
Fisher Scientific) for 60 min. The mass spectrometer
was operated in positive ion mode. MS data were ac-
quired using a data-dependent top 10 method, dynamic-
ally choosing the most abundant precursor ions from
the survey scan (300–1800 m/z) for HCD fragmentation.
The automatic gain control (AGC) target was set to 3e6
and the maximum injection time to 10 ms. The duration
of dynamic exclusion was 40.0 s. Survey scans were ac-
quired at a resolution of 70,000 at m/z 200; the reso-
lution for HCD spectra was set to 17,500 at m/z 200;
and the isolation width was 2 m/z. The normalized colli-
sion energy was 30 eV. The underfill ratio, which speci-
fies the minimum percentage of the target value likely to
be reached at the maximum fill time, was defined as 0.
1%. The instrument was run with peptide recognition
mode enabled.

Database search and data analysis
MS/MS spectra were searched using the MASCOT en-
gine (Matrix Science, London, UK; version 2.2) embed-
ded into Proteome Discoverer 1.4 (Thermo Fisher
Scientific Inc. Xcalibur Proteome Discoverer Version 1.4
User Guide). The acquired MS/MS spectra were auto-
matically searched against Uniprot database (“Uniprot_
Medicago_71871_20160801.fasta” downloaded from
http://www.uniprot.org/ on August 1, 2016, which
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includes 71,871 protein sequences). The related search
parameters were as follows: enzyme = trypsin; max
missed cleavage = 2; fixed modifications: carbamido-
methyl (C), TMT 6plex (N-term), TMT 6plex (K);
variable modifications: Oxidation (M), TMT 6plex (Y);
peptide mass tolerance = ± 20 ppm; fragment mass toler-
ance = 0.1 Da. For unique proteins with at least two
unique peptides, the false discovery rate (FDR) was set
to < 0.01 for the identification of both peptides and pro-
teins. Proteome Discoverer 1.4 software was used for the
quantitative analysis of the peak intensity values of the
ions of peptide fragments. To designate significant
changes in protein expression, a fold-change of > 1.2 or
< 0.83 and a P-value of < 0.05 using Student’s t-test were
set as cut-off values [20, 21].

Untargeted metabolomics analysis methods
Metabolite extraction
Frozen samples were thawed at 4 °C and ground in
liquid nitrogen. The weight of each sample from each
group was approximately 80 mg. Metabolites were
extracted by adding 1 ml of methanol:acetonitrile:water
(2:2:1, v/v), followed by vortexing for 60 s. Ultrasonic
crushing was performed at a low temperature, two times
for 30 min each time. The samples were then centri-
fuged at high speed (13,000 rpm, 4 °C) for 15 min, and
the supernatant was dried in a vacuum centrifuge, trans-
ferred to new tubes and stored at − 80 °C. To monitor
the stability and repeatability of the instrument analysis,
quality control (QC) samples were prepared by pooling
10 μl of each sample, and these samples were analysed
together with the other samples. The QC samples were
inserted regularly and analysed every five samples.

LC-MS/MS analysis
LC-MS/MS analyses were performed using a UHPLC
(1290 Infinity LC, Agilent Technologies) coupled to a
quadrupole time-of-flight mass spectrometer (AB Sciex
TEIPLE TOF 6600).
For HILIC separation, samples were analysed using a

2.1 × 100 mm ACQUITY UPLC BEH 1.7 μm column
(Waters, Ireland). In both ESI positive and negative
modes, the mobile phase contained A = 25 mM ammo-
nium acetate and 25 mM ammonium hydroxide in water
and B = acetonitrile. The gradient was 85% B for 1 min,
which was linearly reduced to 65% over 11 min and then
to 40% over 0.1 min, where it was held for 2.9 min and
then increased to 85% over 0.1 min. A 5 min re-
equilibration period was employed.
The ESI source conditions were set as follows: ion

source Gas (Gsa1), 60; ion source Gsa2 (Gas2), 60; cur-
tain gas (CUR), 30; source temperature, 600 °C; ion
spray voltage floating (ISVF), ± 5500 V. During MS-only
acquisition, the instrument was set for acquisition over

an m/z range of 60–1000 Da, and the accumulation time
for TOF MS scanning was set at 0.20 s/spectrum. Dur-
ing auto MS/MS acquisition, the instrument was set to
acquire over an m/z range of 25–1000 Da, and the accu-
mulation time for product ion scanning was set at 0.
05 s/spectra. The parameters were set as follows: colli-
sion energy (CE) fixed at 35 V with ±15 eV; declustering
potential (DP), 60 V (+) and − 60 V (−); exclusion of iso-
topes within 4 Da; candidate ions monitored per cycle,
10.

Data processing and statistical data analysis
The raw MS data (wiff.scan files) were converted to
MzXML files using ProteoWizard MSConvert and proc-
essed using XCMS [22–24] for feature detection, reten-
tion time correction and alignment. Metabolites were
identified via accuracy mass (< 25 ppm) matching and
secondary spectrogram matching (score > 0.8). The re-
sults were queried and compared with a laboratory stan-
dards database (Shanghai Applied Protein Technology
Co., Ltd.)
In the extracted ion features, only the variables exhi-

biting more than 50% nonzero measurement values in at
least one group were retained. For the multivariate stat-
istical analysis, SIMCA-P (version 14.1, Umetrics, Umea,
Sweden) was employed. After Pareto scaling, principal
component analysis (PCA) and orthogonal partial least-
squares discriminant analyses (OPLS-DA) were per-
formed, and 7-fold cross-validation and response permu-
tation testing were used to evaluate the robustness of
the model. The significantly different metabolites were
determined based on the combination of a statistically
significant threshold of variable influence on the projec-
tion (VIP) values obtained from the OPLS-DA model
and Student’s t-test (P-value) on the raw data, and the
metabolites with a VIP > 1.0 and P-values < 0.05 were
considered statistically significant [25].

Bioinformatics analysis
To determine the functional classification and biological
properties of the selected differentially abundant pro-
teins, the identified protein sequences were mapped
using Gene Ontology (GO) terms. For this analysis, a
homology search was performed for all of the identified
sequences with a localized NCBI BLAST search against
the NCBInr Medicago truncatula database. GO annota-
tion was performed using BLAST2GO [26]. The GO
project described the roles of proteins in three func-
tional categories: biological process (BP), cellular compo-
nent (CC) and molecular function (MF). In addition, all
differentially abundant proteins and metabolites were
queried against the online Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.kegg.jp/) [27] and
mapped to KEGG pathways. To further explore the
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impact of differentially expressed proteins and identify
internal relationships between differentially expressed
proteins, enrichment analysis was performed. Only func-
tional categories and pathways with P-values < 0.05 were
considered to have significant enrichment. The different
metabolites and significantly different proteins identified
between the mid-flowering-stage and the budding-stage
alfalfa leaves were employed separately to query the inte-
grated KEGG metabolites and proteins with an R-based
software tool for omics data integration.

Statistical analysis
All experiments were repeated with three independent
biological replicates. The nutritional indicator data were
analysed using one-way ANOVA with SPSS 20.0 statis-
tical software (v 20.0, SPSS Inc. Chicago, USA). The
mean differences were compared using Duncan’s mul-
tiple range t-test. Comparisons with P < 0.05 were con-
sidered significantly significant, and the data are
presented as the mean ± standard errors of at least three
independent replicates.

Results
Alfalfa leaf nutrient content analysis
To assess the composition of the leaves at different
stages, the main nutritional indexes were determined
and recorded (Table 1). CP analysis showed that the CP
content of alfalfa leaves was highest in the budding
stage, at 29.00, and lowest in the mid-flowering stage, at
26.84. These results revealed that the CP content of
leaves continues to decrease from the budding to mid-
flowering stage. In contrast, the NDF content at the
mid-flowering stage was 22.43, which was significantly
higher than at the early flowering and budding stages (P
< 0.05). There was no significant difference in ADF con-
tent between the budding and early flowering stages,
which was significantly lower than in the mid-flowering
stage (P > 0.05). Fibre analysis indicated that the NDF
and ADF of alfalfa leaves gradually increased. Thus,
these factors caused the alfalfa RFV to decline from the
budding to mid-flowering stages.

Protein profiles of alfalfa leaves at different
developmental stages
The alfalfa leaves from two developmental stages were
assessed by profiling the proteome. Approximately
17,214 unique peptides corresponding to 4540 proteins
were successfully identified through LC-MS/MS mass
spectrometry identification and a search against the Uni-
Prot database employing MASCOT integrated with
Proteome Discoverer 1.4 software. A 1.2-fold-change
cut-off was used to indicate significant changes in the
abundance of differentially expressed proteins (DEPs)
during alfalfa development, and 415 proteins were iden-
tified. Among these proteins, 256 were down-regulated,
and 159 were up-regulated in leaves at the mid-
flowering stage compared with the budding stage
(Additional file 1).
Protein functional analysis using all 415 DEPs based

on GO category enrichment was carried out using the
GO and UniProt databases. Based on their functional
features, the 415 significantly differentially expressed
proteins were classified into the biological process (BP),
cellular component (CC) and molecular function (MF)
categories (Fig. 2). The major functional categories in
the BP category were metabolic processes, cellular pro-
cesses, single-organism processes and response to stimu-
lus. For MF, catalytic activity, binding and transporter
activity were the most abundant groups. The cell, organ-
elle and membrane categories were the most abundant
groups under CC.
In addition, KEGG analysis was employed to under-

stand the molecular pathways containing differentially
expressed proteins. A total of 415 proteins were assigned
to 173 pathways (Additional file 2). These proteins were
mainly distributed in glutathione metabolism, phenyl-
propanoid biosynthesis, photosynthesis, carbon metabol-
ism, amino sugar and nucleotide sugar metabolism,
starch and sucrose metabolism, biosynthesis of amino
acids, and other categories (Fig. 3). These results indi-
cate that alfalfa nutritional quality related to proteins in-
volved in synthesis and metabolism and the metabolic
pathways in which they participate changed.

Metabolite profiles of alfalfa leaves at different
developmental stages
The changes in the metabolic profiles of the leaf sam-
ples between two groups were analysed using the
metabolomics method based on HILIC UHPLC-Q–
TOF technology. The significantly different metabo-
lites were selected based on the criteria of an OPLS-
DA model VIP > 1 and a P-value < 0.05. To evaluate
the rationality of the candidate metabolites and more
fully and intuitively illustrate the relationship between
the samples and the metabolites in samples exhibiting
differences in expression patterns, we conducted a

Table 1 Nutrients and relative feed value of alfalfa in different
growth periods

Growth period CP
(%DM)

NDF
(%DM)

ADF
(%DM)

RFV

Budding stage 29.00 ± 0.08a 19.36 ± 0.06a 12.14 ± 0.02a 381.72

Early flowering 27.69 ± 0.09b 21.58 ± 0.06b 12.16 ± 0.01a 342.38

Mid-flowering 26.84 ± 0.10c 22.43 ± 0.05c 12.21 ± 0.02b 329.25
a, b, cMeans ± SD within columns with different superscripted letters indicating
significant differences (P < 0.05)
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Fig. 2 GO classification of the identified proteins. GO classification of the identified proteins during alfalfa flower development. The results are
summarized under three main GO categories: biological process (BP), cellular component (CC), and molecular function (MF)

Fig. 3 KEGG pathways in which the identified proteins are involved. Signalling pathways of the proteins identified as being involved in the
budding to mid-flowering stages of alfalfa development
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hierarchical cluster analysis based on the expression
of significantly different metabolites in each group of
samples. This approach assisted in the accurate selec-
tion of marker metabolites and the investigation of
changes in related metabolic processes (Fig. 4).
Finally, 49 significant variations in metabolites were
detected, which are shown in Table 2. These metabo-
lites mainly included amino acids, organic acids, car-
bohydrates, purines, lipids and pyrimidines (Fig. 5a).
A total of 24 metabolites were up-regulated at flower-
ing, while 25 were down-regulated at flowering. The

expression levels of L-glutamic acid, L-asparagine, purine,
pyrimidine and other protein synthesis-related metabolites
were down-regulated, whereas L-phenylalanine and carbo-
hydrates, lipids and other substances were significantly
up-regulated.
We submitted the differential metabolites to the

KEGG website for the analysis of relevant pathways, and
we found that these differentially expressed metabolites
were mainly involved in the biosynthesis of secondary
metabolites, protein digestion and absorption, the bio-
synthesis of amino acids and the biosynthesis of

Fig. 4 Hierarchical cluster heat map of differential metabolites. Hierarchical cluster heat map of significantly different metabolites during alfalfa
leaf development from the budding to the mid-flowering stage. a Positive mode, b negative mode
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Table 2 Differential metabolites of leaves between the budding stage and mid-flowering stage

Ionization mode Metabolite no. Adduct RT(s) m/z Metabolite VIP Fold-change P-value

ESI(+) 1 (M + H-H2O)+ 458.83 120.08 Tyramine 2.65 1.47 0.0049

ESI(+) 2 (M + H)+ 253.46 447.13 Sissotrin 1.48 3.91 0.0006

ESI(+) 3 (M + H)+ 186.58 170.08 Pyridoxine 1.12 1.52 0.0006

ESI(+) 4 (M + H)+ 489.09 220.12 Pantothenate 1.58 1.80 0.0000

ESI(+) 5 (M + H)+ 190.21 431.13 Ononin 2.70 3.83 0.0196

ESI(+) 6 (M + H)+ 190.05 269.08 Formononetin 1.52 3.69 0.0182

ESI(+) 7 (M + H)+ 646.43 146.09 4-Guanidinobutyric acid 1.12 1.37 0.0000

ESI(+) 8 (M + H-H2O)+ 285.03 313.27 1-Hexadecanoyl-sn-glycerol 1.41 1.50 0.0260

ESI(−) 9 (M-H)- 377.88 151.06 Xylitol 3.23 1.56 0.0001

ESI(−) 10 (M-H)- 62.82 137.02 Salicylic acid 3.66 2.29 0.0109

ESI(−) 11 (M-H)- 402.66 277.12 Pantetheine 1.19 2.47 0.0000

ESI(−) 12 (M + CH3COO)- 265.12 207.09 Mevalonic acid 2.00 1.88 0.0139

ESI(−) 13 (M-H)- 458.41 203.08 L-Tryptophan 2.33 1.74 0.0265

ESI(−) 14 (M-H)- 133.56 135.03 L-Threonate 1.06 1.30 0.0042

ESI(−) 15 (M-H)- 456.39 164.07 L-Phenylalanine 1.63 1.34 0.0143

ESI(−) 16 (M-H)- 134.08 89.02 Glyceraldehyde 1.32 1.23 0.0136

ESI(−) 17 (M-H)- 117.76 153.02 Gentisic acid 2.17 1.68 0.0364

ESI(−) 18 (M + CH3COO)- 539.79 181.07 D-Threitol 1.31 1.69 0.0001

ESI(−) 19 (M + CH3COO)- 486.17 209.07 D-Ribose 1.16 1.48 0.0001

ESI(−) 20 (M + CH3COO)- 465.33 223.08 D-Quinovose 3.74 2.29 0.0000

ESI(−) 21 (M-H)- 276.68 179.06 D-Mannose 1.77 1.58 0.0009

ESI(−) 22 (M-H)- 550.77 89.02 DL-lactate 2.00 1.19 0.0070

ESI(−) 23 (M + Na-2H)- 173.53 209.12 3-Hydroxycapric acid 1.72 1.56 0.0221

ESI(−) 24 (M + CH3COO)- 673.63 237.06 2-Dehydro-3-deoxy-D-gluconate 2.37 1.34 0.0030

ESI(+) 25 (M + H)+ 696.52 246.18 Val-Lys 1.15 0.72 0.0362

ESI(+) 26 (M + H)+ 656.61 274.19 Val-Arg 2.16 0.67 0.0061

ESI(+) 27 (M + CH3CN + H)+ 79.12 261.15 trans-Zeatin 1.39 0.35 0.0487

ESI(+) 28 (M + H)+ 105.57 123.06 Nicotinamide 7.09 0.61 0.0243

ESI(+) 29 (M + H)+ 684.47 147.08 L-Glutamine 1.70 0.76 0.0159

ESI(+) 30 (M + H)+ 730.92 148.06 L-Glutamic acid 2.26 0.79 0.0130

ESI(+) 31 (M + H)+ 692.74 133.06 L-Asparagine 2.27 0.58 0.0017

ESI(+) 32 (M + H)+ 613.65 288.20 Ile-Arg 2.19 0.66 0.0034

ESI(+) 33 (M + H)+ 402.69 152.06 Guanine 2.20 0.56 0.0164

ESI(+) 34 (M + H)+ 730.92 130.05 D-Pyroglutamic acid 1.95 0.81 0.0193

ESI(+) 35 (M + H)+ 71.69 271.06 Apigenin 6.28 0.30 0.0265

ESI(+) 36 (M + H)+ 677.16 87.04 4-Hydroxybutanoic acid lactone 2.90 0.81 0.0002

ESI(+) 37 (M + H)+ 677.15 104.07 4-Aminobutyric acid 2.58 0.82 0.0004

ESI(+) 38 (M + H)+ 338.63 496.34 1-Hexadecanoyl-sn-glycero-3-phosphocholine 2.17 0.68 0.0271

ESI(−) 39 (M-H)- 145.45 111.02 Uracil 1.77 0.49 0.0010

ESI(−) 40 (M-H)- 534.46 227.13 Traumatic Acid 2.23 0.63 0.0166

ESI(−) 41 (M-H)- 796.59 133.01 L-Malic acid 1.34 0.87 0.0327

ESI(−) 42 (M-H)- 730.88 146.05 L-Glutamate 2.28 0.83 0.0483

ESI(−) 43 (M-H)- 781.63 195.05 Galactonic acid 1.13 0.61 0.0423

ESI(−) 44 (M-H)- 277.29 134.05 Adenine 11.09 0.63 0.0010
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phenylpropanoids (Fig. 5b). The changes in these metab-
olites provide important information for our study of
changes in the nutritional quality of alfalfa.

Proteome-metabolome data co-analysis
To associate the results of proteomics and metabolomics
analyses, we chose metabolic pathways as the carrier
and conducted a mapping analysis based on the differ-
ences in proteins and metabolites. In total, matches to
57 metabolic pathways showed changes (Additional file 3).
Further analysis of these differential metabolic pathways
revealed that they were mainly involved in energy me-
tabolism. We further selected the metabolic pathways
related to nutritional metabolism associated with alfalfa,
the biosynthesis of amino acids, phenylpropanoid bio-
synthesis and starch and sucrose metabolism, among
others (Fig. 6).
Following annotation, phenylpropanoid biosynthesis

was sequentially mapped to metabolic pathways (Fig. 7).
The proteins and metabolites with differential abun-
dances were clearly mapped primarily to the phenylpro-
panoid biosynthesis pathway in KEGG. Proteins and
metabolites involved in phenylpropanoid biosynthesis
were quite active from budding to mid-flowering, among
which L-phenylalanine, beta-glucosidase [EC:3.2.1.21],
and cinnamyl-alcohol dehydrogenase [EC:1.1.1.195] were

up-regulated, and 4-hydroxycinnamic acid, caffeic acid
3-O-methyltransferase [EC:2.1.1.68], and caffeoyl-CoA
O-methyltransferase [EC:2.1.1.104] were down-
regulated.

Discussion
In omics studies, proteomics and metabolomics are later
additions involving sequential events and fulfilling the
understanding of the functional aspects of the living sys-
tem. Proteomics mainly delineates the expression pro-
files of the proteins, including the analysis of protein
structure, and reveals genetic modifications. In contrast,
metabolomics refers to the complete analysis of low-
molecular-weight compounds. Metabolomics plays a
vital role in determining the changes in the compounds
under different conditions or the changes over time and
can be employed to reveal the biochemical compos-
itional characteristics, such as colour and smell, of bio-
active compounds; these characteristics are not possible
to predict by external sensing [28]. As stated by Gahlaut
et al. [29], the complete elucidation of biological re-
sponses at different stages can be compiled at the tran-
scriptome, proteome and metabolome levels, and
proteomics reflects modulations in the metabolomics.
Carrari et al. [30] performed a metabolomics analysis to
discriminate the developmental stages of tomato fruit.

Table 2 Differential metabolites of leaves between the budding stage and mid-flowering stage (Continued)

Ionization mode Metabolite no. Adduct RT(s) m/z Metabolite VIP Fold-change P-value

ESI(−) 45 (M-H)- 688.71 113.04 Dihydrouracil 2.37 0.52 0.0021

ESI(−) 46 (M-H)- 595.57 163.04 4-Hydroxycinnamic acid 1.39 0.65 0.0077

ESI(−) 47 (M + Na-2H)- 113.11 237.15 3-Hydroxydodecanoic acid 1.44 0.48 0.0129

ESI(−) 48 (M-H2O-H)- 558.25 141.02 2-Oxoadipic acid 1.29 0.83 0.0063

ESI(−) 49 (M-H)- 202.24 133.05 2,3-Dihydroxy-3-methylbutyric acid 3.57 0.40 0.0014

The fold-change (FC) was calculated as the average metabolite concentration in the leaves during the mid-flowering stage relative to the budding stage

Fig. 5 Metabolite classification and KEGG pathway analysis. a Classification of the significantly varying metabolites between the two
developmental stages. The 49 varying metabolites involved amino acids (10), organic acids (12), carbohydrates (4), purines (3), lipids (2),
pyrimidines (2), and others (14). b Signalling pathways of the differential metabolites involved in the budding to mid-flowering stages of
alfalfa development
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These findings indicate the necessity of addressing the
integration of proteomics and metabolomics in the
present study. More importantly, the nutritional changes
in the study plant ‘alfalfa’ obtained good support from
the analysis of proteomics and metabolomics integration.
This integration offers a well-detailed comprehensive
molecular picture during the transition of budding to
the mid-flowering stages in the alfalfa plant. A recent
study by Akpunarlieva [31] provided further anchorage
to the current study; in that study, researchers integrated
proteomics and metabolomics to identify the molecular
changes in the living system.

Effect of the growth period on the nutritional quality of
alfalfa
Crude protein is the general term for nitrogen compounds
in feed and is the main decision indicator for RFV. J.F.S.
Lamb et al. [32] reported that the crude protein content
of alfalfa leaves continuously decreased with delayed har-
vest maturity. Previous reports have indicated that alfalfa
proteins are mainly located in chloroplasts, and the transi-
tion from vegetative growth to reproductive growth of al-
falfa increases nutrient production and lignification,
leading to a decrease in the crude protein content [33].
This observation agrees with our results.
The content of NDF in feed is negatively correlated

with the feed intake of dry matter, and the content of
ADF directly affects the digestibility of forage. These
findings are due to factors related both to the plant itself

and to human factors. First, the alfalfa harvest time is
delayed, and the drying time is too long, which will
cause serious lignification of alfalfa. Additionally, the
values of the NDF and ADF indicators will be high,
resulting in reduced NDF digestibility and a reduced
RFV of alfalfa. Second, it is difficult to guarantee uni-
formity of planting and harvesting times, resulting differ-
ences in the maturity and quality of alfalfa. Third, a low
degree of mechanization results in long harvest, drying
and packing times. Not only will these factors cause in-
creased lignification, but many leaves will fall off, result-
ing in a lower crude protein content.

Changes in ADF and NDF contents
Carbohydrate metabolism and hemicellulose synthesis
Hemicellulose is a heterogeneous multimer consisting of
several different types of monosaccharides. These sugars
are pentoses and hexoses, including xylose, arabinose,
mannose and galactose, among others. The main glyco-
syl groups constituting hemicellulose are the D-xylosyl,
D-mannosyl, D-glucosyl, D-galactosyl, L-arabinosyl, 4-
O-methyl-D-glucuronic acid-based, D-galacturonic acid
and D-glucuronic acid groups. Our results (Table 3)
show that D-mannose is up-regulated at mid-flowering,
as are alpha-glucosidase (G7JXA7) and alpha-amylase
(A0A072U233), which can hydrolyse starch to produce
D-glucose.
Simultaneously, we noticed a significantly higher

abundance of UDP-glucuronic acid decarboxylase (UXS)

Fig. 6 Common pathways of candidate proteins and metabolites. Signalling pathways of the proteins and metabolites commonly involved in
the budding to mid-flowering stages of alfalfa development. Blue represents the number of differentially expressed proteins. Red represents the
number of differentially abundant metabolites
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(G7JUT0), which can catalyse UDP-glucuronic acid to
produce xylan [34]. Xylan is the main component of
hemicellulose in plants. Therefore, we believe that the
hemicellulose content of alfalfa leaves during the flower-
ing period is higher than that in the budding period.
NDF includes cellulose, hemicellulose, lignin, silica,
keratin and wax, and ADF includes cellulose, lignin and

acid insoluble ash [35], thus explaining why the increase
in NDF content indicated by our results is significantly
higher than that for ADF.

Phenylpropanyl biosynthesis pathway and lignin synthesis
Lignin is one of the components of ADF and NDF and
is an important factor affecting the digestibility of

Table 3 Carbohydrate metabolism-related proteins and metabolites

Proteins Accession Description Coverage Fold-change P-value

A0A072UTK4 Glycoside hydrolase family 1 protein 9.15 1.25 0.0053

G7J6L9 Glycoside hydrolase family 3 protein 6.54 1.37 0.0115

G7KWW4 Pectinesterase 3.44 1.37 0.0126

A5JTQ3 Beta-xylosidase/alpha-L-arabinofuranosidase 2 14.99 1.73 0.0221

G7JUT0 UDP-glucuronic acid decarboxylase 22.81 1.34 0.0224

G8A1F4 Glycosyltransferase 1.84 1.32 0.0240

A0A072UKS2 PfkB family carbohydrate kinase 21.15 0.80 0.0127

Metabolites Metabolite Adduct VIP Fold-change P-value

D-Ribose (M + CH3COO)- 1.16 1.48 0.0001

D-Quinovose (M + CH3COO)- 3.74 2.29 0.0000

D-Mannose (M-H)- 1.77 1.58 0.0009

Fig. 7 Phenylpropanoid biosynthesis pathway. Proteins (□) and metabolites (o) with differential abundance involved in phenylpropanoid biosynthesis
metabolism were mapped to the corresponding metabolic pathways in KEGG. Red indicates up-regulation; green indicates down-regulation; and yellow
indicates no significant difference. The up-regulated proteins were beta-glucosidase [EC: 3.2.1.21] and cinnamyl-alcohol dehydrogenase [EC: 1.1.1.195], and
the down-regulated proteins in this pathway were caffeic acid 3-O-methyltransferase [EC: 2.1.1.68] and caffeoyl-CoA O-methyltransferase [EC: 2.1.1.104]. The
up-regulated metabolite was L-phenylalanine, and the down-regulated metabolite was 4-hydroxycinnamic acid
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herbage, where a higher lignin content results in lower
digestibility [36]. The biosynthesis of lignin begins with
phenylalanine [37]. After a series of hydroxylation,
methylation, ligation and reduction reactions to produce
monomers, the monomers are further oxidized to pro-
duce the corresponding lignin. Cinnamyl-alcohol de-
hydrogenase (CAD) is one of the key enzymes in lignin
synthesis and can catalyse a variety of cinnamaldehyde
components to produce lignin monomer precursors;
therefore, CAD was the first enzyme to be studied in the
lignin synthesis pathway [38]. Alfalfa leaves in the mid-
flowering stage exhibit significantly higher abundance of
L-phenylalanine and higher abundance of CAD com-
pared with the budding stage (Table 2, Fig. 7). An in-
crease in the biosynthesis of amino acid results in an
increased abundance of phenylalanine, which provides
the starting material for lignin synthesis. At the same
time, CAD expression is up-regulated. CAD participates
in the reduction reaction of the last step of lignin mono-
mer synthesis. When CAD activity is decreased, the lig-
nin content is reduced, and the number of G and S
monomers, which contain pineal aldehyde and mustard
aldehyde, is significantly lower [39–41]
Thus, the up-regulation of CAD abundance is condu-

cive to lignin synthesis. We infer that alfalfa at the mid-
flowering stage is characterized by more active phenyl-
propanoid biosynthesis pathways, which may promote
the synthesis of lignin. Finally, the reaction of alfalfa
NDF and ADF contents increases, and the nutritional
quality of alfalfa decreases.

Crude protein content changes
Amino acid synthesis and metabolism
The crude protein content of alfalfa is usually between
15 and 22% and is mainly distributed in the leaves. The
crude protein is divided into two major categories: true
protein and non-protein nitrogen (NPN), according to
chemical properties. Non-protein nitrogen includes free
amino acids, amides, purines, pyrimidines and alkaloids,
accounting for approximately 1/3 of the total nitrogen
content of alfalfa. L-glutamic acid and glutamine are the
tectonic units of the protein. They play a vital role in ni-
trogen metabolism and are synthetic precursors of a var-
iety of amino acids, purines and pyrimidines in the
organism [42, 43]. Previous studies [44–46] in wheat
have shown that the contents of L-glutamic acid and
protein are significantly or extremely significantly posi-
tively correlated. Our results (Table 4) show that the
content of L-glutamic acid at mid-flowering is signifi-
cantly lower than in the budding period. At the same
time, the contents of L-glutamine, L-asparagine, guan-
ine, adenine, uracil, and dihydrouracil are also lower,
which may be one of the reasons for the decrease in
protein content.

Interestingly, we found that L-tyrosine and L-
phenylalanine were up-regulated. However, the results
showed that no related proteins exhibited changes;
therefore, we speculate that this up-regulation may re-
sult from protein hydrolysis, which may be one of the
causes of the reduced albumin crude protein content. L-
tyrosine can be produced via the hydroxylation of
phenylalanine [47] and may participate with phenylalan-
ine in plant glucose metabolism and fat metabolism.
This speculation is consistent with the results of our test
showing that sugar and fat metabolism was increased,
while carbohydrate and lipid metabolites were increased.
A recent study performed by Ullah et al. [48] provided

a thorough comparison among different Triticeae spe-
cies by profiling the metabolites of roots and leaves
under drought stress. By correlating the morphology of
plant species with length, surface area and root diameter
via metabolomics, this study provided concrete support
to the present study. Another study by the same group
to identify proteome changes in the wheat plant clearly
indicated post-translational modifications, giving further
support for utilizing omics analyses in plant systems
[49]. Interestingly, the metabolites (phenylalanine, man-
nose, valine, lysine, asparagine, aminobutyric acid, malic
acid, glutamate and glyceraldehyde) found in the present
study matched those identified in the above investiga-
tions. Further, the experimental studies and discussions
in these reports strengthen our findings with the alfalfa
plant using proteomics integrated with metabolomics.

Photosynthesis and chlorophyll metabolism
Approximately 30 to 50% of the protein in alfalfa leaves
is present in the chloroplasts. Research on plant physi-
ology has shown that the starting material for the syn-
thesis of chlorophyll is glutamic acid or a-ketoglutaric
acid [50]. Probably, a decrease in glutamic acid content
will inhibit the synthesis of chlorophyll and inhibit
photosynthesis.
Our results showed that most of the light-harvesting

chlorophyll protein complexes (LHCs) in the photo-
system in the photosynthesis pathway (lhca1, lhca3,
lhcb1, lhcb2, lhcb3, lhcb4, and lhcb6) were down-
regulated (Additional file 4), as was the glutamic acid
content and that of ATP synthase (B7FH20), the key en-
zyme in ATP synthesis, which can provide energy and
play an important role in photosynthesis [51] (Table 5).
These changes inhibit photosynthesis and further limit
the synthesis of chlorophyll and chloroplast activity,
resulting in a decrease in protein content. Our study
complements the results by Aranjuelo et al. [52] who
studied the physiological, metabolic and proteomic pro-
cesses active during photosynthetic inhibition in the al-
falfa plant. Specifically, reductions in glutamic acid and
asparagine (Table 4) were found in both studies. Further,
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Table 4 Amino acid synthesis-related proteins and metabolites

Proteins Accession Description Coverage Fold-change P-value

Q6J9X7 Chloroplast cystathionine beta lyase 11.65 1.26 0.0084

G7L3W1 S-adenosylmethionine synthase 28.97 1.53 0.0259

A0A072VKL5 S-adenosylmethionine synthase 33.59 1.28 0.0277

G7JCK0 Ketol-acid reductoisomerase 23.45 1.23 0.0329

A0A072UXL1 Deoxyuridine 5′-triphosphate nucleotidohydrolase 11.33 1.29 0.0347

Q9SPM6 Nod factor binding lectin-nucleotide phosphohydrolase 9.23 2.65 0.0218

G7ZV13 ATP sulfurylase 18.31 1.50 0.0318

A0A072W0C8 ATP sulfurylase 14.19 1.51 0.0331

G7KXR2 Transaldolase family protein 24.15 0.82 0.0007

A0A072TNP6 4-hydroxy-tetrahydrodipicolinate synthase 5.25 0.80 0.0031

G7LF25 RNA polymerase II, Rpb4, core protein 6.52 0.74 0.0073

Metabolites Metabolite Adduct VIP Fold-change P-value

L-Tryptophan (M-H)- 2.33 1.74 0.0265

L-Threonate (M-H)- 1.06 1.3 0.0042

L-Phenylalanine (M-H)- 1.63 1.34 0.0143

Val-Lys (M + H)+ 1.15 0.72 0.0362

Val-Arg (M + H)+ 2.16 0.67 0.0061

L-Glutamine (M + H)+ 1.70 0.76 0.0159

L-Glutamic acid (M + H)+ 2.26 0.79 0.013

L-Asparagine (M + H)+ 2.27 0.58 0.0017

Ile-Arg (M + H)+ 2.19 0.66 0.0034

Guanine (M + H)+ 2.2 0.56 0.0164

D-Pyroglutamic acid (M + H)+ 1.95 0.81 0.0193

Uracil (M-H)- 1.77 0.49 0.001

Dihydrouracil (M-H)- 2.37 0.52 0.0021

Table 5 Photosynthesis and chlorophyll metabolism-related proteins and metabolites

Proteins Accession Description Coverage Fold-change P-value

I3SIG9 Chlorophyll a-b binding protein, chloroplastic 60.15 0.83 0.0059

B7FHZ5 Chlorophyll a-b binding protein, chloroplastic 55.85 0.77 0.0074

A0A072U7I8 Chlorophyll a-b binding protein, chloroplastic 19.42 0.68 0.0111

G7INT9 Chlorophyll a-b binding protein, chloroplastic 46.36 0.72 0.0114

I3SZG9 Chlorophyll a-b binding protein, chloroplastic 37.91 0.80 0.0220

B7FIZ5 Chlorophyll a-b binding protein, chloroplastic 21.8 0.75 0.0222

A0A072VAK2 Chlorophyll a-b binding protein, chloroplastic 44.3 0.81 0.0432

B7FH20 ATP synthase 44.67 0.75 0.0014

Metabolites Metabolite Adduct VIP Fold-change P-value

L-Glutamine (M + H)+ 1.70 0.76 0.0159

L-Glutamic acid (M + H)+ 2.26 0.79 0.0130
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the overall protein and ATP synthase levels were af-
fected, leading to down-regulation. These consistencies
with the alfalfa plant used in the present study and the
photosynthetic analysis by Ajanjuelo et al. support the
compatibility of metabolomics with conditional changes
in plant growth.

Conclusions
Our data highlight the metabolic and protein changes
occurring in the leaves of alfalfa and reveal complex
metabolic changes from the budding stage to the mid-
flowering stage. Large numbers of differentially
expressed metabolites and differentially expressed pro-
teins were found to be mainly involved in carbohydrate
metabolism, starch and sucrose metabolism, phenylpro-
panoid biosynthesis and the biosynthesis of amino acids.
Alfalfa leaves in the mid-flowering stage contain less
crude protein, due to a decrease in L-glutamic acid con-
tent. The metabolism of carbohydrates provides the raw
material for the synthesis of hemicellulose, resulting in
an increase in the hemicellulose content of alfalfa leaves,
further leading to an increase in the NDF content. In
addition, the increase in L-phenylalanine content pro-
vides the conditions required for lignin synthesis. These
are the main factors leading to the decline in alfalfa RFV
and quality. In summary, these results present an over-
view of the protein and metabolic processes operating in
alfalfa leaves at the budding and mid-flowering stages.
This study provides innovative and in-depth results elu-
cidating the differences between alfalfa at these two im-
portant stages. Our findings also indicate the reasons for
these changes. Hence, the relationships between the re-
duction in the nutritional value of alfalfa and complex
biological processes have been elucidated in this study,
providing a theoretical basis for of the production of
high-quality alfalfa hay and guiding future research.

Additional files

Additional file 1: Table S1. Protein quantification and analysis of
significant differences. (XLSX 81 kb)

Additional file 2: Table S2. KEGG pathways in which differentially
expressed proteins are involved. (XLSX 23 kb)

Additional file 3: Table S3. Proteome-metabolome data co-analysis.
(XLSX 13 kb)

Additional file 4: Figure S1. Differential expression of the light-
harvesting chlorophyll protein complex (LHC) in the photosystem in
the photosynthesis pathway. (TIFF 433 kb)

Abbreviations
ADF: Neutral detergent fibre; CAD: Cinnamyl-alcohol dehydrogenase;
CP: Crude protein; DMI: Dry matter intake; FC: Fold-change; LHC: Light-
harvesting chlorophyll protein complex; NDF: Neutral detergent fibre;
NPN: Non-protein nitrogen; OPLS-DA: Orthogonal partial least-squares dis-
criminant analysis; PCA: Principal component analysis; RFV: Relative feed
value; TMT: Tandem mass tag; UXS: UDP-glucuronic acid decarboxylase;
VIP: Variable influence on projection

Acknowledgements
We are thankful for the assistance provided by Yan Zhao, Meiling Hou,
Ruigang wang, Guojing Li, Qiming Chen, and we are grateful to Wenfeng
Sun and Jiye Hou for technical support. Thank American Journal Experts
(AJE) language editing service for language editing.

Funding
This study was funded by the National Natural Science Foundation of China
(grant number 31572461) and the China Agriculture Research System Project
(grant number CARS-35). The funding body had no role in the design of the
study, the collection, analysis, and interpretation of data and the writing of
the manuscript.

Availability of data and materials
All data generated or analysed during this study are included in this
published article and its supplementary information files.

Authors’ contributions
YSJ designed the study and revised the manuscript. WQF carried out the
study and wrote the manuscript. GTG conducted the experimental work.
YHL, WW, and LYL carried out the data analysis. All authors discussed the
results and reviewed the manuscript. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 29 September 2017 Accepted: 24 April 2018

References
1. Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward characterizing seed

vigor in alfalfa through proteomic analysis of germination and priming. J
Proteome Res. 2011;10(9):3891–903.

2. Yu P, Christensen DA, Mckinnon JJ, Markert JD. Effect of variety and
maturity stage on chemical composition, carbohydrate and protein
subfractions, in vitro rumen degradability and energy values of timothy and
alfalfa. Can J Anim Sci. 2003;83(2):279–90.

3. Karayilanli E, Ayhan V. Investigation of feed value of alfalfa (Medicago sativa
L.) harvested at different maturity stages. Legume Res. 2016;39(2):237–47.

4. Kumar S. Biotechnological advancements in alfalfa improvement. J Appl
Genet. 2011;52(2):111–24.

5. Homolka P, Koukolova V, Nemec Z, Mudrik Z, Hucko B, Sales J. Amino acid
contents and intestinal digestibility of lucerne in ruminants as influenced by
growth stage. Czech J Anim Sci. 2008;53(12):499–505.

6. Surmen M, Yavuz T, Cankaya N. Effects of phosphorus fertilization and
harvesting stage on forage yield and quality of common vetch. J Food
Agric Environ. 2011;9(1):353–5.

7. Sheaffer CC, Martin NP, Lamb JFS, Cuomo GR, Jewett JG, Quering SR. Leaf
and stem properties of alfalfa entries joint contribution of the Minnesota
Agric. Exp. Stn. And USDA-ARS. Minnesota Agric. Exp. Stn. Journal series
paper 99-1-13-0127. Agron J. 2000;92(4):733–9.

8. Lamb JFS, Sheaffer CC, Samac DA. Population density and harvest maturity
effects on leaf and stem yield in alfalfa this paper is a joint contribution
from the plant Sci. Res. Unit, USDA-ARS, and the Minnesota Agric. Exp. Stn.
Agron J. 2003;95(3):635–41.

9. Yari M, Valizadeh R, Naserian AA, Jonker A, Yu P. Modeling nutrient
availability of alfalfa hay harvested at three stages of maturity and in the
afternoon and morning in dairy cows. Anim Feed Sci Tech.
2012;178(1):12–9.

10. Kiraz AB. Determination of relative feed value of some legume hays
harvested at flowering stage. Asian J Anim Vet Adv. 2011;6(5):525–30.

11. Kushalappa AC, Gunnaiah R. Metabolo-proteomics to discover plant biotic
stress resistance genes. Trends Plant Sci. 2013;18(9):522–31.

Fan et al. BMC Plant Biology  (2018) 18:78 Page 14 of 15

https://doi.org/10.1186/s12870-018-1291-8
https://doi.org/10.1186/s12870-018-1291-8
https://doi.org/10.1186/s12870-018-1291-8
https://doi.org/10.1186/s12870-018-1291-8


12. Chiou SH, Wu CY. Clinical proteomics: current status, challenges, and future
perspectives. Kaohsiung J Med Sci. 2011;27(1):1–14.

13. Ngo LT, Okogun JI, Folk WR. 21st century natural product research and drug
development and traditional medicines. Nat Prod Rep. 2013;30(4):584–92.

14. Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ. Integrated
metabolo-proteomic approach to decipher the mechanisms by which
wheat QTL (Fhb1) contributes to resistance against fusarium graminearum.
PLoS One. 2012;7(7):e40695.

15. Horwitz W, Latimer Jr. GW; AOAC International. Official methods of analysis
of AOAC International. 18th ed. Gaithersburg, MD: AOAC International; 2007.

16. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral
detergent fiber, and nonstarch polysaccharides in relation to animal
nutrition. J Dairy Sci. 1991;74(10):3583–97.

17. Boga M, Yurtseven S, Kilic U, Aydemir S, Polat T. Determination of nutrient
contents and in vitro gas production values of some legume forages grown
in the Harran plain saline soils. Asian Australas J Anim Sci. 2014;27(6):825–31.

18. Hervé Thiellement MZ, Damerval C, Mechin V. Plant Proteomics: Methods
and Protocols. Methods in Mol Biol. 2007.

19. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample
preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.

20. Zhang N, Zhang L, Zhao L, Ren Y, Cui D, Chen J, Wang Y, Yu P, Chen F.
iTRAQ and virus-induced gene silencing revealed three proteins involved in
cold response in bread wheat. Sci Rep. 2017;7(1):7524.

21. Min Z, Song X, Lv K, Yang Y, Gong Z, Zheng C. Differential proteomic
analysis revealing the ovule abortion in the female-sterile line of Pinus
tabulaeformis Carr. Plant Sci. 2017;260:31–49.

22. Smith CA, Want EJ, O’Maille G, Ruben Abagyan A, Siuzdak G. XCMS:
processing mass spectrometry data for metabolite profiling using nonlinear
peak alignment, matching, and identification. Anal Chem. 2006;78(3):779.

23. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS online: a web-based platform
to process untargeted Metabolomic data. Anal Chem. 2012;84(11):5035–9.

24. Patti GJ, Tautenhahn R, Siuzdak G. Meta-analysis of untargeted metabolomic
data from multiple profiling experiments. Nat Protoc. 2012;7(3):508–16.

25. Wang H, Liu Z, Wang S, Cui D, Zhang X, Liu Y, Zhang Y. UHPLC-Q-TOF/MS
based plasma metabolomics reveals the metabolic perturbations by
manganese exposure in rat models. Metallomics. 2017;9(2):192–203.

26. Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in
plant genomics. Int J Plant Genomics. 2008;2008:619832.

27. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic Acids Res.
2012;40(Database issue):D109–14.

28. Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Metabolomics for
assessing safety and quality of plant-derived food. Food Res Int. 2013;54(1):
1172–83.

29. Gahlaut A, Dahiya M, Gothwal A, Kulharia M, Chhillar AK, Hooda V, Dabur R.
Proteomics & metabolomics: mapping biochemical regulations. Drug Invent
Today. 2013;5(4):321–6.

30. Carrari F, Baxter C, Usadel B, Urbanczykwochniak E, Zanor MI, Nunesnesi A,
Nikiforova V, Centero D, Ratzka A, Pauly M. Integrated analysis of metabolite
and transcript levels reveals the metabolic shifts that underlie tomato fruit
development and highlight regulatory aspects of metabolic network
behavior. Plant Physiol. 2006;142(4):1380.

31. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M,
Burgess K, Burchmore R. Integration of proteomics and metabolomics to
elucidate metabolic adaptation in Leishmania. J Proteome. 2016;155:85–98.

32. Lamb JFS, Jung H-JG, Riday H. Growth environment, harvest management
and germplasm impacts on potential ethanol and crude protein yield in
alfalfa. Biomass Bioenergy. 2014;63:114–25.

33. Lamb JFS, Hans-Joachim GJ, Riday H. Harvest impacts on alfalfa stem
neutral detergent Fiber concentration and digestibility and Cell Wall
concentration and composition. Crop Sci. 2012;52(5):2402.

34. Kuang B, Zhao X, Zhou C, Zeng W, Ren J, Ebert B, Beahan CT, Deng X, Zeng
Q, Zhou G, et al. Role of UDP-glucuronic acid decarboxylase in Xylan
biosynthesis in Arabidopsis. Mol Plant. 2016;9(8):1119–31.

35. Tong Z, Li H, Zhang R, Ma L, Dong J, Wang T. Co-downregulation of the
hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase and
coumarate 3-hydroxylase significantly increases cellulose content in
transgenic alfalfa (Medicago sativa L.). Plant Sci. 2015;239:230–7.

36. Reddy MS, Chen FG, Jackson L, Aljoe H, Dixon RA. Targeted down-
regulation of cytochrome P450 enzymes for forage quality improvement in
alfalfa (Medicago sativa L.). Proc Natl Acad Sci U S A. 2005;102(46):16573–8.

37. Labeeuw L, Martone PT, Yan B, Case RJ. Ancient origin of the biosynthesis
of lignin precursors. Biology Direct,10,1(2015–05-21). 2015;10(1):23.

38. Ma QH. Functional analysis of a cinnamyl alcohol dehydrogenase involved
in lignin biosynthesis in wheat. J Exp Bot. 2010;61(10):2735–44.

39. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL. The last
step of syringyl monolignol biosynthesis in angiosperms is regulated by a
novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell.
2001;13(7):1567–86.

40. Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Seguin A, Lapierre C,
Jouanin L. Expression pattern of two paralogs encoding cinnamyl alcohol
dehydrogenases in Arabidopsis. Isolation and characterization of the
corresponding mutants. Plant Physiol. 2003;132(2):848–60.

41. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A.
CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes
involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell.
2005;17(7):2059–76.

42. Lobley GE, Hoskin SO, Mcneil CJ. Glutamine in animal science and
production. J Nutr. 2001;131(9 Suppl):2525S.

43. Bezerra RM, Costa FGP, Givisiez PEN, Freitas ER, Goulart CC, Santos RA, Souza
JG, Brandao PA, Lima MR, Melo ML, et al. Effect of L-glutamic acid
supplementation on performance and nitrogen balance of broilers fed low
protein diets. J Anim Physiol Anim Nutr (Berl). 2016;100(3):590–600.

44. Block RJ, Mitchell HH. The correlation of the amino acid composition of
proteins with their nutritive value. Nutr Abstr Rev. 1949;16:249.

45. Mossé J, Huet JC, Baudet J. The amino acid composition of wheat grain as a
function of nitrogen content. J Cereal Sci. 1985;3(2):115–30.

46. Chen H, Wei Y, Zheng Y. Relationships between protein content and amino
acids in Sichuan wheat landraces. Acta Tritical Crops. 2005;25(5):113–16 (in
Chinese).

47. Ha CE, Bhagavan NV: Essentials of medical biochemistry: with clinical cases.
2011.

48. Ullah N, Yüce M, Gökçe ZNÖ, Budak H. Comparative metabolite profiling of
drought stress in roots and leaves of seven Triticeae species. BMC
Genomics. 2017;18(1):969.

49. Budak H, Akpinar BA, Unver T, Turktas M. Proteome changes in wild and
modern wheat leaves upon drought stress by two-dimensional
electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol. 2013;83(1–2):89–103.

50. Willows RD. Chlorophyll Synthesis. Netherlands: Springer; 2006.
51. Böttcher B, Gräber P. The structure of ATPsynthases in photosynthesis and

respiration. Netherlands: Springer; 2014.
52. Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S. Plant physiology and

proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).
J Exp Bot. 2011;62(1):111.

Fan et al. BMC Plant Biology  (2018) 18:78 Page 15 of 15


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Plant material
	Nutrition quality analysis
	TMT analysis methods
	Protein extraction, digestion, TMT labelling and strong cation exchange chromatography
	Mass spectrometry
	Database search and data analysis

	Untargeted metabolomics analysis methods
	Metabolite extraction
	LC-MS/MS analysis
	Data processing and statistical data analysis

	Bioinformatics analysis
	Statistical analysis

	Results
	Alfalfa leaf nutrient content analysis
	Protein profiles of alfalfa leaves at different developmental stages
	Metabolite profiles of alfalfa leaves at different developmental stages
	Proteome-metabolome data co-analysis

	Discussion
	Effect of the growth period on the nutritional quality of alfalfa
	Changes in ADF and NDF contents
	Carbohydrate metabolism and hemicellulose synthesis
	Phenylpropanyl biosynthesis pathway and lignin synthesis

	Crude protein content changes
	Amino acid synthesis and metabolism
	Photosynthesis and chlorophyll metabolism


	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	References

