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CC-type glutaredoxins mediate plant
response and signaling under nitrate
starvation in Arabidopsis
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Abstract

Background: Nitrogen is an essential nutrient in plants. Despite the importance of nitrogen for plant growth and
agricultural productivity, signal transduction pathways in response to nitrate starvation have not been fully
elucidated in plants.

Results: Gene expression analysis and ectopic expression were used to discover that many CC-type glutaredoxins
(ROXYs) are differentially expressed in response to nitrate deprivation. A gain-of-function approach showed that
ROXYs may play a role in nutrient sensing through the regulation of chlorophyll content, root hair growth, and
transcription of nitrate-related genes such as NRT2.1 under low or high nitrate conditions. Reactive oxygen species
(ROS) were produced in plant roots under nitrate starvation and H2O2 treatment differentially regulated the
expression of the ROXYs, suggesting the involvement of ROS in signaling pathways under nitrate deficiency.

Conclusion: This work adds to what is known about nitrogen sensing and signaling through the findings that the
ROXYs and ROS are likely to be involved in the nitrate deprivation signaling pathway.
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Hightlight
CC-type glutaredoxins play roles in plant response and
signaling under nitrate starvation conditions in Arabi-
dopsis possibly acting downstream of reactive oxygen
species.

Background
Plants require nutrients to complete their life cycle.
Among them, nitrogen is required in greater abundance
and is essential for plant growth. Plant roots preferen-
tially take up nitrate and ammonium from the soil al-
though they have the capacity to absorb organic N
sources, such as amino acids, in soils that contain high
concentrations of organic matter [1, 2]. In aerobic soil
conditions, ammonium and amino acids are poorly avail-
able and nitrate is relatively abundant in the anionic
form which is readily dissolved in soil water. Therefore,
plants tend to use nitrate as the main source of

inorganic nitrogen [3–5]. Since nitrogen availability in
plants can be affected by various environmental condi-
tions, including soil pH, soil type, precipitation, and
temperature [4, 6], plants frequently experience nitrogen
deficiency, which can greatly reduce the yield of plants.
Therefore, studying plant responses to nitrogen defi-
ciency is of significant agricultural importance.
Although certain aspects of how plants respond to ni-

trogen deprivation at physiological and transcriptional
levels are known, the details of the signaling pathways in
response to low or high nitrogen are not well character-
ized [7–12]. Nitrogen starvation in plants induces both
physiological changes of root structures and transcrip-
tional changes of nitrogen-related genes such as AMT1
ammonium transporters and NRT2 nitrate transporters
including NRT2.1, a main contributor in nitrate uptake
during nitrogen starvation [12, 13]. Many factors are re-
ported to be involved in low nitrogen-induced plant re-
sponses. These include transcription factors (LATERAL
ORGAN BOUNDARY DOMAIN (LBD) 37/38/39 and
NIN-LIKE PROTEIN (NLP) 7), components of peptide
signaling (C-TERMINALLY ENCODED PEPTIDE
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(CEP), CEP RECEPTOR1/2 (CEPR1/2), CLAVATA3/
ESR-RELATED (CLE) 1/3/4/7, and CLAVATA1 (CLV1)),
microRNAs (miR169), and plant hormones (cytokinin
and auxin) [12, 14–20]. Calcium signaling may be a
component in low nitrogen signaling as CALCINEURIN
B-LIKE PROTEIN 7 (CBL7) is involved in the regulation
of root growth under nitrate limitation in Arabidopsis
[21]. Reactive oxygen species (ROS) are also implicated
in the low nitrate signaling because H2O2 concentrations
in plant roots increased in response to nitrogen starva-
tion [22, 23]. It is known that ROS as a signaling mol-
ecule mediates signal transduction in plants under the
deprivation of some nutrients such as potassium [24],
phosphate [25], and boron [26]. And NADPH oxidases
are mainly responsible for low nutrient-induced ROS
production based on chemical inhibitor and genetic
studies [22, 27, 28].
Glutaredoxins (GRXs) are small ubiquitous proteins

that are involved in disulphide bridge or
protein-glutathione reduction in plant cells [29–36].
There are 31 GRX genes in Arabidopsis that can be clas-
sified into three distinct subgroups based on the amino
acid sequences at their active sites: the CPYC, CGFS,
and CC-type GRX classes [32, 35]. Out of the 31 GRXs
in Arabidopsis, 21 GRXs belong to the CC-type class,
which is specific for land plants, while the other two
GRX classes, CPYC and CGFS, are common to eukary-
otes and prokaryotes [31, 37–39]. Although the roles of
GRXs have been associated mainly with oxidative stress
[40–52], there is growing evidence that GRXs, especially
CC-type GRXs, also play important roles in cell signaling
and development [30, 33, 34, 53–60]. For example, three
CC-type GRXs, ROXY1, ROXY2, and ROXY4, which
interact with TGA transcription factors in the nucleus,
are required for flower development [36, 54, 55, 61–64]
and another CC-type GRX gene, ROXY19, has been
demonstrated to act as a repressor in the detoxification
pathways [65] and pathogen responses through salicylic
acid (SA)/jasmonic acid (JA) signaling [36, 66, 67].
ROXY19 was also shown to act as an adapter protein for
the assembly of transcriptional repressor complexes on
TGA-regulated target promoters [68]. Recently, it was
shown that ROXY11–13 and ROXY15 are involved in
nitrate-induced primary root growth inhibition [57, 69].
Previous microarray studies indicated that many

ROXYs are differentially expressed under abiotic stresses,
suggesting the involvement of ROXYs in abiotic stress
[70]. However, not much is known about the gene ex-
pression of ROXYs under low nutrient stress and the
functional consequences of the changes in their expres-
sion. In this study, we quantified changes in the gene ex-
pression of ROXYs under low nutrient conditions by
removing nitrogen from media. We found that a number
of ROXYs are differentially regulated in response to

nitrate starvation. Based on the phenotypes of overex-
pression lines of two ROXYs (ROXY9 and ROXY15), evi-
dence is provided showing a role for CC-type GRXs in
nitrate starvation signaling. ROS appears to be another
component that regulates the differential expression of
ROXYs under nitrate deprivation conditions. This study
provides important new information that further eluci-
dates additional novel components in the complex ni-
trate signaling pathway in plants.

Results
Nitrate starvation differentially regulates the expression
of ROXYs
In Arabidopsis, there are 21 CC-type GRXs, which have
been named ROXY1 to ROXY21 [47]. To determine
the expression pattern of ROXYs under various re-
duced nutrient conditions, quantitative real time PCR
(qRT-PCR) was used to measure the ROXYs mRNA
level in the wild type Columbia-0 seedlings grown on
full nutrient medium (+N) and no nitrate medium
(-N). As a nitrogen source in nutrient medium, we
only used nitrate and not ammonium since ammo-
nium is poorly available in actual soil conditions. Six-
teen ROXY genes tested in this study showed altered
transcriptional responses in plants under nitrate star-
vation. The expression of six ROXYs (ROXY6,8,9,19–
21) was significantly upregulated by nitrate deficiency
(Fig. 1a), while the expression of 10 ROXYs
(ROXY7,10–18) was downregulated (Fig. 1b). These
data suggest that ROXY genes may be involved in sig-
naling pathways under nitrate deficiency conditions in
plants.

Possible roles of ROXYs under nitrate-sufficient or
-deficient conditions
Nitrate deprivation was shown to differentially regulate
the expression of ROXYs, suggesting that these genes
may play an important role under the nitrate starvation
conditions. To further investigate the possible functional
roles of ROXYs in response to nitrate deficiency, an
overexpression approach was chosen due to the large
size of the gene family and a potential issue related with
redundancy making it difficult to reveal phenotypes of
knockout lines. Two independent transgenic Arabidopsis
lines overexpressing ROXY9 or ROXY15 (Add-
itional file 1) were used for their phenotypic analyses.
The reason we chose these two ROXY genes is that they
showed the opposite transcriptional regulation under ni-
trate starvation: ROXY9 is upregulated and ROXY15 is
downregulated by nitrate deprivation (Fig. 1). Compared
with the wild type plants grown in soils, leaf chlorophyll
content was significantly lower in the two independent
lines overexpressing ROXY9 and higher in the two inde-
pendent lines overexpressing ROXY15 (Fig. 2a, b). Wild
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type plants grown under nitrate starvation conditions
had lower chlorophyll contents when compared with
those grown under nitrate-sufficient conditions (Fig. 2c).
Also compared with the wild type seedlings grown on
full nutrient medium, the length of root hairs was sig-
nificantly longer in the two independent lines overex-
pressing ROXY9 and shorter in the two independent

lines overexpressing ROXY15 (Fig. 3a, b). And nitrate
deficiency in wild type seedlings promoted root hair
elongation (Fig. 3c).
To determine whether ROXYs mediate the transcrip-

tional regulation under nitrate starvation, qRT-PCR was
used to measure the mRNA levels of nitrate-related
genes that are involved in nitrogen uptake in the two

Fig. 1 Expression levels of ROXY genes under nitrate-sufficient and nitrate-deficient conditions. a ROXY6,8,9,19–21 are upregulated under nitrate-
deficient conditions (-N). b ROXY7,10–18 are downregulated under nitrate-deficient conditions. Seven-day-old seedlings grown under full nutrient
conditions were treated with either 4 mM nitrate (+N) or no nitrate (-N) for 3 d. Expression levels of ROXY genes in the wild type Col-0 under no
nitrate relative to those in the wild type seedlings under full nutrient conditions (set to the value of 1) are shown. The expression data were
obtained by qRT-PCR. An ACTIN7 was used as a reference gene. Different letters above the bars indicate values that are significantly different (n =
3 biological replicates, P < 0.05; t test)
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independent lines overexpressing ROXY9 or ROXY15.
Compared with the wild type seedlings grown on full nu-
trient medium, the expression of NRT2.1 was significantly
higher in the two independent lines overexpressing
ROXY9 and lower in the two independent lines overex-
pressing ROXY15 (Fig. 4a). The change in NRT2.1 tran-
scriptional levels in wild type plants under nitrate
deficiency was also investigated. The expression of
NRT2.1 was upregulated when plants placed on medium
that did not contain nitrate for 6 h and 12 h (Fig. 4b).

Nitrate starvation induces ROS production at root hair
differentiation zone and ROS treatment differentially
regulates the expression of ROXYs
Nitrate starvation has been shown to induce about a 2-fold
increase of ROS in Arabidopsis roots [22] implicating ROS
as a component of the response to low concentrations of
nitrate. To confirm the previous findings, ROS was mea-
sured in wild type seedlings under nitrate-sufficient

conditions and nitrate-deficient conditions by staining roots
with 5-(and 6-) carboxy-2′,7′-difluorodihydrofluorescein
diacetate (DFFDA) that detects ROS [24]. Under
nitrate-sufficient conditions, small amounts of ROS were
detected mainly in the root hair differentiation zone
(RHDZ) of the roots (Fig. 5a, b). Under nitrate-deficient
conditions, ROS significantly increased in the RHDZ of the
roots, showing that the results are consistent with previous
findings [22]. To determine whether or not ROS regulates
the expression of ROXY genes, we treated wild type seed-
lings with H2O2 and investigated the expression pattern of
ROXYs in response to ROS. ROS treatment significantly in-
creased the expression of ROXY9,19,21 (Fig. 5c), whose ex-
pression was also enhanced by nitrate deprivation (Fig. 1a).
The ROS treatment significantly reduced the expression of
ROXY10 through ROXY15 and ROXY17 (Fig. 5d), whose
expression was reduced by nitrate deprivation (Fig. 1b).
These data suggest that ROS may act upstream of the ex-
pression of the ROXY genes in nitrate deprivation signaling.

Fig. 2 Overexpression of ROXY9 reduces chlorophyll content while overexpression of ROXY15 increases chlorophyll content. Images of shoots of
three-week-old plants grown in the soil. a Wild-type plants and two independent transgenic plants overexpressing ROXY9 or ROXY15 (ox) were
grown for three weeks in the soil and their leaf chlorophyll contents were measured as described in the Method section. b Total chlorophyll
content of plants shown in (a). Fully developed mature leaves were used for the measurement of chlorophyll content. The total chlorophyll
content was expressed as micrograms per milligram leaf fresh weight. Values are mean ± SE from two leaves per plant (n = 10 plants). Results
from one of two independent experiments are shown. c Total chlorophyll content of wild type Col-0 plants deprived of nitrate. Ten-day-old
seedlings grown on complete nutrient media were treated with either 4 mM nitrate (+N) or no nitrate (-N) for 4 days. Values are mean ± SE from
5 shoots per replicate (n = 5 replicates). Results from one of two independent experiments are shown. Different letters above the bars indicate
values that are significantly different (P < 0.05; t test)
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Discussion
Despite the importance of nitrogen for plant growth and
agricultural productivity, signal transduction pathways in
response to changes in external and internal nitrogen
concentrations in plants have not been fully elucidated.
In this study, we analyzed the gene expression patterns
of 16 out of 21 ROXY genes under nitrate deprivation
conditions and found that all 16 ROXY genes are differ-
entially regulated under nitrate starvation. A
gain-of-function approach suggested a role for the
ROXYs in the regulation of chlorophyll content, root
hair growth, and transcription of NRT2.1 under nitrate
starvation conditions. We also showed that ROS produc-
tion increases under nitrate deficiency and that ROS
treatment also differentially regulates the expression of
the ROXY genes. This work suggests possible roles of
ROXYs and ROS in nitrate starvation signaling.

We showed that nitrate deprivation induces the differ-
ential regulation of ROXY genes: upregulation of 6
ROXYs (ROXY6,8,9,19–21) and downregulation of 10
ROXYs (ROXY7,10–18) (Fig. 1). Similar transcription
pattern of some ROXY genes was found in a transcrip-
tional profiling data set where 100 μM of nitrate was
used to deprive plants [71]. It was also shown that the
expression of 7 ROXY genes (ROXY4,11–13,15–17) was
induced by the addition of nitrate [57] highlighting the
importance of this gene family in nitrate response. Our
data showing downregulation of the 6 ROXYs (ROXY11–
13,15–17) under nitrate deprivation differ from previous
findings [57] in that we studied response to nitrate defi-
ciency rather than induction by high nitrate. In nitrate
response for which nitrate is added to plants grown on
media that used ammonium as a sole nitrogen source,
the nitrate transporter NRT1.1 (CHL1/NPF6.3) turned

Fig. 3 Overexpression of ROXY9 stimulates root hair elongation while overexpression of ROXY15 inhibits root hair elongation. (a, b) Light
microscopy images showing root hairs of wild-type Col-0 seedlings and two independent transgenic seedlings overexpressing ROXY9 or ROXY15
(ox). Roots from four-day-old seedlings grown on nitrate-sufficient medium were used for the measurement of the root hair length. Bar = 0.5 mm.
b Quantified data showing the root hair length of wild-type Col-0 seedlings and two independent transgenic seedlings overexpressing ROXY9 or
ROXY15 (n = 10 seedlings, means ± SE). c Root hair length of wild type Col-0 seedlings grown under nitrate-sufficient (+N) and nitrate-deficient
(-N) conditions (n = 10 seedlings, means ± SE). Four-day-old roots treated with either 4 mM nitrate or no nitrate for 24 h were used for the
measurement of root hair length. Results from one of two independent experiments are shown here. Different letters above the bars indicate
values that are significantly different (P < 0.05; t test)
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out to be an important player which acts as a nitrate
sensor that regulates the response to nitrate addition
[72, 73]. We have some evidence that the differential
regulation of ROXYs under nitrate starvation is altered
in the mutants of NRT1.1 only in the presence of ammo-
nium (data not shown). These data indicate that NRT1.1
may also play a role in nitrogen starvation signaling and
that nitrogen starvation response and response to nitrate
addition may share some signaling components such as
ROXYs and NRT1.1 under certain circumstances (e.g. in
the presence of ammonium).
It appears that ROXYs are involved not only in plant

responses to nitrate deprivation but also in plant re-
sponses to other low nutrients such as potassium, phos-
phorus, sulfur, and iron. We found that ROXY7 and
ROXY16 are upregulated under low phosphate condi-
tions, while ROXY18 is upregulated under low potassium
conditions (Additional file 2). Genevestigator microarray
database also showed that ROXY10 is upregulated by
iron deprivation and ROXY4 and ROXY12 are downreg-
ulated by sulfur deprivation (data not shown). These
data indicate that ROXYs may act as downstream regula-
tors in plant signaling pathways triggered in response to
nutrient deficiencies.
To understand the possible roles of ROXYs under

nitrate-sufficient and nitrate-deficient conditions, we

analyzed the phenotypes of transgenic lines overexpress-
ing ROXY9, which is normally upregulated, and
ROXY15, which is normally downregulated, under ni-
trate starvation conditions. We showed that transgenic
lines overexpressing ROXY9 had lower chlorophyll con-
tent compared to wild type plants while transgenic lines
overexpressing ROXY15 had higher chlorophyll content
and that nitrate deficiency led to the decrease of chloro-
phyll content (Fig. 2). Consistent with our finding, it is
known that nitrogen deficiency represses chlorophyll
synthesis-related genes and the chlorophyll content is
also reduced during low nitrogen conditions [71, 74–76].
These findings suggest that ROXY9 or its paralogs might
play a role in chlorophyll synthesis as a negative regula-
tor under nitrate-deficient conditions while ROXY15 or
its paralogs might play a role in chlorophyll synthesis as
a positive regulator under nitrate-sufficient conditions.
The overexpression of OsGRX6, a rice CC-type GRX that
shows a high similarity to AtROXY18, increased chloro-
phyll content and nitrogen content [56] supporting our
finding that ROXYs may be involved in chlorophyll syn-
thesis, which may depend on external nitrate status in
plants.
We showed that transgenic lines overexpressing

ROXY9 had longer root hairs compared to wild type
plants, while transgenic lines overexpressing ROXY15

Fig. 4 Overexpression of ROXY9 causes the upregulation of the expression of NRT2.1 while overexpression of ROXY15 leads to the
downregulation of the expression of NRT2.1. a Expression levels of NRT2.1 in two independent transgenic seedlings overexpressing ROXY9 or
ROXY15 (ox) relative to those in the wild type Col-0 seedlings (set to a value of 1). Seven-day-old seedlings grown on complete nutrient medium
were used and the expression data were obtained by qRT-PCR. An ACTIN7 was used as a reference gene. Different letters above the bars indicate
values that are statistically different (n = 3 biological replicates, P < 0.05; t test). b Expression levels of NRT2.1 in the wild type Col-0 seedlings
under nitrate-deficient conditions. Expression levels of NRT2.1 in Col-0 seedlings under nitrate-deficient conditions relative to those in Col-0
seedlings under nitrate-sufficient conditions (set to a value of 1). Six-day-old seedlings were grown on complete nutrient media and transferred
to media with either 4 mM nitrate (+N) or no nitrate (-N), and further grown for 6, 12, and 24 h. Then, all seedlings were harvested at the end of
the light period (zeitgeber time 16). An ACTIN7 was used as a reference gene. Different letters above the bars indicate values that are statistically
different (n = 3 biological replicates, P < 0.05; t test)
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had shorter root hairs (Fig. 3a and b). Previously it was re-
ported that nitrogen deprivation stimulates root hair elong-
ation in Arabidopsis roots [77, 78]. Also, we found that
roots deprived of nitrate for 1 d had longer root hairs com-
pared to roots under nitrate-sufficient conditions (Fig. 3c)
confirming the previous report. Based on these data, it is
possible that ROXY9 or its paralogs might stimulate root
hair elongation under nitrate-deficient conditions, while
ROXY15 or its paralogs might inhibit root hair elongation
under nitrate-sufficient conditions. These results also

support a role for ROXY9 under nitrate-deficient condi-
tions and ROXY15 under nitrate-sufficient conditions.
We also showed that the expression of NRT2.1, a

major contributor in nitrogen uptake under nitrogen
limitation [12], is differentially regulated in transgenic
ROXY9- or ROXY15- overexpressor lines. The expres-
sion of NRT2.1 was significantly upregulated in trans-
genic lines overexpressing ROXY9 under full nutrient
conditions but downregulated in transgenic lines overex-
pressing ROXY15 (Fig. 4a). And nitrate deficiency in

Fig. 5 Nitrate deprivation induces ROS at the root hair differentiation zone (RHDZ) and H2O2 treatment alters the gene expression of ROXYs. a
Pseudo-color images of ROS fluorescence are shown for nitrate-sufficient (4 mM NO3

−) wild type roots and for nitrate-starved (no NO3
−) wild type

roots. Three-day-old seedlings grown on complete nutrient medium were floated onto liquid nutrient media containing either 4 mM nitrate or
no nitrate. After 24 h, ROS images were collected following staining of roots with 20 μM DFFDA for 20 min. Yellow and red colors indicate higher
ROS production (see a bottom inset for pixel intensity). Top insets show magnification of the RHDZ. White lines were drawn by hand to outline
the root. Bar = 200 μm; bar in inset = 100 μm. b Quantified data of ROS in the RHDZ from representative images shown in (a) (n = 10 images of
individual seedlings ± SE). Results from one of two independent experiments are shown here. Different letters above the bars indicate values that
are statistically different (P < 0.05; t test). c H2O2 treatment upregulates ROXY9,19,21 while (d) H2O2 treatment downregulates ROXY10–15,17.
Expression levels of ROXY genes in the wild type seedlings treated with H2O2 relative to those in the wild type seedlings not treated with H2O2

(set to 1) are shown. Seven-day-old seedlings grown on complete nutrient medium were floated onto the same complete liquid nutrient media
containing 10 mM H2O2 for 1, 3, and 6 h. Gene expression levels were quantified using qRT-PCR with ACTIN7 as a reference gene. The fold
change of ROXY expression levels in seedlings treated with H2O2 was compared with the ROXY expression levels in seedlings that were not
treated with H2O2. Different letters above the bars indicate values that are significantly different (n = 3 biological replicates, P < 0.05; t test)
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plants caused the upregulation of NRT2.1 (Fig. 4b). Con-
sistent with our data, it was shown that expression of
NRT2.1 is downregulated under nitrogen-sufficient condi-
tions and upregulated by nitrogen starvation [12, 79–82].
Based on these findings, it is possible to speculate that
ROXY9 or its paralogs might stimulate NRT2.1 expression
under nitrate-deficient conditions while ROXY15 or its
paralogs might repress NRT2.1 expression under
nitrate-sufficient conditions which is consistent with our
gene expression analyses. Likewise, the gain-of-function
studies of ROXY genes provided some evidence about the
possible roles of the ROXY genes in the regulation of gene
expression and physiological change of plants in response
to nitrate deficiency. As well as the gain-of-function stud-
ies, we also tried to use a loss-of-function approach by
creating plants carrying RNAi constructs that specifically
target one or multiple ROXY gene(s). Although we suc-
ceeded in making transgenic lines where a ROXY9 was si-
lenced or both ROXY8 and ROXY9 were silenced, we did
not find any phenotype in these RNAi lines (data not
shown) probably due to a high redundancy of the ROXY
gene family in the Arabidopsis genome. Recently it was
shown that silencing ROXY15 and its homologs, which
are nitrate-inducible, caused a long primary root pheno-
type in nitrate-sufficient conditions, indicating that
ROXY15 and its homologs are involved in
nitrate-mediated primary root growth [57]. Taken to-
gether, our work and previous studies provide new im-
portant clues as to the possible roles of ROXYs in plant
signaling pathways under deprived or high nitrate
conditions.
We showed in this work that nitrate starvation in-

creases ROS production using DFFDA, which confirms
our previous work [22]. Our additional new experiments
show that H2O2 treatment downregulates ROXY10–15
and ROXY17 and upregulates ROXY9,19,21 (Fig. 5).
Moreover, we also found that ROXY16 and ROXY18,
which are induced by phosphate- and potassium defi-
ciency, respectively, are also upregulated by ROS treat-
ment while low phosphate-inducible ROXY7 is not
altered by ROS treatment (Additional file 2). These data
indicate that ROS may act upstream of some ROXYs in
nitrate starvation signaling as it has been shown for re-
sponses to low potassium [24]. However, we cannot ex-
clude the possibility that there might be positive
feedback regulation so that ROS-induced ROXYs may
further stimulate ROS production. Respiratory Burst
Oxidase Homolog C (RBOHC) NADPH oxidase RHD2
was shown to be responsible for the low
potassium-induced ROS production and the expression
of HAK5, a low potassium-inducible potassium trans-
porter [22, 24]. These results with ROXY and our previ-
ous results [22] suggest that RHD2 is not sufficient
alone for nitrate signaling since the differential

regulation of ROXY genes in rhd2 in response to nitrate
deprivation was the same as that of ROXY genes in
Col-0 wild type (Data not shown) and our previous re-
sults also showed that ROS production was attenuated,
but not abolished in the rhd2 mutant.
An open, related question is how ROXYs regulate their

downstream targets. Our data using transgenic ROXY
overexpressors reveal the complete opposite roles of
ROXYs in plant phenotype and transcriptional regulation
despite their high homology. GRXs are involved in disul-
phide bridge reduction or protein S-glutathionylation, a
posttranslational modification, in plant cells [29, 30]. It
was suggested that GRXs regulate many targets that are
involved in various cellular processes including oxidative
stress responses, nitrogen, sulfur, and carbon metabolisms,
translation, and protein folding via the reduction of disul-
phide bridge [83]. GRXs-mediated protein glutathionyla-
tion may also be an important mechanism to regulate
protein activities. In animals, GRXs were also shown to
glutathionylate transcription factors leading to the alter-
ation of their DNA binding activity [84]. In plants,
CC-type GRXs ROXY1/2 and ROXY19 were reported to
interact with TGA transcription factors and suggested to
act as regulators of TGA transcription activity probably by
glutathionylation that affects flower development and the
SA/JA signaling, respectively [61, 62, 66]. A recent report
suggested a possible role of ROXYs as adapter proteins for
the assembly of transcriptional repressor complexes on
TGA-regulated target promoters [68]. In this context it
was shown that in response to nitrate TGA1 and TGA4
transcription factors play important roles in the regulation
of gene expression of NRT2.1 and NRT2.2 and modulation
of primary root length and lateral root density [85]. Based
on our finding that the gene expression levels of NRT2.1
were significantly altered in the ROXY9 and ROXY15
overexpression lines (Fig. 4), we hypothesize that the
ROXYs that are differentially regulated under high and
low nitrate conditions could regulate the gene expression
of NRT2.1 probably either through ROXYs-mediated glu-
tathionylation or disulphide bridge reduction of TGA1/4
or through acting as adaptor proteins, which may help re-
cruit transcriptional complexes on TGA-regulated target
promoters. Further studies will be necessary to test this
hypothesis.

Conclusion
The data presented here provide evidence that both ROS
and ROXY genes may play an important role in nitrate
deprivation signaling. A model for the role of ROXYs in
nitrate deprivation signal transduction pathway is sum-
marized in Fig. 6. Our findings provide new and sup-
portive data connecting known signaling components
with nitrogen limitation-regulated plant responses (i.e.
physiological changes and transcriptional changes) in
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nitrate deprivation signaling pathways. A major question
still to be resolved is what the targets of ROXYs are and
how ROXYs regulate their downstream targets in nitrate
deprivation signal transduction pathway.

Methods
Plant materials and growth conditions
All Arabidopsis thaliana wild-type and transgenic lines
were Columbia-0 ecotype. Seeds were sterilized in 70%
(v/v) ethanol and 0.05% (v/v) Triton X-100 and then
planted on 10 cm-diameter sterile plates containing
complete nutrient medium [1.75 mM KCl, 2 mM
Ca(NO3)2, 0.5 mM phosphoric acid, 0.75 mM MgSO4,
50 μM H3BO3, 10 μM MnCl, 2 μM ZnSO4, 1.5 μM
CuSO4, 0.075 μM NH4Mo7O24, 74 μM Fe-EDTA,
pH 5.6 with Ca(OH)2], 2% sucrose, and 0.8% SeaKem
agarose (Cambrex). This complete nutrient medium was
used throughout the study unless otherwise stated. After
stratification of the seeds at 4 °C for 2~ 3 days, the plates
were transferred to the growth chamber at 22 °C with a
16 h daylength at 200 μmol·m− 2 s− 1. Seedlings were
grown on vertically oriented plates. Four- to 10-day-old
seedlings were used throughout the study. For
nitrate-deficient (-N) medium, 2 mM Ca(NO3)2 was re-
placed with 2 mM CaCl2.

Plasmid construction and plant transformation
To generate constructs for the overexpression of ROXY9
and ROXY15, full-length open reading frames of ROXY9
and ROXY15 were amplified by PCR using NEB Phusion
polymerase. The PCR products were inserted into
pENTR/D-TOPO following the manufacturer’s instruc-
tions (Invitrogen). The inserts were sequenced to make
sure that no changes were introduced by PCR. The
resulting entry clones were introduced into the destin-
ation plasmid pEARLYGATE100 [86] to yield pEARLY-
GATE100:ROXY9 and pEARLYGATE100:ROXY15, which
allows the overexpression of proteins under control of
the cauliflower mosaic virus 35S promoter. Transgenic
Arabidopsis plants carrying pEARLYGATE100:ROXY9
and pEARLYGATE100:ROXY15 were generated by
Agrobacterium-mediated transformation [87] and T3

homozygous transgenic lines were used in this study.

Quantitative real-time PCR analysis
For the analysis of NRT2.1 expression levels in the wild
type Col-0 seedlings and transgenic seedlings overex-
pressing ROXY9 or ROXY15, seven-day-old seedlings
grown on complete nutrient media were harvested. For
the analysis of NRT2.1 expression levels in Col-0 seed-
lings under nitrate starvation, six-day-old seedlings
grown on complete nutrient media were transferred to
media with either 4 mM nitrate or no nitrate and further
grown for 6, 12, and 24 h. Then, all seedlings were har-
vested at the end of the light period (zeitgeber time 16).
For the analysis of expression levels of ROXY genes in
the wild type Col-0 seedlings with H2O2, seven-day-old
seedlings grown on complete nutrient agar media were
floated on the same nutrient liquid media containing
10 mM H2O2 for 1, 3, and 6 h and harvested at the same
time. Total RNA was isolated by grinding whole seed-
lings in liquid nitrogen in the presence of Trizol reagent
(Invitrogen) according to the manufacturer’s instruc-
tions. RNA was quantified and treated with RQ
RNase-free DNase I (Promega). DNase-treated RNA was
tested for genomic DNA contamination, and the quality
of total RNA was determined by agarose gel electrophor-
esis. Two and a half micrograms of DNA-free RNA was
then reverse transcribed using the First-Stand Synthesis
System (Invitrogen). qRT-PCR analysis was performed
using the StepOnePlus Real-Time PCR system (Applied
Biosystems) and Platinum SYBR Green qPCR
SuperMix-UDG (Invitrogen). The primers used to quan-
tify the gene expression of ROXYs and NRT2.1 were de-
scribed in Additional file 3. The real-time PCR efficiency
in the exponential phase was calculated according to the
equation: E = 10^[− 1/slope]. Statistical differences of the
transcript levels of ROXY genes and NRT2.1 between
samples were evaluated by a Student’s t test using ΔΔCt

Fig. 6 A model of the roles of ROXYs in nitrate starvation signaling.
a Under nitrate-deficient conditions, ROXY6,8,9,19–21 are
upregulated, while ROXY10–17 are downregulated. ROS may be a
signaling component that regulates the expression of some of these
ROXY genes. b Based on gain-of-function data, ROXY15 or its
paralogs, which are upregulated under nitrate-sufficient conditions,
might increase chlorophyll content and inhibit root hair elongation,
and downregulate the transcription of NRT2.1 while ROXY9 or its
paralogs, which are upregulated under nitrate-deficient conditions,
might reduce chlorophyll content and promote root hair elongation,
and upregulate the transcription of NRT2.1. Up arrow, increase; down
arrow, decrease; T-bar, inhibition
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values [88]. Three biological replicates were used to gen-
erate means and statistical significance.

ROS detection and measurement
For the localization and measurement of ROS in roots,
we employed a membrane permeable fluorescent dye
called 5-(and 6-) carboxy-2′,7′- difluorodihydrofluores-
cein diacetate (DFFDA, Invitrogen), an improved photo-
stable version of 2′7’-dichlorodihydrofluorescein
diacetate. For the ROS study using wild type Col-0 seed-
lings, three-day-old seedlings grown on complete nutri-
ent media were floated on liquid media containing either
4 mM nitrate or no nitrate. After 23 h and 40 min, roots
were further incubated with 20 μM DFFDA for 20 min.
After a brief wash with the medium that did not contain
DFFDA, the roots were observed using fluorescence mi-
croscopy. All fluorescence images were captured and
stored in grayscale using a Nikon SMZ1500 microscope
(Nikon,Tokyo, Japan) and a Q-Imaging Retiga cooled
12-bit camera (Burnaby, Canada) with 460–500 nm
bandpass excitation and 510–560 nm bandpass emission.
ROS fluorescence in the root hair elongation zone (~
0.5 mm) was quantified and converted into pseudo-color
images by the NIH ImageJ software program (available
at rsb.info.nih.gov/ij/). Background noise was subtracted
from the fluorescence intensity value for quantification.
The same microscopic parameters (i.e., UV exposure
time, gain, contrast, etc.) were used to compare ROS sig-
nal intensity within specific experiments.

Chlorophyll content measurement
For the measurement of total chlorophyll content of
ROXY transgenic plants, wild type Col-0 plants and two
independent transgenic plants overexpressing ROXY9 or
ROXY15 were grown in Fafard 4 M soil mix in a growth
chamber at 22 °C with a 16 h daylength at 200 μmol·m−

2 s− 1 for 3 weeks. Photographs and chlorophyll content
measurements of the plants mentioned above were
taken. Chlorophyll contents were measured by bulking 2
fully expanded leaves at the same developmental stage
from each of ten plants (n = 10). For the measurement of
total chlorophyll content of plants deprived of nitrate,
ten-day-old seedlings grown on complete nutrient media
were transferred to media containing either 4 mM ni-
trate or no nitrate. The shoots were harvested 4 days
after the transfer. Total chlorophyll content were mea-
sured by bulking 5 shoots per replicate and 5 replicates
were used. Chlorophyll was extracted and assayed ac-
cording to the procedure of Hiscox and Israelstam
(1979). Statistical significance was evaluated with a Stu-
dent’s t test. At least two independent experiments were
performed, and similar results were obtained.

Root hair length measurement
Root hair length was measured using Col-0 wild-type
plants and two independent transgenic plants overex-
pressing ROXY9 or ROXY15. Photographs of 4-day-old
roots were taken using a Nikon SMZ1500 microscope
and a Q-Imaging Retiga cooled 12-bit camera. For each
root, the length of the root hairs, in a 2 mm region start-
ing 0.5 mm above the root hair differentiation zone, was
measured (n = 15 roots hairs), avoiding root hairs that
were growing into the medium, by using NIH ImageJ
software program. Ten plants per genotype were used
for root hair length measurements (n = 10). For the root
hair length measurement of plants deprived of nitrate,
three-day-old seedlings were transferred to media con-
taining either 4 mM nitrate or no nitrate. Then, root
hair length was measured 24 h after the transfer. At least
two independent experiments were performed, and simi-
lar results were obtained.

Additional files

Additional file 1: Figure S1. Expression levels of ROXY9 and ROXY15 in
transgenic overexpressor lines. (DOCX 118 kb)

Additional file 2: Figure S2. Expression levels of ROXY18, ROXY7, and
ROXY16 under low nutrients and H2O2 treatment. (DOCX 218 kb)

Additional file 3: Table S1. List of primers used in this research. (DOCX
28 kb)
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