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Combined linkage and association
mapping reveal QTL for host plant
resistance to common rust (Puccinia sorghi)
in tropical maize
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Abstract

Background: Common rust, caused by Puccinia sorghi, is an important foliar disease of maize that has been
associated with up to 50% grain yield loss. Development of resistant maize germplasm is the ideal strategy to
combat P. sorghi.

Results: Association mapping performed using a mixed linear model (MLM), integrating population structure and
family relatedness identified 25 QTL (P < 3.12 × 10− 5) that were associated with resistance to common rust and
distributed on chromosomes 1, 3, 5, 6, 8, and 10. We identified three QTLs associated with all three disease
parameters (final disease rating, mean disease rating, and area under disease progress curve) located on
chromosomes 1, 3, and 8. A total of 5 QTLs for resistance to common rust were identified in the RIL population.
Nine candidate genes located on chromosomes 1, 5, 6, 8, and 10 for resistance to common rust associated loci
were identified through detailed annotation.

Conclusions: Using a diverse set of inbred lines genotyped with high density markers and evaluated for common
rust resistance in multiple environments, it was possible to identify QTL significantly associated with resistance to
common rust and several candidate genes. The results point to the need for fine mapping common rust resistance
by targeting regions identified in common between this study and others using diverse germplasm.
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Background
Common rust of maize, caused by Puccinia sorghi
Schwein, is widely distributed in tropical, subtropical,
temperate, and highland environments, where it causes
economic losses on approximately 7.8 million ha or 34%
of the maize area [1]. Substantial losses in forage quality
and up to 50% loss in grain yield have been observed [2].
Damage is caused by loss of photosynthetic leaf area,
chlorosis and premature leaf senescence, leading to in-
complete grain filling and poor yields. Common rust can
be controlled by use of fungicides or resistant cultivars.
For economic and ecological reasons, development and

deployment of resistant maize cultivars is the most ap-
propriate strategy to minimize the effects of P. sorghi,
and significantly contribute to increased grain yield [3].
Previous research revealed that resistance of maize to

common rust is controlled by both quantitative and quali-
tative genes [4–8]. Qualitative or major-gene resistance is
controlled by single major-effect resistance genes that are
either dominant or recessive and generally provide
race-specific, high-level resistance, but in a non-durable
manner. In contrast, quantitative resistance typically has a
multi-genic basis and generally provides non-race-specific
intermediate levels of resistance. In maize, more than 25
dominant Rp genes are involved in race-specific resistance
for common rust and are organized in complex loci at
chromosomes 3, 4, 6 and 10 [3, 9, 10]. Fourteen different
resistance genes have been designated as Rp1-A to Rp1-N
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based on map position [11, 12] and a number of these
have been genetically recombined, suggesting that they
are encoded by members of a gene cluster [12, 13]. Subse-
quently, other genes from the rp1 loci designated rp5 and
rp6 on chromosome 10 [12, 14] rp3 and rp4 on chromo-
somes 3 and 4, respectively [15], Rp7 [16] and Rp8 on
chromosome 6 [5] have been reported. The Rp1-D gene on
chromosome 10 was cloned from the HRp1-D haplotype
using transposon tagging [17], and further validated via a
complementation test [18]. The Rp1 cluster was shown to
vary widely in copy number (1–52 copies) among different
maize haplotypes [19].
Single race-specific or major resistance genes confer

high levels of resistance to specific rust biotypes, but
simply inherited resistance may result in selection for
virulent races. Although it is easier to work with qualita-
tive resistance in crop genetic research and breeding,
partial resistance to the diseases may be more durable
than simply inherited resistance [20–22]. However, par-
tial resistance has been more difficult to transfer than
simply inherited resistance due to its presumed multi-
genic nature. Molecular mapping techniques in combin-
ation with marker-assisted selection, however, may
enable breeders to more effectively identify and exploit
this type of resistance.
Since the first mapping study of quantitative trait loci

(QTL) in a plant was published in 1986 [23] a substan-
tial number of studies have been conducted to map QTL
for different disease resistances [3, 6, 7, 24–26]. Lübber-
stedt et al. [3] used European maize flint lines and iden-
tified 20 QTL conferring partial resistance to common
rust distributed over all 10 maize chromosomes. Kerns
et al. [6] used a segregating population from cross
FRMo17 × BS11 (FR)c7 and identified 24 molecular
markers in 16 chromosomal regions that were signifi-
cantly associated with partial rust resistance. Brown et
al. [24], using an F2:3 population from a cross between
sweet corn inbred lines IL731a and W6786, identified
nine regions on six chromosomes, which were signifi-
cantly associated with common rust severity. These
mapping studies thus far have provided information on
the genetic architecture of resistance to common rust,
including the number, location, and action of chromo-
somal segments. Through linkage mapping, several P.
sorghi resistance QTL have been identified [3–6, 8, 24],
but these have not been validated for utilization by
breeders. It is, therefore, important to identify new genes
for resistance to common rust that can be effectively
used in tropical maize breeding programs.
Genome-wide association studies (GWAS), based on

linkage disequilibrium (LD) analysis, have become a useful
tool for identifying and mapping causal genes with modest
effects like common rust resistance genes [27, 28]. Three
loci (chromosome 2, chromosome 3 and chromosome 8)

associated with maize common rust resistance in temper-
ate maize germplasm were identified using GWAS [8].
GWAS is particularly useful when large numbers of in-
bred lines are available, because once these lines have been
genotyped they can be phenotyped in different environ-
ments across seasons/years, making it possible and
cost-effective to study the genetic architecture of different
traits using phenotypic data from multiple environments
[28, 29]. The traditional QTL mapping in bi-parental pop-
ulations is powerful in comparing pairs of alleles, which
gives a lower false discovery rate compared to GWAS.
Hence, combining both GWAS and traditional QTL map-
ping maybe a powerful method for discovering causal loci
across the genome [26, 30]. In this study, we used GWAS
in a diverse panel of tropical maize inbred lines and QTL
mapping in a recombinant inbred line (RIL) population to
analyze chromosomal regions associated with resistance
to P. sorghi. The objectives were to localize and estimate
the effects of minor and major loci for resistance to com-
mon rust using high density single nucleotide polymorph-
ism (SNP) markers, and to identify candidate genes and
potential causal polymorphisms for resistance to common
rust through detailed annotation.

Results
Phenotypic diversity
The GWAS panel was evaluated at six environments for
response to common rust and ratings were done three
times for all environments except at Kenya09, where
lines were evaluated once. Results showed very strong
significant correlation between the three disease traits
(AUDPC, FDR and MDR) (Table 1). Because disease rat-
ing at Kenya09 was evaluated once and strong correl-
ation was observed between the three disease
parameters, further analysis was conducted using only
the FDR data. A weak negative correlation was observed
between maturity (AD and SD) and rust resistance pa-
rameters (Table 1). Although rust resistance is a complex
trait, the inoculum pressure was consistently high under
field conditions and we obtained highly reliable pheno-
typic data, as shown by the within location repeatability
of FDR that was ≥0.76 (Table 2). The histogram of FDR

Table 1 Pearson correlation coefficients between three disease
parameters and flowering traits

AUDPC FDR MDR AD SD

AUDPC 1 . . . .

FDR 0.97** 1 . . .

MDR 0.98** 0.98** 1 . .

AD −0.25 −0.25 − 0.24 1.00 .

SD −0.16 −0.12 − 0.12 0.99** 1.00

AUDPC Area under the disease progress curve, FDR Final disease rating, MDR
Mean disease rating, AD Days to anthesis, SD Silking date
**indicates significant at P < 0.01

Zheng et al. BMC Plant Biology          (2018) 18:310 Page 2 of 14



at each of the six environments showed a continuous
distribution (Additional file 1), which suggested quanti-
tative resistance genes might be responsible for most of
the variation.
Highly significant differences (P < 0.001) among lines, en-

vironments and line × environment interaction were ob-
served for FDR of common rust in the DTMA panel of
inbred lines (Table 3). Several inbred lines exhibited differ-
ential response to common rust in various environments
(Additional file 2). Genetic correlations for FDR among lo-
cations ranged from 0.48 to 1.00 (Table 4). Despite the sig-
nificant line × environment interactions, strong genetic
correlation coefficients among most of the environments
were observed for FDR scores. Clustering of environments
using FDR revealed two major clusters, with BA10 sepa-
rated from other environments (Fig. 1). Environment BA10
had the smallest genetic correlations with other environ-
ments and was excluded from further analysis. The year of
common rust evaluation at this location (2010) was ex-
tremely dry and therefore disease expression was affected.

Genetic structure of DTMA panel of inbred lines
The germplasm collection used in this study included 296
tropical maize inbred lines representing a large amount of
the genetic diversity of CIMMYT and IITA’s stress
(drought, low nitrogen, acid soils, diseases, and entomol-
ogy) breeding programs in Mexico, Colombia, Zimbabwe,
Nigeria, Ethiopia and other tropical countries. Among the

55,000 SNP markers used to genotype the lines, 39,996
SNPs were scored for all lines. There was an even distribu-
tion of minor allele frequency across the 39,996 SNPs, out
of which 7945 SNP markers (19.8%) had a minor allele
frequency (MAF) below 5% across all tested lines. A total
of 32,051 SNPs were used for population structure and as-
sociation mapping after excluding SNPs with MAF below
5%. The results showed that the panel had eight divergent
groups, namely, I, II, III, IV, V, VI, VII and VIII (Fig. 2 and
Additional file 3). Thus, structure analysis separated the
germplasm clearly into different divergent groups.

Genome wide SNP association
Association mapping was performed using a mixed linear
model (MLM) by integrating population structure (PCA)
and family relatedness (kinship) within the DTMA panel
using 32,051 SNPs with rare alleles (MAF < 5%) having
been excluded. A Bonferroni threshold (1/n) was used to
show the significant polymorphic SNPs (P < 3.12 × 10− 05

for 32,051 SNPs). In total, 37 SNP markers associated with
common rust resistance were detected. Of the 37 SNP
markers, seven SNP markers on four chromosomes
(Chrs.1, 3, 6 and 8) were significantly associated with FDR
(P < 3.12 × 10− 5), seven SNP markers on three chromo-
somes (Chrs.1, 3 and 8) were significantly associated with
MDR, and 23 SNP markers on five chromosomes (Chrs.1,
3, 5, 6, 8 and 10) were significantly associated with
AUDPC (Table 5, Fig. 3a-h). The percentage of phenotypic

Table 2 Summary statistics and repeatability for final disease rating of common rust in a set of 296 DTMA panel inbred lines in six
environments

Location

Statistics BM09A BM09B Kenya09 BM10 BM11 Celaya12

Range 1.0–4.5 1.0–4.5 1.0–5.0 1.0–5.0 1.0–4.0 1.0–5.0

Mean (Panel) 1.81 1.98 2.31 2.79 1.75 2.52

Mean (Resistant checks) 1.5 1.92 – 1 1.17 1.33

Mean (Susceptible checks) 3.75 4.17 – 4.67 4.25 4.77

Repeatability 0.88 0.76 0.88 0.92 0.78 0.95

LSD(0.05)
a 0.89 0.98 0.79 0.66 0.72 0.51

CV (%)b 49.4 39.9 33.8 41.3 31.5 33.3
aLSD Least significant difference
bCV coefficient of variation

Table 3 Combined analysis of variance for final disease rating of common rust in a set of 296 Drought Tolerant Maize for Africa
panel of inbred lines using combined data from evaluations conducted in 2009 to 2012

Source of variation Degrees of freedom Sum of squares Mean square F value P value

Environment (Env) 5 800.79 160.16 731.31 < 1.0E-10

Line 295 2281.83 7.74 35.32 < 1.0E-10

Replication (Rep)/Env 12 11.59 0.97 4.41 4.99E-07

Env × Line 1450 1461.41 1.01 4.60 < 1.0E-10

Block(Env × Rep) 687 217.12 0.32 1.44 < 1.0E-10

Error 2782 609.26 0.22
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variance explained (PVE) by an individual significant SNP
ranged from 6.43 to 12.97%. Quantile-quantile plots (QQ
plots) showed that population structure was controlled
well by the mixed linear model (Additional file 4).
Based on the genomic region and size with significant

SNPs, we classified these SNPs into 8 QTLs (Table 5).
Five QTLs associated with FDR were detected, including
one QTL denoted as rp6.1 (Bin 6.04 Pos 111M) at
Embu (Kenya) in 2009, one QTL denoted rp1.1 (Bin
1.06 Pos 192M) at El Batan (Mexico) in 2010 and three
QTLs denoted as rp3.1 (Bin 3.04 Pos 97M), rp3.2 (Bin
3.04 Pos 115M) and rp8.2 (Bin 8.05 Pos 141M) at El
Batan in 2011, respectively. Three QTLs associated with
MDR were detected, including one QTL denoted as
rp1.1 (Bin 1.06 Pos 192M) at El Batan in 2010 and two
QTLs denoted as rp3.1 (Bin 3.04 Pos 97M) and rp8.2
(Bin 8.05 Pos 141M) at El Batan in 2011, respectively.

Six QTLs associated with AUDPC were detected, includ-
ing three QTLs denoted as rp5.1 (Bin 5.02 Pos 10M),
rp8.1 (Bin 8.03 Pos 72-78M) and rp10.1 (Bin 10.06 Pos
140M) at El Batan in 2009, one QTL denoted as rp1.1
(Bin 1.06 Pos 192M) at El Batan in 2010 and two QTLs
denoting as rp3.1 (Bin 3.04 Pos 97M) and rp8.2 (Bin
8.05 Pos 141M) at El Batan in 2011, respectively.
There were three QTLs associated with all three dis-

ease parameters (FDR, MDR and AUDPC) which were
located on Chr.1 (rp1.1), Chr.3 (rp3.1) and Chr.8 (rp8.2).
All the QTLs associated with MDR were detected for
AUDPC as well. One QTL (rp8.1) on Chr.8 associated
with AUDPC was detected with several significant SNPs
with high percentage of PVE > 10%. It is notable that a
significant QTL, rp3.1, detected for FDR, MDR and
AUDPC at El Batan in 2011, was also detected at El
Batan in 2009A, 2009B and 2010 with a low P value,
suggesting that rp3.1 is likely to be a major QTL.

Candidate genes annotation of associated SNPs
Candidate genes were selected around the associated
SNP (within ~ 200 kb) based on known involvement as
metabolic or signaling genes in disease resistance. The
gene annotation information was used to identify the
putative function of genes around associated SNPs. Nine
candidate genes were identified in the significant SNP

Table 4 Genetic (upper diagonal) and phenotypic correlations
(below diagonal) for final disease rating (FDR) of common rust
among locations

BA09A BA09B Kenya09 BA10 BA11 Celaya12

BA09A 1 1.00 0.86 0.55 0.86 0.69

BA09B 0.79 1 0.88 0.55 0.92 0.73

Kenya09 0.73 0.69 1 0.62 0.82 0.70

BA10 0.36 0.35 0.42 1 0.52 0.48

BA11 0.61 0.57 0.66 0.39 1 0.77

Celaya12 0.67 0.59 0.74 0.47 0.73 1

All the correlations were significant at the P < 0.01 level

Fig. 1 Dendrogram of six environments used to evaluate the
Drought Tolerant Maize for Africa (DTMA) panel of 296 inbred lines
for reaction to common rust. The Ward minimum variance method
was used to group environments based on genetic correlations

Fig. 2 Neighbor-joining tree constructed from a simple matching
distance of 32,051 single nucleotide polymorphism (SNP) markers
and showing the population structure of the DTMA panel of tropical
maize inbred lines. The eight divergent groups identified are color-
coded and designated I-VIII
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sites (or adjacent to these sites) of six associated loci
(Table 6). The combined approach was not effective for
all loci because of the complexity of candidate gene
identification. There were several association signals lo-
cated in genomic regions with tandemly repeated genes.
We identified nine candidate gene on chromosomes 1,
5, 6, 8 and 10. Chromosome 5 had two candidate genes
(GRMZM2G181002 at 10,084,848–10,087,159 bp, and
GRMZM5G829476 at 10,117,318–10,118,871 bp) while
chromosome 8 had four candidate genes (Table 6).

QTL mapping for common rust
The bi-parental RIL population was evaluated for common
rust resistance in three environments. Significant pheno-
typic variation for rust resistance was observed among the
RILs (Additional file 5). The genotypic variance (σ2G) was
significant (P < 0.01) at single environments. For combined
ANOVA σ2GE was significant (P < 0.01), suggesting com-
mon rust resistance is affected by environmental factors.

Broad-sense heritability was 0.72 across environments
(Additional file 5), revealing that rust resistance was con-
trolled by genetic factors and the data could confidently be
used for QTL mapping.
Five QTL were detected in the RIL population, one

each on Chr. 1 and 4, and three on Chr. 5 (Table 7). The
QTL on Chr.5 (qRps5–1) had the highest LOD value
(7.74) and it accounted for 18.37% of the total pheno-
typic variation observed for common rust resistance in
the RIL population. The other two QTLs on Chr. 5
(qRps5–2 and qRps5–3) explained 15.84% of the pheno-
typic variation. Combined, the five QTLs detected in the
RIL population explained 39.6% of the total phenotypic
variance for common rust resistance.

Discussion
Genetic resistance to maize foliar diseases is the most
important, economical and sustainable strategy for man-
aging disease epidemics to increase maize production,

Fig. 3 Genome-wide association mapping of common rust resistance with 32,051 SNPs in Drought Tolerant Maize for Africa (DTMA) panel. The
vertical axis indicates –log10 of P-value scores, and the horizontal axis indicates chromosomes and physical positions of SNPs. The dashed lines
correspond to the thresholds of Bonferroni correction (P < 3 × 10− 5). The Manhattan plots for significant SNP marker for different environments and
disease evalution parameter. (a) One SNP marker on Chr. 6 associated with FDR in EK09; b) 3 SNP markers on Chr.1 associated with FDR in BM10; c) 3
SNP markers on Chr.3 and Chr.8 associated with FDR in BM11; d) 2 SNP markers on Chr.1 associated with MDR in BM10; e) 5 SNP markers on Chr.3 and
Chr.8 associated with MDR in BM11, respectively; f) 14 SNP markers on Chr.5, Chr.8 and Chr.10 associated with AUDPC ted in BM09A; g) 3 SNP markers
on Chr.1 associated with AUDPC d in BM10; h) 6 SNP markers on Chr.3 and 8 associated with AUDPC BM11., respectively
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especially for smallholder farmers. Development of open
pollinated or synthetic maize varieties and hybrids resist-
ant to major diseases requires sufficient information on
the genetics and organization of resistance genes on the
maize chromosome. This information will allow efficient
strategies to combine or pyramid these genes in maize
inbred lines that should allow resistant hybrid develop-
ment. Genome-wide association studies that utilize di-
verse sets of inbred lines provide an avenue to precisely
localize QTLs for quantitative traits and to potentially
identify candidate genes [8]. This study used a combin-
ation of multiple environment phenotyping of a com-
mon set of inbred lines and association mapping to
elucidate the genetics of maize resistance to common
rust. Results from this study revealed relatively large re-
peatability estimates for response to common rust at sin-
gle and across environments. This suggested that actual
heritability estimates for common rust may be high,
leading to higher genetic gain during selection for resist-
ance to common rust. Higher repeatability estimates
may also be attributed to the large diversity of the germ-
plasm used.
Disease parameters, FDR and AUDPC are among those

used to identify partial resistance to common rust in
maize. Bailey et a1. [31] suggested the use of AUDPC to
identify partial resistance to plant diseases for different
crops, as this is an integrative parameter that measures

the rate of disease progress as opposed to the final disease
ratings. Hence, AUDPC can be useful in the identification
of QTL that are associated with different components of
disease resistance. Although a very strong correlation was
observed between FDR and AUDPC (r = 0.97), these two
parameters could be associated with different types of re-
sistance. Three QTL, rp1 on Chr.1, rp3.1 on Chr.3 and
rp8.2 on Chr.8, were detected by all three (FDR, MDR and
AUDPC) disease parameters. All the QTL associated with
MDR were detected with AUDPC. More SNPs were de-
tected for AUDPC than for FDR, further indicating the
importance of using different parameters in association
mapping. Although it costs more (time and labor) to ob-
tain data to calculate AUDPC because several ratings must
be performed during crop development/growth cycle, our
study has shown that it is more effective than a single
score for QTL discovery.
Association analysis revealed common rust resistance

QTLs on chromosomes 1, 3, 5, 6, 8 and 10, and these are
in the regions that have previously been reported to harbor
P. sorghi resistance [7]. Some of the QTL identified in this
study have been mapped to regions previously described to
be associated with common rust resistance through
bi-parental population–based linkage analysis [3, 6, 24] and
other methods of analysis [5, 8, 32–34]. Lübberstedt et al.
[3] reported that linkage groups 1 (bin1:05–1:06), 6 (6:04),
and 10 (10:05–06) harbored important QTL for common

Table 6 A subset of associated loci and candidate genes identified for common rust resistance according to gene annotation

Chr. Position (bp)a Candidate genes Description

1 192,154,274 AC197246.3_FG001b Ras-related protein ARA-4, small GTPase mediated signal transduction

5 10,055,423 GRMZM2G181002b, GRMZM5G829476b Phosphotransferases. Serine or threonine-specific kinase subfamily

6 111,526,964 GRMZM2G156712b FMN binding, kinase-associated protein, essential for defense against pathogens

8 72,047,084 GRMZM2G157156b PDZ/DHR/GLGF. Serine signalling proteases with PDZ domains

78,171,783 GRMZM2G350684b, GRMZM2G018048b SANT_DNA-bd. Novel transcriptional regulatory proteins that were identified
based on homology to the DNA binding domain of c-myb.

GRMZM2G018142b HAS protein. Found in helicases and associated with SANT domains

10 140,987,405 GRMZM2G109753b Scramblase protein, responsible for the translocation of phospholipids between
the two monolayers of a lipid bilayer of a cell membrane

aPosition in bp according to B73Ref_V2
bThese genes have known involvement as metabolic or signaling genes in the disease resistance

Table 7 Estimated quantitative trait loci (QTL) locations and genetic effects affecting common rust resistance in the CML444 ×
MALAWI RIL population

QTL Chr. Position (cM) Left Marker Right Marker LOD PVE (%) Add

qRps1–1 1 105 PZA03742.1 PHM12323.17 2.87 8.70 −0.15

qRps4–1 4 28 PHM3963.33 umc1294 2.62 8.27 0.14

qRps5–1 5 118 PZA02207.1 PHM2769.43 7.74 18.37 −0.22

qRps5–2 5 140 PZA01349.2 PZA01303.1 4.09 9.90 −0.16

qRps5–3 5 193 umc48b npi237 2.65 5.94 −0.12

Chr. Chromosome, Add additive effect, PVE Phenotypic variation explained
Disease parameter used for QTL analysis was average common rust score
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rust resistance. In these regions, we also detected significant
associations through GWAS, meaning that the action of
these polymorphism loci may be influenced by linked QTL
on the same chromosome. Brown et al. [24] identified QTL
in bins 2.05 and 5.02 that confer partial resistance to com-
mon rust in maize. These bins correspond to association lo-
cations identified in our study. Two QTLs identified in this
study (in bins 3.04 and 8.03) were also identified by Olu-
kolu et al. [8]. This suggested the need to initiate a fine
mapping study for common rust by targeting the common
regions identified by various research groups with diverse
germplasm. Furthermore, some association loci (rp8.1,
rp8.2, rp10.1) that confer partial resistance to common rust
have not been previously reported. Chromosome 10 has
been reported to harbor genes for resistance to southern
corn rust [35] but we do not have information if it is the
same or different set of genes as those for common rust. In
our study, the QTL, rp3.1, detected using all three common
rust resistance parameters (FDR, MDR and AUDPC) at El
Batan in 2011, was also found at El Batan in 2009A, 2009B,
and 2010 although with a non-significant low P value. This
suggests that rp3.1 may be a major QTL associated with re-
sistance against common rust and it warrants further
investigation.
Sources of quantitative disease resistance in crop plants

have proven to be highly durable [36], making it a promis-
ing breeding target for long-term common rust resistance.
The integration of resistance into adapted maize germ-
plasm is, however, difficult because it is multi-genic, thereby
making backcrossing inefficient. Difficulties in phenotyping
common rust further complicate the breeding efforts. As
with other diseases, breeding for common rust resistance
requires artificial inoculation for uniform pathogen pressure
to identify susceptible and resistant genotypes with little
chance of escapes. In nature, the infrequent occurrence of
the maize rust pathogen has resulted in inconsistent selec-
tion between environments, which has led to difficulties in
selecting for and maintaining common rust resistance in
maize breeding lines [37]. In the absence of selection pres-
sure, resistance alleles may be lost, especially those with
minor effects on resistance, as has occurred before [38]. In
our study, no QTL was common across locations when
using AUDPC, suggesting high pathogen variation among
the locations. In this case, it might be more effective to use
marker-assisted selection for loci linked to major and
partial-resistance QTL to develop common rust resistant
inbred lines and hybrids. Marker assisted selection has been
successfully deployed for traits that are simply inherited,
and is justified for such traits that are either too difficult or
expensive to phenotype [39].
In this study, flowering time and common rust FDR

were negatively correlated. This suggested that reaction to
common rust was independent of genotype maturity. This
result corroborates findings by Carson et al. [40] for

southern leaf blight but is in contrast to Liu et al. [41] for
gray leaf spot (GLS). Associated loci for FDR and flower-
ing time did not co-localize (data not shown), a result that
is in contrast to findings in other studies with maize dis-
eases [40]. This is surprising since common rust, like
other foliar diseases of maize, tends to be a late-season
disease and earlier materials tend to escape.
In maize, host plant resistance genes are frequently found

in clusters; however, the statistical power of current map-
ping techniques does not allow for further resolution of
whether these genes are contiguous or allelic to known
genes. Huang et al. [42] identified candidate genes for 18
associated loci through detailed annotation in rice, thus
showing that the integrated approach of sequence-based
GWAS and functional genome annotation has the potential
to match complex traits to their causal polymorphisms. In
our study, we identified candidate genes in the associated
loci on chromosomes 1, 5, 6, 8, and 10 based on known in-
volvement as metabolic or signaling genes in the corre-
sponding traits. The four candidate genes identified on
chromosome 8 are different from those reported in temper-
ate germplasm by Olukolu et al. [8]. There were several as-
sociation signals located in genomic regions with tandemly
repeated genes. The candidate genes on chromosome 5
(GRMZM2G181002 and GRMZM5G829476) encode a
phosphotransferases of serine or threonine-specific kinase
(STK) subfamily, which play a key role in disease resistance
system of plants, and were adjacent to associated loci SNP
marker PZB00182.1 (Chr. 5 at 10,055,423 bp). Another
gene, GRMZM2G156712 encoding a kinase-associated
FMN binding protein, which is essential for defense against
pathogens, was adjacent to associated loci SNP marker
PZE-106060721 (Chr. 6 at 111,526,964 bp). Candidate
genes near the significant associated loci detected by
GWAS, maybe involved in the common rust resistance
defense system in maize. More work is required to eluci-
date the potential function of these candidate genes.

Conclusions
We used a diverse set of inbred lines genotyped with
high density markers and evaluated for common rust re-
sistance in multiple environments, and identified QTL
significantly associated with resistance to common rust
and several candidate genes. The results of this study
should be used to fine map common rust resistance by
targeting the common regions identified between this
and other studies that used different germplasm.

Methods
Maize germplasm and phenotyping conditions
A collection of 296 tropical maize inbred lines represent-
ing some of the genetic diversity available in CIMMYT’s
and IITA’s stress breeding programs (drought, low N,
acid soils, and biotic stresses) and denoted as Drought
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Tolerant Maize for Africa (DTMA) panel was used in
this study (Table 8). The detail information about each
inbred line constituting the panel is presented in Add-
itional file 3.
The inbred lines were evaluated for response to P. sor-

ghi in field trials in six environments in two countries.
Field trials were planted in 2009, 2010 and 2011 in
Mexico and in 2009 in Kenya (Table 9). Lines were
planted in 2 m single-row plots, 0.75 m between rows,
and 0.20 m within row to give a total of 10 plants per
plot. Trails were laid out in an alpha-lattice design with
three replications. Trials at El Batan (19°52’ N, 98°84’ W;
2240 masl) in Mexico were artificially inoculated with P.
sorghi isolates at the six to eight leaf stage. The El Batan
experimental location harbors Oxalis latifolia, an alter-
nate host of P. sorghi, the rust population at this location
is complex as sexual reproduction takes place, resulting
in new pathotypes, and therefore artificial inoculation
was used. Another trial in Mexico at Celaya (20°35’ N,
100°49’ W; 1778 masl) was planted under natural disease
pressure. The trial in Kenya was planted at Embu (0°
30’S, 37°27′E; 1350 masl) under natural disease pressure.
Both Celaya and Embu are maize disease hotspots in-
cluding common rust among others. The experimental
design used was an alpha-lattice [43] with three replica-
tions at all locations. At Embu, plot length was a single
3 m row with inter and intra-row spacing of 0.75 m and
0.25 m, respectively. A recombinant inbred line (RIL)
population consisting of 234 families developed from the
cross CML444 (R) ×MALAWI (S) was also used. This
RIL population was developed by Global Maize Program
of CIMMYT using the single-seed descent method [44].

The RIL population and its two parents were planted for
three seasons at El Batan in 2009 (BA09–1, BA09–2)
and 2010 (BA10) to evaluate their reaction to common
rust.

Disease establishment and phenotyping
Common rust epidemics were initiated artificially by
injecting an aqueous suspension of P. sorghi spores
(60,000 spores ml− 1) prepared by mixing sterile distilled
water containing 0.03% Tween 20 into the whorl of
maize plants at the 6–8 leaf stage. These procedures
followed standard techniques for isolation, incubation,
and inoculation for common leaf rust. Disease rating
was conducted thrice at 15 day-intervals starting one
week after silking at all locations, except Kenya09 where
rating was done once at the peak of disease symptom ex-
pression. Disease rating was scored on five-point scale
based on the percent leaf area affected by pustules and
impact of the disease where 1 = 0 to 10% of leaf surface
diseased (no rust pustules or a few pustules scattered on
the leaf surface), 2 = 10 to 25% of leaf surface diseased
(numerous pustules on the leaf surfaces), 3 = 25 to 50%
of leaf surface diseased (many pustules over the leaf sur-
faces), 4 = 50 to 75% of leaf surface diseased (many pus-
tules surrounded with huge blighted and sometimes
rusty chlorotic zones), and 5 = over 75% of leaf surface
diseased (many huge dry pustules surrounded by dead
rusty wilted and blighted areas on the leaves) (Fig. 4).
The disease rating data were used to calculate the mean
disease rating (MDR) and the area under disease pro-
gress curve (AUDPC). Mean disease rating (MDR) was
calculated as:

Table 8 Origin, source and grain color of tropical maize inbred lines included in the Drought Tolerant Maize for Africa (DTMA) panel

Type Breeding program
of source germplasm

Number
of Lines

Major categories Grain color

White Yellow

A Zimbabwe 41 CMLsa, CIMCALI, DTPWb 41 0

B Nigeria 4 KU, P43 2 2

C Ethiopia 2 Pool9 2 0

D Colombia 27 SA3, SA4, SA5, SA6, SA7, SA8 4 23

E Mexico highland 5 A.T.Z.T.R.L.BA90 1 4

F Mexico entomology 48 CMLs, MBRd, ZM607, KILIMA, P84 33 15

G Mexico subtropical 41 CML, MBR, SPMAT, Pop33, Pop45, Pop501, Pop502 25 16

H Mexico tropical 44 CML, CLQ, CL 23 21

I Selection under drought 52 DTPW, DTPYc, LPSe 41 11

J Selection under low nitrogen 32 DTPW, DTPY, LPS 24 8

Total 296 196 100
aCML CIMMYT maize line
bDTPW Drought tolerant population white
cDTPY Drought tolerant population white
dMBR multiple borer resistant
eLPS La Posta Sequia
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MDR ¼
Xn

i¼1

Xið Þ=n

where i = time measures as days after planting when rust
rating was conducted and Xi = rust rating.
AUDPC was calculated as:

AUDUPC ¼
Xn

i¼1

Xi þ Xiþ1ð Þ=2½ � Tiþ1−Tið Þ

where i = time of rust rating, Ti = number of days after
inoculation and Xi = rust rating [45]. A third parameter,
the final disease rating score (FDR, the third disease rat-
ing) was included in the analysis. The MDR, FDR, and
AUDPC were used as parameters for statistical analysis
and association mapping. Other parameters recorded

included days to anthesis (AD) and days to silking (SD),
which were used as covariates in GWAS computations,
to ascertain whether rust resistance or susceptibility was
associated with maturity.

Statistical analysis of phenotypic data
Phenotypic data from each experiment was analyzed for
genotypic effects and genotype–environment interactions
using the PROC MIXED command of SAS [46]. As lines
were scored three times within a season, best linear un-
biased predictions (BLUPs) were calculated from a multi-
variate mixed model for each rating, and a rust index was
calculated by averaging the three BLUPs for each line. Re-
peatability was estimated for the MDR, FDR and AUDPC
in a single location and across environments according to
Holland et al. [47]. Pearson correlation coefficient between

Fig. 4 Rating scale used to classify maize inbred lines into disease severity classes. Disease was scored on five-point scale based on the percent
leaf area affected by pustules where 1 = 0 to 10% of leaf surface diseased, 2 = 10 to 25% of leaf surface diseased, 3 = 25 to 50% of leaf surface
diseased, 4 = 50 to 75% of leaf surface diseased, and 5 = over 75% of leaf surface diseased

Table 9 Locations, number of inbred lines and year of evaluation, rainfall, and relative humidity during growing season of the DTMA
panel for common rust disease

Experimental location Year Code Number of lines Planting date Harvest date Type of inoculation Rainfall (mm) Relative humidity

El Batan, Mexico (Site 1) 2009 BM09A 295 16 Apr 2009 27 Oct 2009 Artificial 725 65.9

El Batan, Mexico (Site 2) 2009 BM09B 295 16 Apr 2009 27 Oct 2009 Natural 725 65.9

Embu, Kenya 2009 Kenya09 292 26 Oct 2009 30 Mar 2010 Natural 578 72.2

El Batan, Mexico 2010 BM10 294 8 June 2010 8 Dec 2010 Artificial 790 76.2

El Batan, Mexico 2011 BM11 296 12 May 2011 2 Nov 2011 Artificial 760 71.0

Celaya, Mexico 2012 Celaya12 296 13 June 2012 16 Nov 2012 Natural 475 63.5
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different phenotypic traits were calculated using the
PROC CORR option in SAS [46]. Genotypic correlations
(rg) between locations were estimated according to
Cooper et al. [48] as:

rg 12ð Þ ¼ rp 12ð Þ= H2
1 � H2

2

� �1=2

in which rp(12) is the phenotypic correlation between the
traits measured in locations 1 and 2, H2

1 and H2
2 are

the values of broad-sense heritability for the traits mea-
sured in locations 1 and 2, respectively. Cluster analysis
using Ward’s minimum variance method [49] was per-
formed to group environments based on genetic correla-
tions among the environments. The SAS commands
PROC CLUSTER and PROC TREE were used for cluster
analysis and to generate the dendrogram, respectively.

Single nucleotide polymorphism (SNP) genotyping and
genome-wide association analysis
Leaf samples were harvested from 10 plants of each line
and bulked for extraction of total genomic DNA. All lines
were genotyped using Illummina maize BeadChip with
56,110 SNP markers. Markers with a minor allele frequency
(MAF) less than 5% in the lines were excluded from subse-
quent analyses. For the 56,110 SNPs contained in the chip,
32,051 SNPs were used for association mapping after re-
moving SNPs with low MAF. Population structure and kin-
ship were estimated according to Lu et al. [50]. Population
diversity and principal component analysis (PCA) were
conducted to visualize the genetic structure, and pairwise
relatedness coefficients (kinship matrix) were calculated
using TASSEL 3.0 [51]. Neighbor-joining tree and principal
component analyses (PCA) were used to infer population
structure of the GWAS panel. PCA and genetic relation-
ship matrix were conducted in R software and exactly as
described by Mahuku et al. [26]. Genome-wide association
analysis was conducted using a mixed linear model (MLM)
separately for each environment, as described by Mahuku
et al. [26]. The p values for each marker were combined
using Fisher method as described by Chen [52] and the re-
sult used to make a Manhattan plot. The Bonferroni cor-
rection threshold [53] was used to obtain the Fisher
combined p value threshold.

Candidate gene annotation
To identify candidate genes in loci associated with rust re-
sistance, we used public gene annotation datasets based
on a filtered gene set of maize sequence (http://ensembl.
gramene.org/Zea_mays/Info/Index). All the annotated
genes within ~ 200 kb of significant SNPs were retrieved
based on known likely involvement as metabolic or signal-
ing genes in disease resistance. These genes encode pro-
teins containing a central domain with nucleotide binding
site (NBS), which binds either ATP or GTP, and

carboxy-terminal domain consisting of a series of de-
generate leucine-rich repeat residues (LRR) in many
crops [54–58].

Linkage mapping
The RIL population of 234 families from CML444 ×
MALAWI was genotyped with SNP markers using the
KASP (Kompetitive Allele Specific PCR) system by LGC
Genomics (https://www.lgcgroup.com) and used for gen-
etic linkage map construction. The “Map” function in
software QTL IciMapping [59] was used for linkage ana-
lysis. A logarithm-of-odds (LOD) threshold of 3.0 was
used to declare linkage between two markers. The SNP
marker physical position and “nnTwoOpt” algorithm in
IciMapping were used to sequence the marker order.
The Kosambi mapping function was used to calculate
map distances [60]. The IciMapping method [59] was
used for QTL mapping using QTL IciMapping. Scanning
interval was set as 1 cM between markers. Missing phe-
notypes were not used for the QTL analysis. The LOD
threshold for QTL detection was set at 2.5. For QTL
additive effects, positive and negative signs of the esti-
mates indicated that resistance effects were contributed
by MALAWI or CML444, respectively.
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