
RESEARCH ARTICLE Open Access

Adaptive genetic differentiation in
Pterocarya stenoptera (Juglandaceae) driven
by multiple environmental variables were
revealed by landscape genomics
Jia-Xin Li1†, Xiu-Hong Zhu1†, Yong Li1*, Ying Liu2, Zhi-Hao Qian1, Xue-Xia Zhang1, Yue Sun1 and Liu-Yang Ji1

Abstract

Background: The investigation of the genetic basis of local adaptation in non-model species is an interesting focus
of evolutionary biologists and molecular ecologists. Identifying these adaptive genetic variabilities on the genome
responsible can provide insight into the genetic mechanism of local adaptation.

Results: We investigated the spatial distribution of genetic variation in 22 natural populations of Pterocarya stenoptera
across its distribution area in China to provide insights into the complex interplay between multiple environmental
variables and adaptive genetic differentiation. The Bayesian analysis of population structure showed that the 22
populations of P. stenoptera were subdivided into two groups. Redundancy analysis demonstrated that this genetic
differentiation was caused by the divergent selection of environmental difference. A total of 44 outlier loci were
mutually identified by Arlequin and BayeScan, 43 of which were environment-associated loci (EAL). The results of latent
factor mixed model analysis showed that solar radiation in June (Sr6), minimum temperature of the coldest month
(Bio6), temperature seasonality (Bio4), and water vapor pressure in January (Wvp1) were associated with the highest
numbers of EAL. Sr6 was associated with the ecological habitat of “prefered light”, and Bio6 and Wvp1 were associated
with the ecological habitat of “warm and humid environment”.

Conclusions: Our results provided empirical evidence that environmental variables related to the ecological habitats of
species play key roles in driving adaptive differentiation of species genome.

Keywords: Adaptive genetic differentiation, Environment-associated loci, Genome scans, Landscape genomics,
Pterocarya stenoptera

Background
Recently, the investigation of the genetic basis of local
adaptation in non-model species has become an inter-
esting focus of evolutionary biologists and molecular
ecologists [1, 2]. Locally adapted species are facing se-
lection pressures from temporal climate fluctuations
and spatial environment heterogeneity. In response to
these selective pressures, species will undergo adaptive
changes in phenotypes and phenology [3]. Behind
these phenotypic and phenological changes is the

adaptive differentiation of genes on the genome. Gen-
ome scans enable us to identify these adaptive genes
responsible for local adaptation using population gen-
etic analyses. Identifying the genes that control these
phenotypic and phenological changes can provide
insight into the genetic mechanism of local adaptation
[4]. However, the identification of these adaptive genes
on the genome responsible for local adaptation re-
mains a great challenge for most non-model species
due to the lack of genomic information [5].
Landscape genomics was proposed by Joost et al. [6].

It has been used to uncover the relationship between
adaptive genes on the genome and heterogeneous
environment variables among natural populations of

* Correspondence: liyongrui1@126.com
†Jia-Xin Li and Xiu-Hong Zhu contributed equally to this work.
1Innovation Platform of Molecular Biology, College of Forestry, Henan
Agricultural University, No.95, Wenhua Road, Zhengzhou 450002, China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Li et al. BMC Plant Biology          (2018) 18:306 
https://doi.org/10.1186/s12870-018-1524-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12870-018-1524-x&domain=pdf
mailto:liyongrui1@126.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


species [7]. Although most non-model species have no
genomic information, molecular markers that do not
need prior information and have high density coverage
of the genome are suitable for landscape genomic stud-
ies of non-model species. Thus, amplified fragment
length polymorphisms (AFLPs), inter-simple sequence
repeats (ISSRs), and start codon targeted polymor-
phisms (SCoTs) all conform to the above conditions
[4]. Simultaneously, these markers also have the advan-
tages of high polymorphism and high repeatability.
However, AFLP and ISSR are neutral molecular
markers; the adaptive loci detected by these markers
are more likely to be linked to adaptive genes. SCoT is a
molecular marker developed based on the short conserved
initial codon; it is a non-neutral bias marker that is more
biased toward genes [8]. Therefore, it is more suitable for
adaptive evolution research compared with the other two
markers. In recent years, several reduced-representation
genome sequencing (RRGS) technologies have been devel-
oped to improve the genome coverage density of molecu-
lar markers. These sequencing technologies include
genotyping by sequencing [9], restricted site associated
DNA [10], and specific-locus amplified fragment sequen-
cing [11]. Although these markers yielded by the RRGS
are different from the three molecular markers mentioned
above, they contain DNA sequence information. Most of
them cannot be annotated because they are in non-coding
regions on the genome or the DNA sequence is too short
and there is no whole-genome information. In any case,
they can give some information about those genes that
can be annotated. Recently, landscape genomics studies
using these molecular markers have been carried out on
many plant and animal species [4].
A large number of landscape genomic studies have

proved that environmental variables would drive the
adaptive differentiation of some loci on the genome of
locally adapted species [12, 13]. However, we do not
know why adaptive differentiation occurred in these
genes and why environmental factors played key roles
in driving adaptive differentiation. During local adapta-
tion, different species in different regions have differ-
ent adaptive differentiation genes and different driving
factors. Are there common reasons behind these differ-
ences? Several recent landscape genomic studies have
proposed a hypothesis that environmental variables re-
lated to ecological habitats play key roles in driving
species adaptive evolution; in other words, the genes
associated with these environmental variables will
undergo adaptive differentiation [2, 14, 15]. More land-
scape genomic research is needed to test whether this
hypothesis applies to other species as well. Another
question worthy of discussion is whether divergent se-
lection on the genome from environmental variables
plays a decisive role on the spatial genetic structure of

species. Given that previous surveys on species population
structure used more neutral molecular markers, we pay
more attention to the effects of population demographic
history and gene flow on them [16]. If the whole genome
markers are used, that is, both neutral and non-neutral
markers, the genetic differentiation that driven by natural
selection from environmental variables will be detected.
Population demographic history, gene flow, and natural
selection, which will have a greater impact on the spatial
genetic structure of species? The answers to these ques-
tions will help deepen our understanding of adaptive
evolution of species.
Pterocarya stenoptera C. DC (Juglandaceae) is a de-

ciduous broad-leaved tree growing in forests below
1500 m above sea level along the stream bank or wet
hillside land. It is widely distributed in warm temperate
and subtropical zones of China. Pterocarya stenoptera
prefers light, tolerates waterlogging, likes to grow in
warm and humid environment, and can grow on acidic
to slightly alkaline soil [17]. Here, 22 natural popula-
tions of P. stenoptera across its distribution region in
China were sampled to investigate the relationship
between adaptive genetic variations on the genome
and environmental variables by using landscape
genomic approach.
In this study, we employed SCoT markers to scan the

genome of P. stenoptera and identified the adaptive loci
by performing correlations between local environmen-
tal variables and selected SCoT alleles. The present
study aimed to (i) identify the spatial genetic structure
of P. stenoptera, (ii) evaluate the role of environmental
variations on the spatial genetic structure of P. stenoptera,
and (iii) examine the effects of environmental variables on
adaptive differentiation of P. stenoptera genome.

Results
Population genetic structure
A total of 510 individuals of P. stenoptera from 22 wild
populations were successfully scored using the 9 SCoT
primers, and 1006 unambiguous fragments were iden-
tified with sizes varying from 100 bp to 1200 bp. The
number of alleles in 9 primers ranged from 53
(SCoT35) to 156 (SCoT25). The lowest number and
percentage of polymorphic alleles (NA = 126, PPA =
12.5) were found in AHXN (P5) population and the
highest (NA = 261, PPA = 25.9) in JSBH (P16) popula-
tion. Nei’s genetic diversity (HE) per population varied
from 0.0459 in AHXN (P5) to 0.083 in HNTM (P20).
Overall, the summary statistics of the genetic diversity
analyses of 22 populations of P. stenoptera are shown
in Table 1.
The Bayesian analysis of the population structure of

P. stenoptera (Fig. 1) demonstrated that the highest
Delta K value (Fig. 2) was obtained when 22
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populations were clustered into two groups. The first
group is Group A (P1 to P11), and the second group is
Group B (P12 to P22). Despite the 22 populations of P.
stenoptera could be divided into two groups, the gen-
etic variations between the two groups was very low
(6.69%, FCT = 0.067, P < 0.001; Table 2), and most gen-
etic variations occurred within populations (75.67%,

FST = 0.243, P < 0.001; Table 2). The value of gene flow
(Nm) among all populations was 2.022. To detect the
roles of the 30 environmental variables in this genetic
differentiation and their relative contribution on this
differentiation, a constrained linear ordination analysis,
redundancy analysis (RDA), was performed. The re-
sults of RDA are shown in Table 3 and Fig. 3.

Table 1 Details of population locations, sample size, genetic diversity of 22 populations for Pterocarya stenoptera

Population no. and code Locations Altitude meters) Lat.N)/ Long.E) N NA PPA HE

Group A

1. JSLM Lang Mt., Jiangshu 53 31.95/ 120.89 22 181 18.0 0.072

2. SCWD Wuduzhen, Sichuan 532 31.88/ 104.78 24 178 17.7 0.070

3. HNJG Jigong Mt., Henan 418 31.81/114.08 23 170 16.9 0.069

4. AHTZ Tianzhu Mt., Anhui 39 30.67/ 116.49 24 171 17.0 0.058

5. ZJTM Tianmu Mt., Zhejiang 202 30.28/ 119.46 22 183 18.2 0.061

6. AHXN Xiuning, Anhui 155 29.78/ 118.17 24 126 12.5 0.045

7. SCEM Emei Mt., Sichuan 533 29.57/ 103.44 23 156 15.5 0.058

8. JXSQ Shanqing Mt., Jiangxi 171 28.84/ 118.04 23 153 15.2 0.048

9. JXLH Longhu Mt., Jiangxi 47 28.12/ 116.97 24 180 17.9 0.062

10. GZFJ Fengjing Mt., Guizhou 489 27.84/ 108.77 22 181 18.0 0.072

11. YNYB Yangbi, Yunnan 1445 25.62/ 100.03 23 170 16.9 0.069

Group B

12. SDTM Tai Mt., Shandong 304 36.22/117.12 24 139 13.8 0.054

13. SDMM Meng Mt., Shandong 323 35.56/117.96 24 156 15.5 0.062

14. HNNZ Nanzhao, Henan 616 33.59/112.18 24 201 20.0 0.067

15. HNXC Xichuan, Henan 383 33.28/111.12 20 216 21.5 0.079

16. SXWZ Wuzi Mt., Shaanxi 408 32.95/ 107.84 21 204 20.3 0.078

17. JSBH Baohua Mt., Jiangshu 189 32.14/119.09 24 261 25.9 0.077

18. HBSN Shengnongjia, Hubei 657 31.37/ 110.50 24 194 19.3 0.070

19. HBJG Jiugong Mt., Hubei 74 29.45/ 114.71 24 199 19.8 0.064

20. HNTM Tianmeng Mt., Hunan 165 29.11/ 110.46 24 231 23.0 0.083

21. FJWY Wuyi Mt., Fujian 185 27.65/ 117.97 24 178 17.7 0.065

22. HNHM Heng Mt., Hunan 198 27.26/ 112.72 23 204 20.3 0.074

N number of individuals, NA number of polymorphic alleles, PPA percentage of polymorphic alleles, HE Nei’s 1973 measure of gene diversity

Fig. 1 STRUCTURE analyses of 22 sampled populations of Pterocarya stenoptera. Each vertical bar shows the proportional representation of two
genetic clusters (K) for an individual
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Correlations between the genetic variables of 1006 al-
leles and the 25 environmental variables in axes 1 and
2 were both 1.000. The ratios of the eigenvalues of axes
1 and 2 were 27.4 and 12.0%, respectively. RDA ana-
lysis showed that these environmental variables could
divide the populations of P. stenoptera into two
groups, whereas the genetic differentiation between
them is very weak (Fig. 3). This is consistent with the
result of STRUCTURE and analysis of molecular vari-
ance (AMOVA). Five environmental variables were sig-
nificantly correlated with RDA axes 1 and 2 (Table 3).
Among these five environmental variables, mean diur-
nal range (Bio2), temperature seasonality (Bio4), and
minimum temperature of the coldest month (Bio6)
were related to temperature; solar radiation in June
(Sr6) was related to light; and water vapor pressure in
January (Wvp1) was related to air humidity. Bio6 and
Sr6 showed the strongest correlation with genetic vari-
ables among the five environmental variables.

Characterization of environment-associated loci (EAL)
A total of 81 outlier loci (8.1% of 1006 SCoTalleles) with FST
P-value below 0.05 were identified by using the hierarchical

island model in Arlequin (Fig. 4; Additional file 1).
Moreover, 168 outlier loci (16.7% of 1006 SCoT alleles)
with posterior probability above 0.76 (i.e., log10PO >
0.5) were identified by using Bayesian method in
BayeScan (Fig. 4; Additional file 1). To reduce the false
positive rate, the loci detected by both methods were
considered as outlier loci. Here, a total of 44 mutual
loci (4.4% of 1006 SCoT alleles) were detected by both
methods. Latent factor mixed model (LFMM) analysis
was subsequently performed to verify whether these
outlier loci were driven by environmental variables. As
a result, 43 EAL (4.0% of 1006 SCoT alleles) associated
with at least one environmental variable were identi-
fied (Table 4). Among the 25 environment variables
that we detected, Sr6, Bio6, Bio4, and Wvp1 were asso-
ciated with the highest numbers of EAL. The results
suggested that they play major role in the genetic dif-
ferentiation of P. stenoptera.

Discussion
In this study, we investigated the spatial distribution of
genetic variation in wild populations of P. stenoptera
across its distribution area in China to provide insights
into the complex interplay between multiple environ-
mental variables and adaptive genetic differentiation of
this widespread broad-leaved tree species and thus im-
prove our understanding of the genetic mechanism of
local adaptation. Landscape genomics has developed
rapidly in the past decade, which has been proved to
be an effective method for studying adaptive evolution
of species [4]. Here, we revealed the adaptive evolution

Fig. 2 The uppermost hierarchical level of population genetic structure determined according to the values of ΔK. ΔK was calculated by Structure Harvester

Table 2 Hierarchical AMOVAs for SCoT variation surveyed in
Pterocarya stenoptera

Source of variation d.f. %Total variance F-statistic P-value

Among groups 1 6.69 FCT = 0.067 P < 0.001

Among populations
within groups

20 17.64 FSC = 0.189 P < 0.001

Within populations 485 75.67 FST = 0.243 P < 0.001
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of P. stenoptera in response to environmental variables
by using 1006 SCoT alleles.
The role of environmental factors in shaping the

spatial genetic structure of species has been a key issue
in landscape genomics research [18, 19]. Spatial gen-
etic structure of species is the result of the interaction
of multiple factors, e.g., population demographic his-
tory, geographical or ecological barriers, transmission
mode of seeds and pollen, geological events, and diver-
gent selection of environmental factors [2, 20]. In pre-
vious studies on population genetics, more attention
was paid to the effects of the first few factors on the
population genetic structure [21]. However, the effi-
cient gene flow of species tends to obscure previous
genetic structures, especially those based on nuclear
genes [16]. Meanwhile, a completely new population
genetic structure will be formed because of the diver-
gent selection, genetic drift, and inbreeding. Although
genetic drift and inbreeding can also rapidly alter the

genetic structure of species, they occur more often in
small and isolated populations [22]. However, P. ste-
noptera seems not suitable for this situation, due to a
large population size. Meanwhile, there is high gene
flow among populations of P. stenoptera (Nm = 2.022).
The efficient gene flow (Nm > 1) would avoid the isola-
tion between populations [23]. Therefore, the current
genetic structure for P. stenoptera based on SCoT
marker can hardly be attributed to genetic drift and in-
breeding. Our survey showed that the 22 populations
of P. stenoptera were divided into two groups, i.e.,
Group A (P1 to P11) and Group B (P12 to P22). Three
possible reasons can be used to explain this intraspe-
cific population differentiation. The first is caused by
population demographic history. There were two refu-
gia for P. stenoptera during the Quaternary glacial
period; the present spatial genetic pattern was formed
by the spread and redistribution of the population
from the two refugia after glaciation. The second is
due to geographical or ecological barriers. There is a
geographical or ecological barrier between the two
groups, which blocks or interferes with the gene flow
and leads to the genetic differentiation between the
two groups. The third is caused by divergent selection
of environmental factors. The two groups are in differ-
ent habitats, and different environmental factors lead
to the allele frequency difference of the naturally se-
lected genes, which eventually leads to the genetic dif-
ferentiation between the two groups. Assuming that
the first reason is true for P. stenoptera, the popula-
tions as refugia have the highest genetic diversity, and
the population that is away from the refugia will grad-
ually reduce its genetic diversity because of the
founder effect. However, neither Group A nor Group B
has gradient descent from the population with the
highest genetic diversity. More importantly, Group A
is discontinuous, which is separated by Group B. Thus,
it is impossible to have two refugia for P. stenoptera.
Overall, the first possible reason does not explain the
genetic differentiation between the two groups of P.
stenoptera. The second possible reason is considered
to explain the genetic differentiation between the two
groups of P. stenoptera. There must be ecological or
geographical barriers between the two groups. In fact,
the populations of the two groups are continuously
distributed, and there are no geographical or geograph-
ical barriers. Even if the differentiation is caused by the
second possible reason, the differentiation between
them must be significant. Our results of hierarchical
AMOVA (FCT = 0.067, P < 0.001) do not support this
interpretation. By assuming the genetic divergence of
P. stenoptera caused by the third possible reason, a
weak genetic differentiation between the two groups
would be expected because of the interaction between

Table 3 Correlations between environmental variables and the
ordination axes

Environmental
variable

Axe 1 Axe 2 Axe3 Axe 4

Bio1 0.330 0.226 −0.137 0.184

Bio2 −0.238 −0.440* −0.091 0.033

Bio3 0.208 −0.200 0.043 0.102

Bio4 −0.422* −0.101 − 0.059 − 0.166

Bio5 − 0.036 − 0.011 − 0.116 0.099

Bio6 0.481* 0.245 −0.005 0.205

Bio8 −0.119 0.149 0.171 −0.457*

Bio9 0.338 0.100 −0.102 0.429*

Bio12 0.317 0.160 −0.098 0.440*

Bio13 0.184 0.124 −0.253 0.290

Bio14 0.272 0.088 0.082 0.467*

Bio15 −0.284 −0.013 − 0.286 −0.204

Bio18 0.281 0.252 −0.103 0.055

Sr1 0.084 −0.381 0.303 0.087

Sr3 −0.044 −0.382 0.295 −0.140

Sr5 −0.332 −0.402 0.171 −0.267

Sr6 −0.496* −0.338 − 0.021 −0.195

Sr7 −0.239 −0.081 − 0.039 0.359

Sr9 −0.052 −0.177 0.123 0.512*

Sr10 −0.090 −0.341 0.258 0.292

Sr11 0.148 −0.342 0.319 0.253

Wvp1 0.439* 0.363 0.033 0.375

Wvp4 0.316 0.309 −0.075 0.415*

Wvp7 0.057 0.157 0.188 0.156

Wvp9 0.273 0.218 0.174 0.304

Statistically significant correlation by * P < 0.05 and ** P < 0.01
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strong gene flow and divergent selection of environ-
mental factors. The results of hierarchical AMOVA
were consistent with this expectation. Our RDA results
(Fig. 3) also showed that environmental variables could
slightly separate the two groups of P. stenoptera. The
populations of Group A live at higher temperature of
the coldest month and higher water vapor pressure in
January than those of Group B, whereas populations of
Group B live at higher value of temperature seasonality
and higher solar radiation in June than those of Group
A. The genetic differentiation caused by the divergent
selection of environmental differences will be maintained
due to the existence of heterogeneous environments,
which is different from the genetic differentiation caused

by genetic drift. Taken together, the third possible reason
is more suitable for P. stenoptera.
Because of the inherent limitations of SCoT markers,

sequence information cannot be obtained [4]. Thus,
the genes cannot be annotated for their function. Al-
though we do not know what genes these loci are or
which genes they are linked to, we can know which en-
vironmental factors these loci are related to. Here, the
results of LFMM analysis showed that Sr6, Bio6, Bio4,
and Wvp1 were associated with the highest numbers
of EAL, which suggested that these environmental var-
iables play a major role on the genetic differentiation
of P. stenoptera genome. Recent landscape genomic
studies have proposed a hypothesis that environmental
variables related to ecological habitats of species play
key roles in driving adaptive differentiation of species
genome [2, 14, 15]. Among the four environmental
variables associated with the largest number of adap-
tive loci, Sr6 was associated with the ecological habitat
of “prefered light”, and Bio6 and Wvp1 were associated
with the ecological habitat of “warm and humid envir-
onment”. P. stenoptera blooms from April to May, and
its fruits ripen from August to September. Therefore,
we speculated that P. stenoptera might be more sensi-
tive to light during fruit development. Our RDA re-
sults indicate that there is a significant difference in
the amount of solar radiation in June (Sr6) between
the two groups, which promoted the adaptive differen-
tiation of these related adaptive loci. Bio6 and Wvp1
refer to the minimum temperature of the coldest

Fig. 3 Redundancy analysis of Pterocarya stenoptera showing the relative contribution of each environmental variation shaping population
genetic structure. The biplot depicts the eigenvalues and lengths of eigenvectors for the RDA

Fig. 4 The results of outlier loci detected by Bayescan and Arlequin and
EAL were identified by latent factor mixed model analysis
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month and water vapor pressure in January, respect-
ively. Similarly, there are significant differences of the
two environmental variables between the two popula-
tions. In China, January is the driest month. These two
variables were associated with larger numbers of adap-
tive loci, suggesting that temperature and water vapor
in extreme environments were the main causes of their
adaptive differentiation. In fact, previous studies have
proved that there is a significant difference in the cold
resistance of P. stenoptera from different provenance
[24]. Surprisingly, seasonal variations in temperature
(Bio4) might also have a significant impact on the
adaptive differentiation of P. stenoptera. Overall, the
hypothesis that environmental variables related to eco-
logical habitats of species play key roles in driving
adaptive differentiation of species genome is also suit-
able for P. stenoptera.

Conclusions
In the present study, SCoT markers were used to in-
vestigate adaptive genetic differentiation in P. stenop-
tera. Our survey showed that the 22 populations of P.
stenoptera were divided into two groups. Although
spatial genetic structure of species is the result of the
interaction of multiple factors, our results suggested
that the divergent selection of environmental differ-
ences play a major role on the genetic differentiation

of P. stenoptera. Our results also provided empirical
evidence that environmental variables related to eco-
logical habitats of species play key roles in driving
adaptive differentiation of species genome.

Methods
Sample collection
A total of 510 individuals from 22 natural populations
were sampled from the entire distribution range of P.
stenoptera in China (Fig. 5). Each population sample
contained 20 to 24 individuals (Table 1), and each indi-
vidual was at least 20 m away from each other. Young,
healthy leaves were collected and stored in zip-lock bags
containing silica gel at room temperature until DNA ex-
traction. The geographical coordinates and number of
samples for each population are shown in Table 1. After
identified by Dr. Yong Li, each population deposit a vou-
cher specimen at the herbarium of College of Forestry,
Henan Agricultural University, Zhengzhou, China (vou-
cher no. LiPS2017001–2,017,022). No specific permits
were required for P. stenoptera, all samples were col-
lected following current Chinese regulations.

Molecular protocols
Genomic DNA was extracted from approximately 30
mg of dried leaves by using the standard Plant DNA
Extraction Kit (Tiangen, Beijing, China) protocol.

Fig. 5 Locations of the 22 sampled Pterocarya stenoptera populations. The red and green colors of the populations represent the groups identified by
STRUCTURE, red for Group A, green for Group B. Map yielded by software DIVA-GIS 7.5.0, the software and free spatial data were
downloaded from http://www.diva-gis.org
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DNA was then quantified using the ND5000 Ultra Mi-
cro UV-Vis spectrophotometer (BioTeke, Beijing,
China). All individuals were genotyped using SCoT
markers. Despite its inherent defects lacking DNA se-
quence information, the SCoT marker has been used
for landscape genomic studies because it has the ad-
vantages of non-requirement for genomic information,
high repeatability, and high throughput [2, 14, 15].
After preliminary screening of the polymorphism and
reproducibility of all SCoT primers [25], nine primers
(SCoT5, SCoT9, SCoT16, SCoT18, SCoT25, SCoT27,
SCoT30, SCoT31, and SCoT35) were selected for poly-
merase chain reactions (PCRs). SCoT5, SCoT16, and
SCoT25 were 5′ FAM fluorescently labeled primers;
SCoT9, SCoT18, and SCoT30 were 5′ HEX primers;
SCoT27, SCoT31, and SCoT35 were 5′ TAMRA
primers. PCR amplification was carried out in a 20 μL
reaction mixture containing 20 ng of template DNA, 10
mM reaction buffer (pH 8.3), 0.2 mM of each dNTP,
0.3 μM primer, and 1 unit of Taq polymerase (Tiangen,
Beijing, China). PCRs were performed in a Mastercycler
nexus thermocycler (Eppendorf, Hamburg, Germany)
with an initial denaturation at 94 °C for 5 min followed by
35 cycles with denaturation at 94 °C for 40 s, primer-spe-
cific annealing temperature (52 °C for SCoT27; 56 °C for
SCoT5, SCoT9, SCoT16, SCoT18, SCoT30, SCoT31, and
SCoT35; and 58 °C for SCoT25) for 40 s, extension at 72 °
C for 90 s and with a final extension at 72 °C for 5 min,
and termination by a final hold at 4 °C. Finally, 3 μL of
PCR products was mixed with 10 μL of HiDi formamide
and electrophoresed on an ABI 3730 DNA Analyzer at
BGI (Beijing, China). The size of PCR products is deter-
mined according to the internal standard LIZ1200 (Ap-
plied Biosystems, Foster City, USA).

Data analysis
The SCoT fragments were identified based on the
presence or absence of peaks viewed in GeneMarker
2.2.0 (SoftGenetics, State College, Pennsylvania, USA).
The raw information was then transformed into a 1/0
matrix. To reduce the error reading rate of SCoT frag-
ments, the peaks within 100–1200 bp and relative
fluorescent units above 200 were scored. Subsequent
population genetic analyses were carried out with the
basis of the 1/0 matrix from SCoT markers.
Genetic parameters, including polymorphic allele

number (NA), allele frequencies, Nei’s measure of gene
diversity (HE) [26], and percentage of polymorphic al-
leles (PPA), were calculated using AFLP-SURV 1.0
[27]. Genetic structure of the 22 populations of P. ste-
noptera was assessed using the Bayesian-based pro-
gram STRUCTURE 2.3.4 [28]. The program was run
with K values from 1 to 10 with 10 replicates for each
K, and a burn-in period of 10,000 and 10,000 Markov

chain Monte Carlo iterations. The admixture model
with independent allele frequencies was used for this
analysis. The optimal K value with the most suitable
population clusters was judged according to the ΔK
values introduced by Evanno et al. [29], and this
method was executed by Structure Harvester [30]. The
average value of the admixture coefficients over 10 runs
was calculated using CLUMPP 1.1 [31]. The barplots of
STRUCTURE were obtained by DISTRUCT 1.1 [32]. The
distribution of genetic differentiation at various levels for
the 22 populations of P. stenoptera was characterized
using hierarchical AMOVA within Arlequin 3.5 [33]. To
calculate gene flow (Nm) among populations, we also cal-
culated FST based on neutral loci (i.e. excluding all outlier
loci identified by Arlequin and BayeScan). The value of
gene flow was estimated according to 1/4(1/FST − 1). A
total of 43 environmental variables (Additional files 2 and
3), including 11 temperature variables, 8 precipitation var-
iables, 12 solar radiation variables, and 12 water vapor
pressure variables, were downloaded from Worldclim
(http://www.diva-gis.org/climate) from 1970 to 2000 at 2.5
arcmin resolution and further extracted using DIVA-GIS
7.5 [34]. The strongly correlated environmental variables
with a Pearson correlation coefficient above 0.95 were
eliminated. The correlation analysis was performed in
SPSS 19 (SPSS Inc., Chicago, IL, USA). Thus, the
remaining environmental variables were used for the sub-
sequent RDA and environmental association analysis.
After removing the strongly correlated environmental var-
iables, 8 temperature variables (Bio1, Bio2, Bio3, Bio4,
Bio5, Bio6, Bio8, and Bio9), 5 precipitation variables
(Bio12, Bio13, Bio14, Bio15, and Bio18), 8 solar radiation
variables (Sr1, Sr3, Sr5, Sr6, Sr7, Sr9, Sr10, Sr11), and 4
water vapor pressure variables (Wvp1, Wvp4, Wvp7,
Wvp9) were retained. To infer the influence of the envir-
onmental variables to population genetic differentiation,
we performed a constrained linear ordination analysis,
RDA, in CANOCO 4.5 [35]. Here, allele frequencies per
population (Additional file 4) were used as response vari-
able and the remaining 30 uncorrelated environmental
variables were used as explanatory variables.
To minimize the false positive rate, two methods

were used to identify the mutual outlier loci for subse-
quent environmental association analysis. The first
method is a hierarchical island model in Arlequin 3.5
[33]. The advantage of this approach is that it has bet-
ter sensitivity to samples with common history and
substructure. The program parameters used were as
follows: 20,000 coalescent simulations, 100 simulated
demes, and the number of simulated groups suggested
by the results of STRUCTURE based on all loci. The
loci with FST P-value below 0.05 were considered as
outlier loci, whereas those with total allele frequencies
below 0.05 or above 0.95 were removed from the final
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results. The second method is a Bayesian method in
BayeScan 2.0 [36]. The advantage of this approach is
that it allows the population samples to have different
amounts of genetic drift or different demographic his-
tories [37]. The program parameters used were as fol-
lows: sample size of 5000, thinning interval of 10, 20
pilot runs with 5000 run length, 50,000 burn-in itera-
tions, and 10,000 prior odds. The loci with posterior
probability over 0.76 were considered as outlier loci.
To verify whether these loci are driven by environmen-
tal variables, environmental association analysis were
performed using LFMM 1.2 [38]. This method based
on latent factor mixture model can effectively avoid
the misidentification of EAL caused by population his-
tory or population structure. The analysis was run with
the following parameters: 10,000 sweeps, 1000 burn-in
sweeps, and the number of latent factors from the re-
sults of STRUCTURE based on neutral loci (excluding
all suspected outlier loci identified by Arlequin and
BayeScan). The loci with |z| over 3 and P below 0.001
were considered as EAL.

Additional files

Additional file 1: The outlier loci identified by Arlequin and BayeScan.
(DOCX 31 kb)

Additional file 2: Fifty-five environmental variables used in this study.
(DOCX 16 kb)

Additional file 3: Environmental variables for each location from the
WorldClim database. (DOCX 26 kb)

Additional file 4: Allele frequencies of 1006 alleles for each population.
(DOCX 253 kb)
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