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Abstract

Background: Barley (Hordeum vulgare L) is the fourth most important cereal crop worldwide. Barley production is
compromised by many abiotic stresses including drought. Wild barley is a valuable source of alleles that can
improve adaptation of cultivated barley to drought stress.

Results: In the present study, a nested association mapping population named HEB-25, consisting of 1420 BC,S3
lines that were developed by crossing 25 different wild barley accessions to the elite barley cultivar ‘Barke’, was
evaluated under both control and drought-stressed conditions in the Australian Plant Phenomics Facility, University
of Adelaide. Overall, 14 traits reflecting the performance of individual plants in each treatment were calculated from
non-destructive imaging over time and destructive end-of-experiment measurements. For each trait, best linear
unbiased estimators (BLUEs) were calculated and used for genome-wide association study (GWAS) analysis. Among
the quantitative trait loci (QTL) identified for the 14 traits, many co-localise with known inflorescence and
developmental genes. We identified a QTL on chromosome 4H where, under drought and control conditions, wild
barley alleles increased biomass by 10 and 17% respectively compared to the Barke allele.

Conclusions: Across all traits, QTL which increased phenotypic values were identified, providing a wider range of
genetic diversity for the improvement of drought tolerance in barley.
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Background

Barley (Hordeum vulgare L.) is the fourth most import-
ant cereal crop worldwide in terms of production and
the second most important cereal crop in Australia [1].
It is used for multi-purposes such as food for animals
and human, and further processed as malt for the food
and beverage industry [2]. With the world population es-
timated to reach 9.1 billion in 2050, global cereal pro-
duction will need to increase 35% from the current level
of 2.1 billion tonnes per annum [3]. One limitation in
achieving this production target is abiotic stress, particu-
larly drought, which can result in large yield losses glo-
bally. Major drought events are forecasted to intensify
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due to global warming and uncertainties in rainfall pat-
terns [4]. In Australia in 2002/03 and 2006/07 growing
seasons, barley production was decreased by 55 and
56%, respectively due to severe drought [5, 6]. Due to
the magnitude of the problem, the improvement of crop
performance under drought conditions has become a
global issue [7].

Understanding the genetic basis of drought tolerance
in crop plants is useful for developing superior geno-
types through conventional breeding. In the past, most
studies have concentrated on water deficit during the
late stages of barley development, in which post-harvest
parameters were measured (i.e. yield and kernel weight)
[8-11]. However, there have been accumulated reports
in various cereal crops, including barley, that early
growth stage parameters (e.g. tiller number, biomass for-
mation, etc.) are highly correlated with yield potential
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and grain quality at harvest under both normal and drought
conditions in the field [12—15]. In rice, broader leaves and
rapid canopy growth were found to enhance the perform-
ance of plants exposed to drought stress [16, 17].

The advancement in digital imaging technology has
enabled the performance of plants to be measured with
higher precision [18, 19]. High throughput phenotyping
technology was used by Honsdorf et al. [18] to study
drought tolerance in wild barley introgression lines at
the vegetative stage and identified a number of beneficial
QTL, one of which improved biomass in the water def-
icit treatment by up to 35%. The high correspondence of
the QTL found from this study with QTL previously
identified in field trials for the same set of traits indi-
cated that phenotyping juvenile plants using digital tech-
nology may assist in predicting adult plant performance.

It is common for genetic studies on drought tolerance
in plants to find multiple QTL with small effects associ-
ated with the measured phenotypes, reconsolidating the
previously known nature of drought as a multigenic trait
with low-heritability and large genotype by environment
(GxE) interactions [18, 20-22]. To improve the power of
detecting QTL associated with complex traits exhibiting
small-effect QTL, a novel mapping strategy was intro-
duced entitled nested association mapping (NAM).
NAM has the advantage of combining the high detection
power of the linkage mapping method with the high
resolution and greater allelic diversity of the association
mapping strategy [23, 24]. NAM was first applied in
maize and sorghum and was shown to have high power
to detect QTL with small additive effects in a
genome-wide approach for key traits such as flowering
time, kernel composition, or disease resistance [25—28].

The domestication process has caused a genetic bottle-
neck in the elite germplasm of many crops including
barley, which will limit future genetic gains in crop
productivity, particularly in regard to newly emerging bi-
otic or abiotic stresses [29-31]. Wild barley germplasm
from the Fertile Crescent region has been identified as a
source of germplasm with improved drought tolerance
[32]. Drought tolerant barley varieties were developed
using a wild barley line from Palestine, which produced
15% more grain yield than the control lines under
dry-land growing conditions [33, 34].

The first barley NAM population, entitled HEB-25
[35], was created from crossing 25 genetically diverse
wild barley accessions originating from the Fertile Cres-
cent region to the malting cultivar ‘Barke’. This popula-
tion consisted of 1420 individual BC;S; lines and was
genotyped with the barley Infinium iSelect 9 k chip con-
sisting of 7864 single nucleotide polymorphisms (SNPs).
GWAS using the HEB-25 NAM population has recently
been demonstrated as an effective tool for gene identifi-
cation in barley for traits such as flowering, salinity
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tolerance and plant development [35-39]. The HEB-25
population presents a reservoir of genetic diversity that
can be exploited for variety development.

The aims of the present study were to i) evaluate the
growth response of the HEB-25 population grown under
drought stressed conditions during early developmental
ii) identify QTL from wild barley that can improve plant
growth under drought stressed conditions and identify
candidate genes underlying those QTL.

Results

The dynamics of shoot area, absolute and relative growth
rate during the course of the experiment

Across three consective years, the HEB-25 population
was evaluated under water-limited and control condi-
tions that were applied at 32 days after planting (DAP)
until the completion of the experiment at 59 DAP
(Fig. 1a). Plots for Shoot area smoothened (SAsm), Ab-
solute growth rate (AGR), and Relative growth rate
(RGR) across the 3 years are shown in Additional file 1:
Figure S1 and for 2014 in the North East (NE) Smart-
house, as an example, is shown in Fig. 1b. Three inter-
vals with distinct kinetics were observed for AGR and
RGR including 32-40 DAP, 42-50 DAP, and 52-59
DAP. The AGR and RGR were calculated for three inter-
vals that captured these three phases.

The RGR plot for 2014 was different from those of
2015 and 2016. In 2014, RGR interval from 42 to 50
DAP showed an increasing trend, while it was decreasing
for 2015 and 2016. To investigate this, climatic data
within each Smarthouse was examined and compared
across the 3 years. No association with either min, max
temperature or growing degree days was observed with
the difference in RGR (Additional file 2: Figure S2). The
macro climatic conditions in the two Smarthouses thus
appeared to be comparable across the years. Therefore
the difference observed in RGR in the interval from 42
to 50 DAP in 2014 could not be explained.

Effect of treatment, genotype and experiment setting on
phenotypic variation

Treatment was found to be significant in all 3 years and
for all traits, but the genotype effect was trait-dependant
(Additional file 3: Table S3). In 2014, seven traits showed
no significant genotype effect, including SAsm, AGR32,
RGR42, RGR52, DW, FW, and TN. In 2015, all traits
had a significant genotype effect. In 2016, RGR32 and
WUE had no significant genotype effect.

Genotype x treatment interaction was found to be sig-
nificant for 3, 11 and 6 traits in 2014, 2015, and 2016,
respectively. Two traits, which did not have a significant
genotype x treatment effect in any of the years, were
WUE and tiller number.
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Fig. 1 Monitoring the dynamics of plant growth throughout the experiment. a Plants were non-destructively imaged from 32 to 59 days after
planting under drought and non-stressed treatments. b Plots for shoot area smoothened (SAsm), absolute growth rate (AGR) and relative growth
rate (RGR) under control (cyan) and drought (red) treatment in the north east Smarthouse at the Plant Accelerator, University of Adelaide in the
year 2014 are shown as an example. The bold line represents the average of each treatment
A\

There was a significant effect of the Smarthouse as well
as the interaction between Smarthouse x position for all
14 traits investigated across 3 years. Trait value means of
plants grown in the north-east Smarthouse were generally
higher compared to those in the north-west Smarthouse
(data not shown). One possible explanation was that the
north-east Smarthouse receives more light, especially in
the morning, which resulted in increased plant growth.

Plant growth stage was used as a covariate in modelling.
Most of the lines were at growth Zadoks stage 33, with a
few lines reaching Zadoks stage 49 and above. In general
growth stage was not significant and dropped out of the
model for most of the traits (Additional file 3: Table S3).

Trait performance

Means of the traits SAsm, dry weight (DW), and fresh
weight (FW) in the control treatment were 2—2.5 times
higher than means of these traits in the drought treat-
ment across the 3 years (Additional file 4: Table S4). The
only exception was WUE where the mean values under
control treatment were 55-67% of the means of the
drought treatment.

Heritability of each trait was generally higher for con-
trol treatment compared to the drought treatment ran-
ging from 0.27 to 0.85 in control treatment and 0.34 to
0.80 in the drought treatment across the 3 years. HEI
had the highest heritability in both treatments in all 3
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years. RGR42, WUE, and RGR32 had the lowest herit-
ability for the year 2014, 2015, and 2016, respectively.

To compare the growth response under drought
treatment of genotypes with such large variation in
plant size and growth, we calculated the ratio of the
phenotypic values between SAsm, DW, HEI, TN in
drought stress versus the control treatment. Ratios
represent the drought response independent of plant
size/growth parameters in control conditions. Ratios
that are close to 1 indicate a high capacity to main-
tain the four parameters, whereas ratios that are
smaller than 1 indicate a larger reduction. For all of
four selected traits there was no significant correl-
ation between the ratio of SAsm, DW, HEI and TN
in drought stress versus control and the correspond-
ing phenotypic values in control treatment (r< 0.2 for
DW and SAsm, and r<0.08 in all years for both TN
and HEI) (Additional file 5: Figure S6A, B, C and D).

GWAS results

Dry weight (DW)

There were 26 QTL detected in the control treat-
ment that explained 44% of the total phenotypic
variance (Vp). In the drought treatment, 24 QTL
were identified and accounted for 37% of Vp. Out of
the 39 QTL for DW, 11 were detected in both treat-
ments and 17 were treatment-specific (Fig. 2 and
Additional file 6: Table S6). The QTL that explained
the most phenotypic variance for DW in control and
drought treatment was QDw.HEB25-7H.2 at 70.4 cM
(6%) and QDw.HEB25-3H.4 at 108 cM (5%), respect-
ively. At the common QTL QDw.HEB25-4H.4 (97.2 cM),
wild alleles had a mixed effect (both increasing and de-
creasing) in both treatments, with the allele from family
FO1 increasing DW the most by up to 1.32 g (equivalent
to 17% increase) in the control treatment. In the drought
treatment, wild alleles from 20 out of 25 families at this
QTL increased dry weight compared to the Barke allele,
with those from family FO1 and FO7 increased DW up to
0.3 g (approximately 10% increase).

Fresh weight (FW)

Twenty-nine QTL were detected in the control treat-
ment, which explained a total of 42% Vp and 25 QTL
were detected in the drought treatment, which ex-
plained 39% of Vp (Additional file 6: Table S6). The
QTL that explained the most Vp for drought stress
and control treatment were QFw.HEB25-2H.4 at 64.4
cM (4.5%) and QFw.HEB25-7H.2 at 67.8cM (5%), re-
spectively. Due to the high correlation between DW
and FW (Additional file 7: Figure S5), 20 out of 24
QTL detected for DW in drought treatment were also
detected for FW in drought treatment, and 19 out of
26 QTL detected for DW in control treatment were
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also detected for FW in control treatment. In the
drought treatment, wild alleles at QFw.HEB25-3H.5
(107.05cM) wild alleles increased FW the most (up
to 9.8g, equivalent to 37% increase in FW). In con-
trol treatment, at the QTL QFw.HEB25-3H.6 (117
cM), wild alleles increased FW the most (up to 12.0g
in family FO8 or 10.5% increase in FW compared to
the Barke alleles).

Tiller number (TN)

There were 18 loci detected for tiller number in the con-
trol treatment which explained 41% of Vp (Fig. 2 and
Additional file 6: Table S6). In the drought treatment, 21
loci were detected and explained 46% of Vp. Among the
total 39 QTL detected for TN, 7 were common between
two treatments. The QTL QTn.HEB25-5H.5 which
co-localized with the vernalisation gene VRN-HI ex-
plained the highest phenotypic variation (up to 10% in
the control and 14% in drought treatment). At the
VRN-HI locus, wild alleles from all families increased
tiller number up to 6.0 in the control treatment and up
to 3.3 in the drought treatment. Among the 13 drought
treatment specific QTL, wild alleles at two QTL that
co-localized with HVELF3 and Ppd-HI1 decreased tiller
number in all families except for family F23.

Plant height (HEI)

There were 23 and 31 SNPs detected for HEI in the
drought and control treatment, respectively, of which
16 were common across treatments (Additional file
6: Table S6). Among 38 loci were identified for HEI,
23 locating near known genes controlling flowering
and plant architecture in barley. The Vp explained
by all QTL for plant height in both control and
drought treatment was 60%. The most significant as-
sociation for plant height was observed at the QTL
QHei.HEB25-3H.5 (108 cM) explaining 22 and 11%
of the variance in the control and drought treat-
ment, respectively. This locus co-localized with the
semi-dwarfing sdwl/denso gene in barley. Other
major QTL that explained from 5 to 10% of pheno-
typic variation include QHei.HEB25-3H.6 (122 cM),
QPh.HEB25-5H.3 (107.5cM), and QHei.HEB25-5H.4
(122.6—-125 cM). The effect of the wild alleles at the
sdwl/denso locus in each family within the drought
treatment is in general half of that in the control treat-
ment. Wild alleles from 25 HEB families at sdwl/denso
locus increased plant height up to 8.9 cm in control and
5.9 cm in drought treatment. In contrast to sdw1/denso, at
five other common QTL including QHei HEB25-3H.4
(113.4cM), QHeiHEB25-5H.1 (41.6-45.2cM), QHei.-
HEB25-5H.3 (107 cM), QHei. HEB25-5H.4 (125 cM), and
QHei. HEB25-6H.2 (52.1-55cM), the wild alleles from
most families reduced plant height.
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Fig. 2 Comparison of GWAS results across five of the post-harvest destructively measured traits. The data in this Circos plot results from 100 cross-
validated (20 times 5-fold) GWAS runs performed within each treatment for the five studied traits including dry weight (DW), fresh weight (DW), plant
height (HEI), tiller number (TN), and water use efficiency (WUE). Barley chromosomes are shown on the inner circle with different colors and
centromeres are indicated with transparent boxes. For each trait, the first (inner) track represents the frequency of QTL detection in a 5-cM window
while the outer track represents the effect of this QTL. The maximum height of the effect bars for each trait are 1.3 g for DW, 9 cm for HEI, 1.82 for TN,
0.1 g/g water for WUE. Window positions (in cM, following Maurer et al. 2015) are ordered clockwise per chromosome. In the inner track, QTL
appearing under control and drought stress treatment are represented with black and gray bars, respectively. The effect of the QTL conferred by the
wild allele relative to Barke is represented on the outer track, where blue and red bars indicate decreasing and increasing wild barley QTL effects,
respectively for each treatment. Candidate genes, potentially explaining the observed QTL effects, are indicated inside the inner circle

Shoot area smoothed (SAsm)

There were 27 and 34 QTL detected under the drought
stress and control treatment, respectively (Fig. 3
and Additional file 6: Table S6). Sixteen QTL were found
to be common between the two treatments. Six out of 15

common QTL for SAsm were also detected as the com-
mon QTL for dry weight. The effect of the wild alleles at
common QTL between SAsm and DW were also very
similar. The QTL that explained the most phenotypic vari-
ance for SAsm in both the control and drought treatment
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Fig. 3 Comparison of GWAS results of dry weight relative to four non-destructive imaging determined traits. The data in this Circos plot results
from 100 cross-validated (20 times 5-fold) GWAS runs performed within each treatment for the five studied traits including dry weight (DW),
shoot area smoothed (SAsm), absolute growth rate 42-50 dap (AGR42), relative growth rate 42-50 dap (RGR42), and convex hull area (CHA).
Barley chromosomes are shown on the inner circle with different colors and centromeres are indicated with transparent boxes. For each trait, the
first (inner) track represents the frequency of QTL detection in a 5-cM window while the outer track represents the effect of this QTL. The
maximum height of the effect bars for each trait are 1.3 g for DW, 98.6 kpixels for SA, 4.44 kpixels/day for AGR42, 0.0039 kpixels/day/kpixels for
RGR42, 654 kpixels for CHA. Window positions (in cM, following Maurer et al.2015) are ordered clockwise per chromosome. In the inner track, QTL
appearing under control and drought stress conditions are represented with black and gray bars, respectively. The effect of the QTL conferred by
the wild allele relative to Barke is represented on the outer track, where blue and red bars indicate decreasing and increasing wild barley QTL
effects, respectively for each treatment. Candidate genes, potentially explaining the observed QTL effects, are indicated inside the inner circle
J/
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was QSasm.HEB25-3H.7 (6%). At the QTL QSasm.-
HEB25-3H.7 locating near HvCMFI gene, wild alleles in-
creased SAsm in most of the families across both
treatments. At all other QTL, the effect of wild alleles for
SAsm was mixed across QTL and families.

Absolute growth rate (AGR)

There were five common genomic regions detected in
the drought treatment across all three AGR intervals, in-
cluding 1H (48.5-48.9 cM), 1H (128.3-130.35 cM), 2H
(106.8-109.3 cM), 3H (100.4-104.8 cM), 7H (99.8—-102.2
cM) and 55 interval-specific QTL. Among the common
QTL, the wild alleles at 3H (100.4—104.8 cM) increased
AGR in most families. Within the control treatment,
there were 11 QTL common across all three AGR inter-
vals and 52 interval-specific QTL. Among the 11 com-
mon QTL, six located near known genes including
Ppd-HI1, BFL/HvAPO2, VRN-H2, HvCOI15 HvCCAl/
HvLHY, HvCMFI, and HvCO6. The genomic regions on
chromosome 2H from 106.8 to 109.6 cM and 3H from
100.4 to 106.1 cM were detected across all three AGR
intervals in both treatments. In control treatment, the
QTL where the wild alleles showed the largest positive
effect was on chromosome 6H at 5.6 cM for all three in-
tervals. In drought stress, QTL with the largest effect for
AGR32, AGR42 and AGR52 were QAgr32.HEB25-3H.4
at 100.4cM, QAgr42.HEB25-3H.6 at 103.8cM, and
QAgr52.HEB25-3H.5 at 104.8cM, respectively. As
AGR42 was highly correlated with the other two inter-
vals (Additional file 7: Figure S5), details for QTL de-
tected for this interval are summarised below.

For AGR42, there were 26 and 29 QTL detected for
drought stress and control treatment, respectively (Add-
itional file 6: Table S6). There were 15 common QTL be-
tween two treatments, ten of which reside near known
flowering genes. The QTL that explained the highest Vp
(up to 6%) in the drought stress and control treatment was
QAgrd2. HEB25-3H.6. In the drought treatment, the wild
alleles at QTL QAgrd42.HEB25-3H.3 (55.5cM), QAgr42.-
HEB25-3H.6 (103.8 cM), and QAgr42.HEB25-4H.4 (103.9
cM) showed the highest trait-increasing effects. In the con-
trol treatment, several QTL with beneficial wild alleles that
increased AGR42 were detected such as QAgrd2.-
HEB25-2H.6 (1464 cM), QAgrd2.HEB25-3H.5 (89.1 cM),
QAgr42. HEB25-3H.6  (106.1 cM), QAgrd2.HEB25-6H.1
(5.6 cM), and QAgrd2.HEB25-7H.6 (120 cM).

Relative growth rate (RGR)

There were 22, 25 and 23 QTL detected for RGR32,
RGR42, and RGR52 in the drought treatment, respect-
ively. There were six genomic regions detected across all
three intervals including 1H (126-128 cM), 2H (18.9-23
cM), 2H (55.6-62cM), 3H (131-135.5cM), 4H (99.6—
101.4 cM), and 7H (23-29.6 cM). Four out of these QTL
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located near known developmental genes including
HvVELF3, Ppd-H1, HvCEN, and HvCMF4. Similarly, there
were 19, 24, and 21 QTL detected for RGR32, RGR42,
and RGR52 in the control treatment, with three com-
mon QTL found across all intervals including 2H (18—
26 cM), 4H (111.3cM), and 5H (14.5 cM). Across both
treatments there were 7, 10 and 6 common QTL for
RGR32, RGR42, and RGR52, respectively. At one of
these common genomic regions, 2H (18.9-23cM),
which is in close proximity to Ppd-HI, the wild barley
alleles from all families reduced RGR in the drought
treatment for all three intervals, while the effect was
mixed depending on families and RGR interval in the
control treatment. As RGR42 was highly correlated with
the other two intervals, details for QTL detected for this
interval are summarised below.

For RGR42, there were 25 and 24 QTL detected under
drought stress and control treatment, respectively, with
ten QTL shared between the two treatments (Additional
file 6: Table S6). Among the treatment-common QTL
for RGR42, four were also detected for DW including
QRgrd2. HEB25-2H.2, QRgr42.HEB25-2H.6 (141-149
cM), QRgr42.HEB25-7H.1 (0.2-2.5 cM) and
QRgr42.HEB25-7H.4 (97.2-100.25 cM). Other common
QTL for RGR42 were residing near known flowering
genes including Ppd-H1, Ppd-H2, HYCMFI. At all com-
mon QTL, the wild alleles had a mixed effect across the
families.

Convex hull area (CHA)

There were 27 and 28 QTL detected in the drought
stress and control treatment, respectively (Fig.3 and
Additional file 6: Table S6). There were 14 common
QTL between the two treatments, and four of these were
also detected for DW (the trait that CHA most corre-
lated with). The QTL QCha.HEB25-3H.7, which located
near the gene sdwl/denso, explained the highest Vp
(10%) in both treatments. Similar to the effect of sdwl/
denso on plant height, the wild alleles from all families
at this locus increased CHA in both treatments. There
were two additional QTL where the wild alleles from
most of the 25 families increased CHA in both treat-
ments including QCha.HEB25-5H.6 (152cM), and
QCha.HEB25-7H.3 (51 cM). The alleles from family F14
increased CHA the most at all of these three QTL.

Caliper length (CL)

Due to the high correlation between CHA and CL, the
GWAS results for CHA and CL were similar. In the
control treatment, 23 QTL were detected for CL and 19
of them were also found for CHA. In the drought treat-
ment, 22 QTL were identified and 15 of them were
shared between CL and CHA (Additional file 6: Table S6).
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Water use efficiency (WUE)

There were 33 and 22 QTL detected in the drought
stress and control treatment, respectively, including 10
common QTL detected across both treatments (Add-
itional file 6: Table S6). The QTL that explained the
most phenotypic variance was QWue.HEB25-2H.6 at
139.9cM (3.5%) in the control treatment and QWue.-
HEB25-3H.10 at 154.8cM (7%) in the drought stress
treatment. In the drought stress treatment, wild alleles
at QTL QWue.HEB25-3H.6 (87.4 cM) increased WUE in
all families and wild alleles at QTL QWue.HEB25-6H.2
(37 cM) reduced WUE in all families, all other QTL
showed a mixed effect for the wild alleles. At QTL
QWue. HEB25-7H.6 (116.1 cM), the wild alleles from
family FO2 increased WUE the most compared to the
Barke allele (10.8% increase).

QTL associated with multiple traits

When all significant QTL identified for the traits DW,
HEIL, TN, SAsm, CHA, WUE, AGR42 and RGR42 were
compiled, QTL associated with multiple traits were
identified. When QTL within a 4cM window were
grouped into a single QTL, which is similar to the cri-
teria set by Maurer et al. [36], 21 genomic regions were
found to be associated with at least 4 traits or more. The
genomic region on chromosome 2H co-localizing with
the gene HvCEN was found to associate with all of the
traits, six of which were detected in both treatments in-
cluding DW, TN, HEI, AGR42, RGR42, and WUE. The
second most common genomic regions (associated with
seven traits, excluding TN) were on chromosome 2H at
109 cM and on chromosome 4H at 113cM and these
two co-localized with BFL (BARLEY FLORICAULA/
LEAFY)/HvAPO2 and VRN-H2 genes, respectively. Re-
gions that were associated with six different traits were
3H (105-108 cM), 4H (97-104 cM), 5H (0-3.8 cM), 5H
(144.2-149.8 cM), 5H (165.8-169.4cM), 7H (0.2-2.5
cM), and 7H (70.2-72.5 cM).

Discussion

The effect of the drought treatment on the HEB-25
population

This study aimed to evaluate the response of the HEB-25
population when grown under control and drought treat-
ments. Plant growth in both treatments was measured in
a non-destructive manner using a high-throughput im-
aging system.

The reduction in SAsm due to drought stress was ob-
served 5-8 days after the drought treatment was com-
menced (depending on the genotype). By 59 DAP the
drought treatment reduced SAsm by approximately 50%
compared to the control. This is in accordance with pre-
vious observations that it takes 6—7 days until differences
in growth between control and drought stressed plants
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are observable [40, 41]. In contrast, the difference in
AGR and RGR between the two treatments was evident
at the onset of the drought stress, suggesting an immedi-
ate effect. This is expected as it has been well demon-
strated that leaf growth, determined by cell division and
expansion, is highly sensitive to water stress and can be
reduced by 50% within 24 h after the stress is induced
[42-45].

It has been reported that small plants or plants with
smaller leaves tend to have better drought tolerance be-
cause they transpire less water [46, 47]. In contrast, in
our study, growth reduction under drought was inde-
pendent of the plant size under normal conditions.
There was a small or no correlation between the ratio of
shoot area, dry weight, tiller number, and plant height in
drought stress versus control and the corresponding
phenotypic values in control treatment. This lack of cor-
relation between plant size and drought tolerance was
also observed in Arabidopsis [48], which showed that
larger plants in normal conditions were able to maintain
both stress tolerance and improved growth when experi-
encing drought.

Time-dependent QTL detected for barley plant growth
The GWAS analysis revealed that there are few common
QTL detected across the three intervals measured for
the growth rate-related traits. For AGR, there were only
two QTL shared among three intervals in both treat-
ments. For RGR, only one common QTL, co-localizing
with Ppd-H1, was found for three intervals in both treat-
ments. There were more common QTL found between
two intervals (i.e. seven QTL were common for AGR42
and AGR52), which reflected the high correlation be-
tween these two. Beside the common QTL,
interval-specific QTL were found for three intervals in-
dicating different gene action and interactions occurred
within each interval. For example, for RGR in the con-
trol treatment, besides the three QTL common across
all intervals, loci co-segregating with known genes such
as HvELF3, and Vrn-H2 were among those identified for
the first interval, Ppd-H2, HvCEN, Zeo, HvPRR95 were
found for the second, and Vrn-HI and HvCMFI were
detected for the third interval. Time-dependent QTL
mapping for plant growth was also reported in Arabi-
dopsis [49, 50], in rice [51], in Setaria [52], and maize
[53]. To our knowledge, this is the first study in barley
that has mapped time dependent QTL for the absolute
and relative growth rate of barley seedlings. The large
distinction of the QTL detected for each interval sug-
gests that measuring growth for the different intervals is
to be favoured over single interval measurements.

As mentioned above, most of the QTL detected for
AGR and RGR co-localized with developmental genes
such as HvCOI1/2/3/6, HvCMF1/4/7, Ppd-HI1/2,
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VRN-H1/2, HvCEN, and HvELF3. Elberse et al. [54] de-
tected a QTL on chromosome 6H (11 cM) for both rela-
tive growth rate and seed mass, which was also detected
in our study for RGR42. Yin et al. [55] reported a weak
association of sdwl/denso with relative growth rate. In
our study, the genomic region on chromosome 3H from
100 to 104 cM was detected for AGR and RGR in all of
three intervals, but this could be either sdwl/denso or
HyCMF]I. Poorter et al. [56] and Van Rijn et al. [57] re-
ported three major QTL for RGR on 1H, 2H, 5H and
one minor QTL in 6H. Honsdorf et al. [18] detected
three QTL for AGR on 3H, 4H and 6H and no QTL for
RGR. The QTL QAgr42.HEB25-3H.7 (143.5cM) and
QAgr52.HEB25-3H.6 (139 cM) detected in our study
seem to be similar to the QTL on chromosome 3H re-
ported by Honsdorf et al. [18].

QTL detected for traits measured at harvest

QTL located on all seven chromosomes were detected
for DW, FW, TN, and HEI measured in this study, con-
firming the quantitative nature of these traits.

For plant dry biomass, our study identified 11 com-
mon and 28 treatment-specific QTL. Six of the 15 QTL
identified in our study for drought stress on 2H, 3H, 4H,
5H and 7H were within 5 cM of those reported by Weh-
ner et al. [21]. Honsdorf et al. [18] described four QTL
for DW on 3H, 4H and 6H, with the 4H QTL likely to
be coincidental with the QTL QDw.HEB25-4H.4 found
in this study. Von Korff et al. [58] reported six QTL on
chromosome 2H-5H and 7H for dry biomass in a wild
barley advanced backcross population of which three
QTL on 2H, 3H and 4H coincided with QTL detected in
this study. The QTL on chromosome 4H-97.2 cM was
reported across at least four different mapping studies,
indicating its important role in biomass production in
barley.

For plant height, although 70% of QTL identified for
drought stress were also detected in control treatment,
there were still distinctive QTL revealing different gene
interaction for different environmental conditions. For
example, QTL co-localizing with Vrsl, Vrn-H3, and
DWAFT 2 were identified in drought treatment while
those locating near HYCMF7, HvCO6, DWAFT5/14 were
found in control treatment. Minor effect QTL have been
reported throughout the literature for plant height by
many groups [18, 58-62]. Despite the difference in
minor genes, key genes controlling plant height includ-
ing sdwl/denso and sdw3 have been detected across all
of these studies mentioned above. The GA-20 oxidase
gene was suggested to be a candidate for the sdwi/denso
locus [63]. The effect of wild alleles at these two QTL
on reducing plant height was also reported by Honsdorf
et al. [18] and von Korff et al. [58]. There are at least
three novel loci detected for plant height in this study
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that have not been reported before. These three QTL
were detected at high confidence level (greater than 90
out of 100 cross validations) and were located in close
proximity to known genes including QPh.HEB25-5H.3
(near Vrs2), QPh.HEB25-5H.4 (near VRN-1) and
QPh.HEB25-7H.5 (near HYCMF7).

Tiller number is an important yield-determining trait
[64]. For tiller number, there were 18 QTL detected in
the control treatment, 15 are in close proximity with
QTL for tiller number reported by Alqudah et al. [59].
However, although Ppd-HI and Vrsl were identified as
key genes regulating tiller number in spring cultivated
and landrace barley by Alqudah et al. [59], only Vrsi
was detected in both treatments whereas Ppd-HI1 was
only detected under the drought treatment in our study.
Using an AB-NAM population created by crossing 25
wild barleys selected from the wild barley diversity col-
lection with cultivar Rasmusson, Nice et al. [65] identi-
fied Ppd-HI and a second QTL at 4H-91.29 cM
(anticipated to be the SUCROSE TRANSPORTER
1-HvSUTI) associated with controlling productive tiller
number in field conditions. In our study, four out of
eight flowering genes including HvCEN, sdwl/denso,
VRN-H]I, Ppd-HI reported by Maurer et al. [35] were
found to be associated with tiller number, together with
other flowering genes such as HvC05/6/8/16. QTL res-
iding near HEXOKINASE 2 and 3 genes and HvSUTI
were also identified in our study in the control treat-
ment. Recently, several studies highlighted the import-
ance of sugars as a key component of plant branching
[66, 67]. The finding from our study supports the view
that flowering and sugar-related genes have a role in bar-
ley tillering. Novel QTL detected in this study for tiller
number include QTn.HEB25-2H.4 (146 cM),
QTn.HEB25-5H.1 (23.2cM) and QTn.HEB25-5H.3 (77
cM).

Candidate genes for common QTL detected for 14 traits

Many of the common QTL detected for 14 traits across
both treatments co-localized with known developmental
flowering regulator genes, such as Ppd-HI, HvCEN,
VRN-HI1, VRN-H2, and sdwl/denso, demonstrating the
importance of these genes in barley development.
Among these genes, the QTL residing in the close prox-
imity with HvCEN was associated with all of the traits
investigated in this study. HvCEN is a modifier of sea-
sonal flowering response, with a missense mutation in
the HvCEN protein (Alal35 to Pro) differentiating
spring from winter barley cultivars [68]. In this study,
the wild alleles at the HVCEN locus from 25 families
generally reduced the phenotypic values for all of the
traits, except for CHA, WUE, and TN. When the
HEB-25 population was evaluated with salt stress in field
conditions, wild alleles at the HvCEN locus also reduced
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plant height and dry mass per m?> but increased yield
under stress and control treatments [37]. The authors
indicated that the yield improvement effect of the wild
HyCEN alleles is derived from an increased number of
ears and from larger grains. HYvCEN showed a same fash-
ion of effect to the traits in this experiment compared to
the salt tolerance study, indicating that this QTL poten-
tially may have the capacity to enhance yield in both
control and drought-stressed condition. However, we
cannot completely rule out the possibility that the ob-
served effect has been derived from another unknown
gene, which is in linkage disequilibrium with HvCEN.

Another chromosome region at 1H-48 cM was associ-
ated with four traits (DW, HEI, AGR42, RGR42) in both
treatments and is in close distance to HvCMFIO,
HvHXK1, and Hval. Among the three candidate genes at
1H-48 cM, the barley Hval gene is the best studied gene.
It encodes a late embryogenesis abundant (LEA) protein
and is well-known to enhance tolerance to drought in bar-
ley. Transformations of the barley gene into wheat, oat,
rye, and mulberry all resulted in an enhanced tolerance to
drought and salinity stress [69-72]. Little is known about
the HYHXKI1 function in barley apart from its high tran-
script levels at night and its role in sugar signalling and
targeting of carbon into downstream metabolic pathways
[73, 74]. Similarly, the specific role of HYCMF10 is unclear
except its involvement in the control of flowering time
[75]. As these three candidate genes are closely linked, we
are currently unable to specify, which of those is the
causative gene. Further fine mapping studies may reveal
the importance of these genes for plant development and
drought stress tolerance in barley.

Conclusions

The ultimate goal of this study was to identify beneficial
alleles from wild barley that can be used for improving
drought tolerance in barley. However, it was demon-
strated that any trait selected for drought tolerance has
benefits as well as risks. Considering stress severity and
the phase when drought stress typically occurs during
plant development in a target environment are, thus,
critical to breed for improved drought tolerance [76]. In
this study, loci where alleles from wild barley that both
increase and decrease phenotypic values under drought
stress and control treatment were detected, providing a
pool of usable alleles for breeding.

Materials and methods

Plant materials

The HEB-25 NAM population consists of 1420 BC;S3
lines derived from backcrossing 25 diverse wild barley
lines (Hordeum vulgare ssp. spontaneum and agriocri-
thon) to the cultivar Barke. The resulting population
comprises 25 sub-families each consisting of between 23
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to 61 individual. The population construction was previ-
ously reported by Maurer et al. [35]. The University of
Adelaide obtained this population from the Martin Lu-
ther University of Halle-Wittenburg (MLU) under a Ma-
terial Transfer Agreement (MTA) no. A135366. The
whole population subsequently underwent quarantine
inspection following the regulations applied to imported
plant research materials set by the Department of Agri-
culture and Water Resources of Australia.

Experimental design

A total of 1343 HEB-25 lines were tested in drought
stress experiment over 3 years, with 447 lines screened
in 2014 and 448 lines each in 2015 and 2016. The first
set contain lines from 9 families (HEB-03, 04, 09, 12, 13,
18, 20, 21, and 22), the second contain lines from 8 fam-
ilies (HEB-02, 05, 07, 11, 15, 16, 19, and 23) and the
third set have lines from 8 remaining families (HEB-01,
06, 08, 10, 14, 17, 24, 25). The reason of using only a
third of the NAM population was because there was a
limitation in space in the Plant Accelerator so only one
third of the NAM population could be screened for
drought stress at a time. The families selected for each
year were chosen so that the number of lines screened
each year was approximately equal. The three experi-
ments were executed at the same time each year, from
16th June (potting) to 16th August (last day of imaging).
The experiment was accommodated in two automated
greenhouses, so-called Smarthouses (North West (NW)
and North East (NE)), at the Plant Accelerator green-
house facilities in Adelaide, Australia (34°58'16.18"S;
138°38'23.88"E). Each Smarthouse was divided into six
zones each comprising a grid of four lanes by 22 posi-
tions, as sets of four lanes were found to be homoge-
neous in terms of plant growth variability [77].

The design employed for each Smarthouse experiment
was a split-plot design in which two consecutive carts
form the main plot. The main-plot design was an unre-
plicated design with replicated check and recipient lines,
which were Navigator and Barke, respectively. In order
to deal with the anticipated spatial variation, lines were
allocated to main plots using a  blocked,
row-and-column design, the blocks being the zones. A
feature of the main-plot design was that, for the check
lines, (i) there were 6 main plots in each zone, and (ii)
there were 3 or 4 main plots in each column; the Barke
main plots were similarly distributed across zones and
columns. The subplot design merely randomized treat-
ments (control, drought stress) to the two carts in each
main plot.

At each position, there was a cart containing a pot
with a single plant. Lines were allocated to the 24 x 11 =
264 pairs per Smarthouse. Of the 264 pairs available in a
Smarthouse, 36 had Navigator, a control line, allocated
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to them, 224 (or 223 in the NW Smarthouse) had 224
(or 223) lines allocated to them and the remainders (4
or 5) had the recipient line, Barke, assigned to them. In
general, Navigator was replicated 72 times and Barke 8-
10 times per treatment while HEB lines were unrepli-
cated. The main plot design was generated using the
software DiGGer [78] and the subplot randomization
was done using the R package dae [79]. More detailed
information and the graphical layout of the experiment
was listed in the Additional file 8.

Plant growth conditions

The drought stress experiment was similar to that re-
ported by Honsdorf et al. [18]. Plants were pre-grown
on static benches within the Smarthouse and watering
was performed manually to allow optimal germination
and seedling establishment. Soil mix used for the experi-
ment was 50% cocopeat mixed with 50% clay loam. At
31 days after planting (DAP), the pots were transferred
to the automated section of the Smarthouse where each
pot was placed onto a cart on a conveyor belt. On the
first day of automated phenotyping, all pots were
watered to a gravimetric water content of 25%, which is
equivelent to 508 g of water per 2030 g of dry soil used
for potting. Control pots kept this water content
whereas water-limited pots were allowed to dry down to
15% (g/g) water content. The two treatments were main-
tained until 59 DAP by watering every day.

Phenotyping

During the period from 32 to 59 DAP when the stress
treatment was applied, plant images were captured daily
using a LemnaTec 3D Scanalyzer (LemnaTec, GmbH,
Wouerselen, Germany). Every day, three RGB pictures
were taken of each barley plant, one top view image and
two side view images with a 90° horizontal rotation.
After separating the plant tissue area from the back-
ground, pixel numbers per plant were counted and the
pixel sum of the three pictures per plant was used as the
total projected shoot area per plant per day (designated
as PSA). In 2014, images were taken with 5 megapixel
cameras whereas in 2015 and 2016, 8 megapixel cameras
were used. 2014 results were scaled accordingly to ac-
count for the difference in camera resolution and optics
used.

The PSA data for each individual plant was smoothed
by fitting a natural cubic spline using the smooth.spline
function in R to obtain the shoot area smoothed (SAsm).
The SAsm of the last day of imaging (DAP =59) was
used for calculation of best linear unbiased estimates
(BLUESs), which was subsequently used for GWAS.

Absolute growth rate (AGR) and relative growth rate
(RGR) for each plant were calculated as described in
Table 1. Three intervals were identified based on the
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kinetics of AGRs and RGRs from 32 to 59 DAP where
plants were in a particular growth phase, (i.e. constant
growth rate, accelerating or decelerating growth). These
three intervals were defined as 32—40, 42-50, and 52-59
DAP and the AGRs and RGRs for the three intervals
were calculated. As a result, for each trait, a single value
for each cart was obtained. AGRs for the whole period
of imaging are essentially the same as the end-of im-
aging value for the trait and so it was redundant to in-
clude them. Moreover, two other traits were extracted
from the images including caliper length integral (CL)
and convex hull area integral (CHA). At the end of the
experiment, barley plants were harvested and above
ground biomass, tiller number (TN), and plant height
(HEI) were determined. Plant growth stage was recorded
at the completion of the 2015 and 2016 experiments
using the Zadok scale [80]. This is the time when de-
structive measurements were conducted, approximately
2 months after planting. Fresh biomass (FW) was
weighed and, subsequently, oven dried to constant
weight to determine dry biomass (DW). Water use effi-
ciency (WUE) was calculated by dividing dry biomass at
the end of the experiment by the total amount of water
added during the 4 weeks in the Smarthouse [mg/g
water]. A summary of trait definitions is given in Table
1.

Statistical analysis of phenotypic data
A two-step analysis was performed in analysing the
phenotypic data: (i) a mixed model analysis was per-
formed on the data for each year to produce spatially ad-
justed BLUEs for each combination of the genotypes and
treatments; (ii) a mixed model analysis of the BLUEs
from (i) were combined over the 3 years and a mixed
model analysis performed to produce BLUEs adjusted
for differences between the years.In addition, a genetic
analysis was carried out on the data for each year using
a mixed model in which the genotypic effects are as-
sumed random for each treatment and heritability coeffi-
cients are computed from the analysis using the method
described by Cullis et al. [81].

The mixed model used for the first step was similar to
that used in [51] and was as follows:

y=XB+Zu+e,

where y is the response vector of values for the trait
being analysed; P is the vector of fixed effects; u is the
vector of random effects; and e is the vector of residual
effects. X and Z are the design matrices corresponding
to B and u respectively.

The fixed-effect vector B partitioned as [y BS Bé

gZCM BE B-C:‘ B"lr" ﬁé:T EZTBEZCZ]’ where (1) “ is the overall
mean (i) B¢ are the Smarthouse effects, (iii) B¢, and
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Table 1 List of measured traits
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Trait Abbreviation Unit

Method of measurement

Imaging parameters
SAsm kPix?
AGR32 kPix/

1 Shoot area smoothed

2 Absolute growth rate

Smoothing spline fit to total projected shoot area data for each plant

Difference in smoothed Shoot Area between days 32th and 40th after planting, divided by
Difference in smoothed Shoot Area between days 42th and 50th after planting, divided by
Difference in smoothed Shoot Area between days 52th and 59th after planting divided by

Difference in the logarithm of the smoothed Shoot Area at days 32th and 40th after
planting, divided by the length of the period

Difference in the logarithm of the smoothed Shoot Area at days 42th and 50th after
planting, divided by the length of the period

Difference in the logarithm of the smoothed Shoot Area at days 52th and 59th after
planting, divided by the length of the period

Smallest geometrical object without concave parts that covers whole plant, top view image

Max. distance between two points on the object boundary, top view image

Plant height measured from bottom to leaf tip

Harvested dry biomass per plant/total amount of irrigation water

smoothed 32-40 d® the length of the period
3 Absolute growth rate AGR42 kPix/

smoothed 42-50 d the length of the period
4 Absolute growth rate AGR52 kPix/

smoothed 52-59 d the length of the period
5 Relative growth rate RGR32 d’

smoothed 32-40
6 Relative growth rate RGR42 d’

smoothed 42-50
7 Relative growth rate RGRS52 d-’

smoothed 52-59
8 Convex hull area integral®  CHA kPix
9 Caliper length integral CcL kPix

Harvest parameters

Fresh weight FW g Weight of fresh biomass per pot
10

Dry weight DW g Weight of oven dried biomass per pot
1

Plant height HEI cm
12

Tiller number TN Number of tillers per pot
13

Indices

Water use efficiency WUE ag/g

14 water

2kPix Kilo pixel
PkPix/d Kilo pixel/day
Sintegral: calculated for the length of entire experiment

B<.. are the linear trend coeficients for the centred, nu-
merical variables cMainPosn (east-west) and cLanes
(north-south) in each Smarthouse,(iv) B, BG, Br» Ber
and B¢, are the subvectors for the effects of the Checks
(C), the Genotypes (G), the Treatments (T), the
Check-by-Treatment interactions (C:T), and the
Genotype-by-Treatment interactions (G:T), and (v) B¢..,
are the linear regression effects in each Smarthouse for
the relationship with the numeric Zadok’s growth stage
scores at the end of imaging, which is centred at growth
stage 33 (not included for Year 1).

The random effects vector u is partitioned as [u:pl(S:cL)
Ulis.om) Wszv| Where the us are the subvectors of the

coefficients of the spline basis functions for fitting
curved trends within each Smarthouse over Lanes
(spl(S:cL)), the coefficients of the spline basis functions
for fitting curved trends within each Smarthouse over
the east-west positions of the main plots (spl(S:cM)) and
the random main-plot effects within each Zone in each

Smarthouse (S:Z:M). The design matrices X and Z are
partitioned to conform to the partitioning of f and u, re-
spectively. It is assumed that each subvector of random
effects, u;, is distributed N(O0,,, 0,1,,), where 0,, is the
m-vector of zeroes, o; is the variance of the ith set of
random effects, I,, is the identity matrix of order m, and
m is the order of u,. Further, with the distribution of the
residual effects e are assumed to be:

a2, (; 0 o0
0 o 0 0
N | Oy056, 0 68 o2 0 ®I26a
2w
0 0 0 o3

where o2, 03,, 07, and o3, are, respectively, the vari-
ances of the residuals for the pots in control conditions
in the two Smarthouses and the pots in the control con-
ditions in the two Smarthouses; it is assumed that the data
in y are ordered to conform with the order as the vari-
ances. This model allows for the residuals for the two
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treatments to have different residual variances in the two
Smarthouses. Residual-versus-fitted-values and normal
probability plots were obtained and inspected for all traits
in all years and none revealed any deficiencies in the
models used. Except for 02 ,,,, each of the variance com-
ponents and the need for unequal residual variances was
tested via REML ratio tests with a =0.05. If the curved
trends were not significant then Wald F tests, employing
degrees of freedom calculated using the Kenward-Rogers
method, were used to determine if there was any trend at
all. These mixed model analyses were carried out using
the packages asreml [82], with REML used as the method
of estimation, and asremlPlus [83] in the R statistical com-
puting environment (R Core Team, 2016). The BLUEs
were obtained using the resulting model.

For the second step in the analysis, the 3 years of
genotype BLUEs for a treatment were combined and
subject to a mixed model analysis using PROC MIXED
in SAS, with genotype treated as a fixed effect and year
as a random effect. The BLUEs from this analysis were
obtained using the LSMEANS statement in PROC
MIXED, with variance components estimated using
type3; the BLUEs for the HEB lines formed the data for
the GWAS analysis..

Genome wide association study (GWAS)

A set of 5709 barley Illumina 9 K iSelect SNPs previously
mapped in the HEB-25 population [35] was available for
GWAS. Of these, a set of 5333 SNPs with a minor allele
frequency greater than 1% was utilized for GWAS in this
study. The differentiation of the SNP genotypes was based
on an identity-by-state (IBS) approach described by Maurer
et al. [35].

GWAS was performed using a multiple linear regres-
sion model referred to as model-A by Liu et al. [84],
where: 'y =y + XsnpysBsnp,, + €+ This multiple regres-
sion model takes into account a quantitative SNP effect
in addition to quantitative cofactors that control both
population structure and genetic background [85]. Co-
factor selection was carried out on this model and in-
cluded all SNPs simultaneously by applying PROC
GLMSELECT in SAS. SNPs were allowed to enter or
leave the model based on a SNP’s p-value < 0.001 for the
marginal F-test. To reduce false positives and increase
the robustness of the GWAS results, a five-fold
cross-validation was run 20 times and parent-specific
marker effects were estimated. The procedure of cross
validation and estimation of parent-specific QTL effect
was described in detail by Maurer et al. [36]. Markers
that were detected 20 times out of 100 cross-validation
runs were accepted as putative QTL. Candidate genes
for QTL detected by GWAS were identified using the
BARLEYMAP pipeline [86]. In addition we compared
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the genomic position of QTL with the position of known
flowering/developmental and plant architecture genes in
barley summarized by Alqudah et al. [87] and Alqudah
et al. [59] as these two papers used the same genetic
map and markers as in this study. Genes were suggested
as candidates if they were within 4 cM of a QTL.

Additional files

Additional file 1: Figure S1. Relative growth rate (RGR), absolute growth
rate (AGR), and shoot area smoothed (SAsm) of all plants grown within the
drought stress experiments across 3 years (2014-2016) at the Plant
Accelerator, University of Adelaide. The solid line represents the average of
control conditions (cyan) and drought conditions (red). (PDF 696 kb)

Additional file 2: Figure S2. Comparison of temperature recorded
inside the north-east (NE) and north-west (NW) Smarthouses during the
experimental period in the 3 years from 2014 to 2016 at the Plant Accel-
erator. A and B. Lineplots showing highest and lowest temperature re-
corded by sensors for north-east and north-west Smarthouses. C. Lineplot
of growing degree days during the course of the experiment for two
Smarthouses. (PDF 101 kb)

Additional file 3: Table S3. P values of all terms in the models for 14
traits across 3 years. (XLSX 15 kb)

Additional file 4: Table S4. Summary of simple statistics for the
drought stress experiment from 2014 to 2016. (XLSX 21 kb)

Additional file 5: Figure S6. Scatter plots for shoot area smoothed
(SAsm), dry weight (DW), tiller number (TN), and plant height (HEI) in 3 years
from 2014 to 2016. A. Scatter plots and correlation coefficients between the
ratio of the phenotypic values in drought stress treatment versus the
control control treatment (Ratiop,y) and the corresponding phenotypic
values in control treatment for shoot area smoothened in 3 years 2014—
2016, respectively. B. Scatter plots and correlation coefficients between ratio
of the phenotypic values in drought stress treatment versus the control
control treatment (Ratiop,w) and the corresponding phenotypic values in
control treatment for plant height in 3 years 2014-2016, respectively. C.
Scatter plots and correlation coefficients between ratio of the phenotypic
values in drought stress treatment versus the control control treatment
(Ratiop,w) and the corresponding phenotypic values in control treatment
for dry weight in 3 years 2014-2016, respectively. D. Scatter plots and
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