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Abstract

especially in response to biotic stress.

was required for the protein-protein interaction.

Background: Banana (Musa spp.) is one of the world’s most important fruits and its production is largely limited by
diverse stress conditions. SROs (SIMILAR TO RCD-ONE) have important functions in abiotic stress resistance and
development of plants. They contain a catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-
terminal RST (RCD-SRO-TAF4) domain. In addition, partial SROs also include an N-terminal WWE domain. Although a
few of SROs have been characterized in some model plants, little is known about their functions in banana,

Results: Six MaSRO genes in banana genome were identified using the PARP and RST models as a query. Phylogenetic
analysis showed that 77 SROs from 15 species were divided into two structurally distinct groups. The SROs in the
group | possessed three central regions of the WWE, PARP and RST domains. The WWE domain was lacking in the
group II SROs. In the selected monocots, only MaSROs of banana were present in the group II. Most of MaSROs
expressed in more than one banana tissue. The stress- and hormone-related cis-regulatory elements (CREs) in the
promoter regions of MaSROs supported differential transcripts of MaSROs in banana roots treated with abiotic and
biotic stresses. Moreover, expression profiles of MaSROs in the group | were clearly distinct with those observed in the
group Il after hormone treatment. Notably, the expression of MaSRO4 was significantly upregulated by the multiple
stresses and hormones. The MaSRO4 protein could directly interact with MaNAC6 and MaMYB4, and the PARP domain

Conclusions: Six MaSROs in banana genome were divided into two main groups based on the characteristics of
conserved domains. Comprehensive expression analysis indicated that MaSROs had positive responses to biotic and
abiotic stresses via a complex interaction network with hormones. MaSRO4 could interact directly with MaNAC6 and
MaMYB4 through the PARP domain to regulate downstream signaling pathway.
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Background

Plants are persistently challenged by numerous biotic
and abiotic environmental stresses. Multiple stress fac-
tors result in an extensive loss of agricultural production
worldwide [1]. During evolution, plants have developed
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sophisticated mechanisms to protect themselves against
multiple stresses. Several molecules, such as transcrip-
tion factors (TFs), reactive oxygen species (ROS), cyto-
solic Ca®* and kinases, are involved in different stress
signaling pathways [2, 3]. Additionally, hormone signal-
ing pathways regulated by salicylic acid (SA), jasmonic
acid (JA), abscisic acid (ABA) and ethylene also play key
roles in crosstalk between biotic and abiotic stresses [4—6].

A SIMILAR TO RCD ONE (SRO) family is a group of
plant-specific proteins, which participate in abiotic stress
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and developmental processes [7]. In Arabidopsis thaliana,
a radical-induced cell death 1 (AtRCD1) was originally
discovered according to the recovery of oxidative stress
response defects in yeast mutant [8]. Subsequently, homo-
logs (AtSRO1-5) of AtRCD1 were also identified and
divided into two structural types [7]. AtRCDI and AtSROI
in the type I contain an N-terminal WWE domain
(PS50918), a poly(ADP-ribose) polymerase (PARP) do-
main (PS51059), and a C-terminal RCDI1-SRO-TAF4
(RST) domain (PF12174) [9]. The type II includes
AtSRO?2, 3, 4, and 5 lacking the WWE domain [7]. Previ-
ous studies demonstrated that the RST domain was
specifically involved in plant SRO and TAF4 proteins,
while the WWE-PARP domain widely existed in various
organisms [10, 11]. The WWE domain might be required
for protein-protein interactions by forming a globular
structure [12]. The RST domain is essential for the SRO
interaction with different TFs [7, 9].

Until now, limited knowledge of SROs was obtained
from Arabidopsis and rice. A loss-of-function mutation
of AtRCDI resulted in the increased sensitivity to the
abiotic stress responses, the aberrant leaf and rosette
morphology, and the altered hormone responses [13—
16]. AtRCD1 was also involved in salt stress by interact-
ing with SOS1, a plasma membrane Na*/H" antiporter
[17]. However, little work had been done on AtSRO2, 3,
4 and 5. AtSRO2 was upregulated in response to light
treatment. AtSRO3 was significantly downregulated
under light stress, but induced by salt stress and ozone
[7]. The mutated AtSROS plants were more sensitive to
H,O,-mediated oxidative stress and salt stress [18]. In
addition, a rice SRO protein OsSRO1c¢ had dual roles in
improving drought and oxidative stress tolerance by the
interaction with NAC1 and zinc finger TFs [19, 20]. The
wheat SRO could alleviate the oxidative stress under salt
treatment by modulating redox homeostasis [212]. Like-
wise, overexpression of apple RCDI in transgenic apple
calli and Arabidopsis plants enhanced the plant resist-
ance to salt stress [22]. However, whether members of
the SRO gene family also participate in the regulation of
biotic stress is still an open question.

Although some functional studies on this family have
been carried out in the model plants, very little is known
in the non-model plants. Banana is vital for food security
in many tropical and subtropical countries. The vegeta-
tive propagation of banana commercial cultivars resulted
in the susceptibility to pests and diseases due to the
narrow genetic background [23]. For example, fusarium
wilt, caused by Fusarium oxysporum f. sp. cubense (Foc),
is one of the most destructive diseases, which can cause
leaf wilt and death of the whole plant. Especially, a strain
of Foc called tropical race 4 (Foc TR4) has overcome
more than 80% of global banana and plantain [24].
Moreover, adverse environmental factors such as
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drought and low temperature also restrict the industrial
development of global banana [25, 26]. To understand
MaSRO function in response to abotic and biotic
stresses, we first identified and characterized the SRO
gene family of banana genome. Expression patterns of
MaSROs were detected in response to six abiotic stresses
(cold, osmotic, salinity, ultraviolet, heat and, wounding),
one biotic stress (Foc TR4 inoculation), and four
hormone treatments (ABA, SA, GA, and ethylene). By
contrast, MaSRO4 was upregulated by multiple stress
responses and interacted with MaNAC6 and MaMYB4
by the PARP domain.

Results

Identification and classification of MaSROs

After searching the entire genome of banana using the
PARP and RST models, six MaSROs were obtained and
named sequentially from MaSROI to MaSRO6
according to the description of Jaspers et al. (2010) [7].
A Maximum-Likelihood (ML) phylogenetic tree was
produced using the full-length protein sequences of
MaSROs. Six MaSROs clustered into two distinct groups
(Fig. 1a). The group I contained four members from
MaSRO1 to MaSRO4 with the WWE, PARP and RST
domains, while MaSRO5 and MaSRO6 lacking the
WWE domain belonged to the group II. To further
identify other conserved domains, we analyzed all
amino-acid (AA) sequences of MaSROs against the
MEME tool [22]. In total, seven conserved motifs were
listed in Additional file 1. MaSRO5 and MaSRO6
evidently lacked the internal motif I and motif VI,
whereas motif VI was only found in MaSRO2 (Fig. 1b,c).
Two highly conserved Motifs V and VII in the C-termini
of MaSROs harbored the typical PARP and RST
domains, respectively. Motif I within the WWE domain
mainly located in the N-termini. The structure distribu-
tion of motifs supported the grouping results (Fig. 1a).

To determine the genomic structures of MaSROs, each
DNA sequence was used to search the banana-genome
database. Distributions of MaSROs on banana 12
chromosomes seemed to be uneven (Additional file 2).
Chromosomes 4 and 5 contained two MaSROs,
respectively. MaSRO2 and MaSRO4 located on chromo-
some 7 and 9, respectively. Exon/intron structures of
MaSROs (such as between MaSRO3 and MaSRO4, be-
tween MaSROI1 and MaSRO2) were conserved within
the same subfamily, except for MaSRO6 and MaSRO7
(Fig. 1d).

We also predicted the chemical and physical charac-
ters of each MaSRO protein. The lengths of MaSROs
range from 240 to 490 AAs, and the values of GRAVY
change from -0.202 to - 0.435. Based on an instability
index, most of MaSROs belong to unstable proteins.
MaSROs have obvious changes in isoelectric point from
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Fig. 1 Analysis of evolutionary relationship, protein domains and gene structures of the banana SRO gene family. a Six MaSROs clustered into
two groups in an unrooted ML tree constructed by MEGA7.0. The group | contained MaSRO1, 2, 3 and 4. MaSRO5 and MaSRO6 formed the
group Il. b Seven conserved motifs of MaSROs were generated by the online MEME tool. The overall height of the stack represented the level of
sequence conservation. Heights of residues within a stack indicated the frequency of each residue at the indicated position. ¢ The positions of
identified seven motifs were schematically presented in MaSROs. Different motifs were displayed using the different colored boxes. The lengths
of proteins and motifs were estimated using the scale at the bottom. d The intron/exon structures of MaSROs were analyzed by comparing the
genomic and cDNA sequences. Yellow and black boxes represented the exon and intron regions, respectively. Blue boxes indicated the
untranslated regions (UTRs). The sizes of exons and introns were measured using the scale at the bottom

6.33 to 9.69 and in molecular weight from 27.023 kDa to
66.147 kDa. The subcellular localizations of MaSRO1, 2,
3 and 5 were predicted in chloroplast or nucleus,
whereas MaSRO4 and MaSRO 6 located in nucleus
shown in Additional file 2.

Phylogenetic analysis of the SRO gene family

To investigate the evolutionary relationship among plant
SRO proteins, we identified 80 SROs in 16 genome-se-
quenced species including A. thaliana (6), Zea mays (6),
Populus trichocarpa (7), Musa acuminata (6), Solanum
lycopersicum (6), Vitis vinifera (5), Physcomitrella patens
(3), O. sativa (5), Medicago truncatula (7), Malus domestica
(6), Brachypodium distachyon (5), Setaria italica (4),
Chlamydomonas reinhardtii (2), Glycine max (5), Elaeis
guineensis (3), and Phoenix dactylifera (3) in Additional file 3.
The selected plants represented species within the division
of angiospermae and Bryophyta (Fig. 2). The numbers of
SROs in different plant species showed a gradual increase
from algae to flowering plants along with the increase of or-
ganism complexity [27]. Most plants owned 5-7 SRO

members in their genomes. E. guineensis, P. patens and P.
dactylifera contained three SROs, while only two SRO ho-
mologs were identified in the C. reinhardtii genome. No
SRO homologs were observed in a eukaryotic microalga
Coccomyxa subellipsoidea and a unicellular green alga
Ostreococcus lucimarinus. Likewise, we did not also found
SRO homologs in the photosynthetic and/or eukaryotic mi-
croorganisms. Loss of ancestral SROs in specific lineages
supports the evolutionary diversification through extensive
expansion during plant evolution.

Based on the full-length protein sequences of SROs
(Additional file 4), a ML phylogenetic tree was generated
using bootstrap analysis (1000 replicates) (Additional file 5).
Deviation seemingly happened from C. reinhardtii with a
separate monophyletic clade, thereby confounding the tree
topology. Hence, we removed two CrSROs from the final
phylogenetic tree. A total of 77 SRO members from 15
species were clustered into the group I and II (Fig. 3).
Based on the branch value (>75) [28], the group I was
further classified into four subgroups (Ia, Ib, Ic, and Id) [7]
. AtRCD1 and AtSRO1 formed the subgroup Ia with the
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Fig. 2 Distribution of the SROs in Plantae. The left graph indicated the categories of species. The nodes of tree represented the evolutionary
relationship. The number and classification of SROs in each species were described in the right diagram. GS: genome size

\

SRO homologs from all selected species except for P.
patens, where an obvious divergence branch was
produced between monocots and eudicots (Fig. 2). Three
PpSROs of P. patens independently consisted of subgroup
Ib. Only monocots in our selected species were involved
in subgroup Id. The group II can be classified into one
group. Besides MaSRO5 and MaSRO6 from banana, no
SRO homologs of other monocots belonged to the
subgroup II.

Characteristics of conserved domains in plant SROs

Based on the domain architecture, those SROs in the
group I had a central region of the WWE, PARP and RST
domains. No WWE domain was found in the SRO mem-
bers of group II. Compared with compositions of AAs in
three domains, an obvious variation was observed in the
WWE domain (Additional file 6). The RST domain was
most conserved in monocots. There are a strong conser-
vation of aliphatic AAs in the N-terminus, a strictly con-
served tyrosine (Y) in the middle of RST domain, and two
glycine (G) and aspartic acid (D) residues in the
C-terminus. In addition, seven conserved motifs were
used to demonstrate the domain architecture of plant
SROs from 15 species (Additional file 7). The basic PARP
domain containing motif I and motif VII was found in all
SROs, suggesting that this domain was important for basic
function of SROs. It was supported that the phylogenetic
trees constructed using the conserved PARP domain and
full-length protein sequences were similar, although a dif-
ference was generated in the definition of subgroup

(Additional file 8). The motif II within the variable WWE
region was shown in the group I, except for PpSRO1 from
P. patens. Especially, most of members in the same sub-
group shared one or more motifs outside the PARP and
RST domains, further supporting the subgroup definition
(Additional file 7).

Expression profiles of MaSROs in different banana tissues

A quantitative real-time PCR (qRT-PCR) was performed
to investigate expression patterns of MaSROs in banana
(Musa AAA, cv. Williams) roots, leaves, stems, and
fruits (Additional file 9). The PCR product of each
MaSRO was confirmed by sequencing. Transcripts of
MaSROs could be detected in the all selected four
tissues, but low expression levels were observed in fruits.
Remarkably, ~MaSRO2 exhibited relatively high
expression levels in roots, while low transcript accumu-
lation was detected in banana stems and leaves.
MaSRO1, 3 and 4 clustering into the same group
showed a preferential expression in stems. MaSROS had
a constitutive expression in different organs. Our results
suggest that MaSROs might play key roles in multiple
biological processes during growth of banana plants.

Expression characteristics of MaSROs under diverse
abiotic stresses

To identify potential functions of MaSROs in response
to different abiotic stresses, their transcript profiles were
assayed under polyethylene glycol (PEG), salt, cold, heat,
ultraviolet (UV) and wounding treatments (Fig. 4). The



Zhang et al. BMC Plant Biology (2019) 19:

211

Page 5 of 14

BASRO1
OsSRO1b
ZmSRO4
98- SiSRO4
EgSRO3

92— PpSRO2

_99|:|: PpSRO3  |1b

PpSRO1

72 MdJSRO5
PtSRO2
WSRO4
SISRO3
SISRO5
4 MaSRO3
@ MaSRO4
OsSRO1c

Si
93

91

€ MaSRO2 7]
99, EGSRO1
L— PdSRO1
0sSRO1d
97 - ZmSRO3 d
SiSRO2
OsSRO1e
BASRO3
95L- BdSRO4

100 @ MaSRO5

L & Masro6

99~ MdSRO2

98

BdSRO5

ZmSRO6

Group I

Ic

SRO3
ZmSRO1

Group II

Fig. 3 Phylogenetic analysis of the SROs from different plants. A total
of 77 SROs were identified from 15 representative plant species. The
ML phylogenetic tree was constructed using the MEGAY software
based on the full-length protein sequences of SROs. Numbers on
branches were bootstrap values calculated from 1000 replicates. These
SROs were clustered into two main groups and five subgroups. The
scale bar indicated AA substitutions per position

PEG treatment was used to simulate osmotic stress. At
the initial stage, the expression levels of MaSROs were
obviously upregulated except for MaSROS5. Especially,
the transcript levels of MaSROI, 3 and 4 gradually in-
creased under PEG treatment until 24 h. No significant
difference was found in the transcription accumulation
of MaSROS5 among the indicated time points. Under salt
treatment, MaSRO3 and MaSRO4 reached an expression
peak at 24 h and 12 h, respectively, while other members
were downregulated or showed no significant changes.
By contrast, expression of MaSRO1, 3, 4 and 5 could be
induced by heat treatment. The increase of AMaSRO3
and MaSRO4 ranged from 5.41- to 11.76-folds and the
enhancement of MaSROI and MaSROS5 were between
1.18- and 3.01-folds. Under cold stress, an obvious up-
regulation was observed in the expression levels of
MaSRO1, 2, 3 and 4, but both MaSRO5 and MaSRO6
were down-regulated. Notably, the expression levels of
MaSRO5 and MaSRO6 were induced at the early stage
under UV stress, while the transcripts of other members
were repressed. The wounding treatment induced rap-
idly the up-regulation of MaSRO3 and MaSRO4. Oppos-
ite results were detected in the expression patterns of
MaSRO2. Hence, transcripts of these MaSROs were re-
sponsive to most of the applied stress treatments. Espe-
cially, MaSRO4 exhibited significant changes under
multiple stress treatments, suggesting that it may own a
unique role in stress responsiveness.

Expression profiles of MaSROs in response to diverse
hormone treatments

Previous evidences indicated that different hormones
play important roles in stress signal transduction and
cell responses [4—6]. Here, we investigated the expres-
sion profiles of MaSROs in response to ABA, GA, ethyl-
ene, and SA treatments (Fig. 5). The highest numbers of
MaSROs were induced by ABA treatment, followed by
GA or ethylene treatment. Interestingly, SA treatment
cannot significantly upregulated the expression levels of
MaSROs, except for MaSRO3 and MaSRO4. MaSROS
and MaSRO6 were more sensitive to ABA or GA treat-
ment. Compared with abiotic stresses, MaSROs in the
same subgroup showed analogous responses to exogen-
ous hormones. For example, MaSRO2 from the sub-
group Id displayed similar expression patterns after GA
or ethylene treatment. We also found that the induced
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transcript profiles of MaSROs in the group II were
clearly different from those observed in the group L
MaSRO2, 3 and 4 in the group I showed an expression
peak at the indicated time points after GA or ethylene
treatment., MaSRO5 and MaSRO6 in the group II
showed a continual transcript increase throughout the
detected time points.

Expression profiles of MaSROs in banana roots inoculated
with Foc TR4

To investigate whether MaSROs are required for biotic
stress, their transcription levels were analyzed in banana
roots after inoculation with Foc TR4 (Fig. 6). Except for
MaSRO3 and MaSRO6, most of MaSROs increased by
more than 2-fold at 2h post inoculation (hpi) in compari-
son with the initial stage. During Foc TR4 infection, the
expression of MaSRO2 displayed a sharp increase, reached
two peaks at 2 hpi and 48 hpi and then decreased in the
following time points. MaSRO4 and MaSROS showed
biphasic expression patterns with upregulation at 24 hpi
and downregulation at 48 hpi. The expression peaks of
MaSRO4 and MaSROS5 were detected at 72hpi. Both
MaSRO3 and MaSRO6 demonstrated low or moderate
levels in consecutive expression windows.

Stress- and hormone-induced cis-regulatory element
(CRE) analysis

Transcriptional control of gene expression depends on
CREs in the promoter region. In our study, the 1.5-kb up-
stream regions of the translational start sites of MaSROs
were used for identification of CREs. Some stress- and
hormone -related CREs were found according to their po-
tential responsive functions (Fig. 7). More than one CRE
were detected in the promoter region of each MaSRO. By
contrast, most frequent CREs were identified, such as

Page 7 of 14

MYCCONSENSUSAT (CANNTG, ABA response factor
binding site), GT1GMSCAM4 (GAAAAA, ethylene
response factor binding site)) WBOXNTERF3 (TGACY,
responsible for pathogen- and salt-induced expression),
W-Box within ELRECOREPCRP1 (TTGAC, recognized
specifically by SA-induced WRKY DNA-binding proteins),
ASF1 MOTIFCAMYV binding site (TGACG, involved in
transcriptional activation by auxin and SA treatments),
low-temperature responsive elements (CCGAAA, ACCG
ACA and CCGAC), and auxin response factor binding
sites (TGTCTC). There was an obvious difference in the
type and abundance of CREs in six MaSROs promoters
analyzed (Fig. 7). The HSE, W-box, and CBF/DREBI1
elements were scattered in the promoter regions of all
MaSROs. The promoter of MaSRO4 contained the most
diverse collection of putative CREs (a total of 25 CREs,
such as CBF/DREBI1, LTR, HSE, GARE, SEBF, ABRE,
W-box and ERF3, etc). Some hormone response elements
including TACGTGTC (ABA), TAACGTA (GA), TCAT
CTTCTT (SA), and AACGTG (JA) were specifically
detected in the MaSRO4 promoter. In the MaSROI pro-
moter, GA response elements such as TATCCAC, TAAC
AAA and TATCCA were lacking when compared to
MaSRO3 and MaSRO4. Only a small type of potential
CREs were identified in the promoters of MaSROI,
MaSRO2 and MaSRO6. The GA and SA response ele-
ments were absent in the MaSRO6 promoter. By combin-
ing expression patterns of MaSROs with CER analysis, we
found that MaSROs in response to multiple stimuli had a
positive correlation with the types and numbers of CREs.

Identification of interaction proteins with MaSRO4

Earlier studies indicated that AtRCD1 and OsSROlc
could interact with numerous TFs (DREB2B, AP2/ERF,
MYB, bZIP and NAC families) to activate stress

m MaSRO1
6 - = MaSRO3
m MaSRO5

Relative expression levels

0 2

primers specific for MaSROs were listed in Additional file 10

m MaSRO2
m MaSRO4
MaSRO6

Fig. 6 qRT-PCR analysis of MaSROs in banana roots inoculated with Foc TR4. The samples were harvested at 0, 2, 24, 48 and 72 h after Foc TR4
inoculation. Data indicate relative expression levels (means + SE) from three independent biological replica (three RNA extractions; n = 3). Used

24 48 72 h
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Factor or Site Name Signal sequence
[[MYCCONSENSUSAT CANNTG  (ee—m—
DPBFCOREDCDC3 ACACNNG  [mmmmm
ACGTABREMOTIFAOSOSEM TACGTGTC u MaSRO1
BREMOTIFAOSOSEM TACGTGTC pm
ABA o PYRIMIDINEBOXHVEPB1 TTTTTTCC jmm u MaSRO2
MYB2CONSENSUSAT YAACKG a MaSRO3
ACGTABREMOTIFA20SEM ACGTGKC
RYREPEATVFLEB4 CATGCATG u MaSRO4
MYBATRD22 CTAACCA |m
MYCATRD22 CACATG  jmmwmm MaSROS
[ TATCCACHVAL21 TATCCAC |m u MaSRO6
MYBGAHV TAACAAA |m
TATCCAOSAMY TATCCA  |mmmm
GA - GARE20SREP1 TAACGTA R
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Fig. 7 CRE analysis of MaSROs in 1.5-kbp upstream region of translation start codon. The left graph presented the site names and sequences of
CREs involved in the putative signaling pathways. The colored columns showed the number of the identified CREs in the promoter region of
each MaSRO

signaling pathways [7, 9, 19, 20]. Because expression of
MaSRO4 was significantly induced by multiple stress
treatments, we further analyzed its interaction proteins
to predict the stress-related regulation mechanism. Do-
main analysis uncovered the presence of a complete
WWE-PARP-RST structure in MaSRO4, suggesting that
the protein may also interact with homology TFs of rice
or Arabidopsis. Here, yeast two-hybrid assay and immu-
noprecipitation (Co-IP) were performed to identify inter-
action proteins of MaSRO4. A MaSRO4-BD construct
was used as a bait protein, and the selected banana TFs
were constructed into the prey vector. By the growth of
yeast on selection medium (lacking Leu, Trp, His, and
Ade) and a-galactosidase assay, the full-length MaSRO4
protein can directly interact with MaNAC6 and
MaMYB4 (Fig. 8a). Furthermore, we co-expressed MaS-
RO4-3HA and TF-FLAG in Arabidopsis protoplasts.
Anti-FLAG resin was used for Co-IPs (Fig. 8b). Western
blot analysis with anti-3HA antibody showed that the
precipitated fraction contained MaSRO4-3HA. Hence,

MaSRO4-3HA could be
MaNAC6-/MaMYB4-FLAG.

To understand whether the different domains of
MaSRO4 are necessary for its interaction with MaMYB4,
different N- and C-terminal truncations were generated
by decreasing the length of MaSRO4. MaSRO4 lacking
the WWE domain did not substantially affect the
interaction with MaMYB4 in yeast two-hybrid system
(Fig. 8c), suggesting that the WWE domain was not
necessary for protein interaction. However, it was not
possible to test the RST domain alone in this system,
because a C-terminal construct lacking both the WWE and
PARP domains strongly auto-activated the expression of
the reporter gene in yeast. Deletions of the PARP domain
resulted in loss of interaction with MaMYB4, indicating
that the domain was required for MaSRO4 function.

immuno-precipitated by

Discussion
Although SRO homologs widely exist in the kingdom of
Plantae, only a few members from rice and Arabidopsis
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Fig. 8 MaSRO4-interacting proteins identified by the yeast two-hybrid and Co-IP assays. a Yeast two-hybrid assay of MaSRO4 interacting with
MaMYB4 or MaNAC6. AD-MaMYB4 or -MaNAC6 co-transformed with BD empty vector was used as negative controls. The adjacent two clones
showed different colonies of each interaction test. b Co-IP assay of MaMYB4 or MaNAC6 interacting with MaSRO4. Genes encoding MaSRO4
tagged with 3HA (MaSRO5-3HA) and MaMYB4 or MaNAC6 tagged with FLAG (MaMYB4- or MaNAC6-FLAG) were co-expressed in Arabidopsis
protoplasts. Protein extracts (Input) were immunoprecipitated with anti-FLAG resin. Immunoblots were developed with anti-HA antibody to
detect MaSRO4 and with anti-FLAG antibody to detect MaMYB4 and MaNAC6. ¢ Interactions between MaMYB4 and MaSRO4 truncated fragments
using the yeast two-hybrid system. Various deletions constructs of MaSRO4 were prepared for domain-domain interaction. The left graphic
presented the schematic domains of MaSRO4 and deletion derivatives. Numbers above each truncation indicated the AA coordinates of MaSROA4.
The right graph showed the yeast growth (No. 1) and the -galactosidase assay (No. 2)
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had been characterized to regulate plant development
and improve plant’s resistance to abiotic stress [13—20].
In our study, six MaSROs were identified in banana
genome. The phylogenetic analysis demonstrated that
SRO orthologs from the 15 species clustered in the two
main groups based on the full-length protein sequences
(Fig. 3) and the PARP domain (Additional file 8) [7, 21].
The group II was considered previously as the eudicot
group of flowering plants [7], but MaSRO5 and MaSRO6
of banana also clustered into this group. The subgroups
(I and II) are distinct with previous classification due to
the analysis method and standard [7]. In the subgroup
Ia, the selected monocots have at least two SROs except
for banana, suggesting that duplication event in the
lineage might happen after banana. Actually, the expan-
sion event had happened in P. patens. There were three
predicted SROs in subgroup Ib. Banana chromosome 4
and 5 contained two MaSRO genes, respectively. It is
assumed that maintenance of duplicate genes provides
the redundancy function in stress response and plant
development, such as AtRCD1 and AtSRO1 [9].

The tissue-specific transcript analysis showed that
MaSRO1, 3, 4 and 6 were more abundant in stems and
leaves, while MaSRO2 was highly expressed in roots, like
their counterparts in rice [20]. The high abundance of
MaSRO expression in stems and leaves might participate
in the regulation of plant growth and development. Can-
didates with high transcripts in roots may be important
for perceiving various environmental stimuli. We also
found that most of MaSROs in the group I were upregu-
lated under PEG treatment (Fig. 4). Likewise, the
mutated plants of rice OsSROIc and Arabidopsis rcdl-
3/srol-1 demonstrated the increase of stomatal aperture
and sensitivity to drought [15, 20]. It seems that SROs
might be involved in maintenance of cell turgor pressure
and decrease of membrane injury under osmotic stress.
In addition, qRT-PCR analysis showed that each MaS-
ROs had at least one response to heat, UV cold, salt, and
wounding treatments (Fig. 4). Therefore, different SROs
may contribute to diverse abiotic responses. It was
supported that the rcdl—1 mutant was more tolerant to
UV than the wild-type plants [14]. Compared to the
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function of SROs under abiotic stress, there is little
knowledge of SROs in response to biotic stress until
now. Previous study indicated that A2RCD1 was involved
in the regulation of plant growth, but not in the activa-
tion of defense response [29]. We found that more than
half of MaSROs displayed differential expression in
banana roots inoculated with Foc TR4. Pharmacological
inhibition of the PARP protein blocks the plant response
to biotic stress induced by microbe associate molecular
patterns [30]. In Arabidopsis, loss of PARG1 (poly(AD-
P-ribose) glycohydrolase) causes greater susceptibility to
the necrotrophic pathogen Botrytis cinerea [31, 32].
Hence, MaSROs own different regulation mechanisms
under biotic and abiotic stress treatments.

Accumulated evidences indicated that various plant
hormones are important for plant’s resistance responses
to abiotic and biotic stresses [4—6, 13]. In the present
study, most of MaSROs were upregulated by ABA, ethyl-
ene and GA treatments. But only MaSRO3 and MaSRO4
exhibited the induced expression under SA treatment
(Fig. 5). The previous study showed that abiotic stress
responses were largely controlled by ABA, and the prim-
ing SA could predominately induce defense against
different biotic assailants [3]. It promotes us to speculate
that MaSRO3 and MaSRO4 induced by multiple stresses
might be involved not only in abiotic stress, but also in
biotics stress. Indeed, gene expression depends on the
presence of multiple CREs, which integrate signals from
diverse TFs to control cell perception and response to
environment factors [33]. The ABA response elements
(ABREs) were one of the most common CREs in all
MaSRO promoters. It is likely consistent with the fact
that the transcript accumulations of MaSROs were
generally induced by ABA treatment (Fig. 5). Most of
the identified CREs within the MaSRO4 promoter could
account for its expression levels upregulated by numer-
ous stresses and hormones. Similarly, MaSRO2 are more
responsive to ethylene and abiotic stresses, which might
be related to the number and type of CREs. By contrast,
relatively few CREs were found in the MaSROI1 promoter,
corresponding with low or no obvious expression after dif-
ferent treatments (Figs. 4 and 5). Overlapping CREs imply a
complexity of gene regulatory network in response to dif-
ferent environmental stimuli. Both ABRE and C-repeat
motif/drought-responsive element (CRT/DRE) were also
detected in the promoters of cold-responsive genes [34, 35].
The ABRE serves as a coupling factor that functions
cooperatively with the CRT/DRE in response to drought
and high salinity [33]. Therefore, MaSROs might control a
switch in priority between biotic and abiotic stresses by the
regulation of a complex hormone network.

Based on transcript characteristics of MaSRO4
induced by multiple stresses and hormone treatments,
we analyzed the interaction partners of MaSRO4, which
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could directly interact with MaMYB4 and MaNAC6
(Fig. 8). Overexpression of a MaMYB4 homolog,
OsMYB4, effectively upregulated transcript levels of
defense genes and improved stress resistance [36]. NAC
was also considered as an interaction center between bi-
otic and abiotic signaling pathways, activated by JA,
ethylene, ABA, and SA [37, 38]. Likewise, AtRCD1 or
OsSRO1c could interact with a number of TFs in re-
sponses to different stress treatments [7, 9]. Interest-
ingly, the AP2 can interact with AtRCD1, AtSRO1 and
OsSROI1c [7, 9], but no interaction with their homolog
MaSRO4 was detected in the yeast-two-hybrid system. It
suggests that functional diversity of the SRO family
could be caused by the selective interaction with specific
TFs.

To further identify the interaction domain of
MaSRO4 with TFs, different N- and C-terminal trun-
cations were generated. Analysis of conserved AAs
supported that the WWE domain could form a half
of a beta-barrel with a positively charged PAR-binding
pocket [39]. However, the deletion of WWE domain
did not affect the interaction of MaSRO5 with
MaMYB4 (Fig. 8c), suggesting that the domain is not
dispensable for plant’s survival. Although the con-
served PARP, such as AtRCD1, does not possess
ADP-ribosyl transferase activity in plants [7], the
PARP domain of MaSRO5 was required for interact-
ing with MaMYB4 (Fig. 8c). The partial or complete
loss of the PARP domain within AtRCD1 and
AtSROL1 results in a varied expression and a loss of
stress tolerance [9, 15]. It is supported that the functional
PARP domain of wheat 7aSROI could complement the
resistance of Arabidopsis plants to salinity stress [21].
However, whether PARP provides allosteric regulation of
plant SROs’ function still needs to be determined. Com-
pared with the RST domain, the more conservation of
amino-acids was found in the C-termini of monocot SROs
(Additional file 6). It appears that there are conserved
mechanisms of stress resistance in monocots. The RST
domain of dicots and monocots likely owns different func-
tion in the recruitment of proteins that are involved in ac-
tivating gene expression. For example, the RST domains
of AtRCD1 and AtSRO1 were important for the inter-
action with TFs [7, 15, 16]. However, the RST domain of
MaSRO4 was not necessary for interacting with
MaMYB4 in our study (Fig. 8c). Likewise, OsSROlc
without the RST domain still interacts with
OsDREB2B [20]. Therefore, these domains of SROs
are crucial for the functional diversity and the activa-
tion of multiple signaling pathways. How different
SROs specifically recognize critical TFs and regulate
expression of downstream genes is still unknown.
Analysis of motif function, by protein-interaction ana-
lyses of TF complexes, is needed.
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Conclusions

In our present study, six MaSROs were identified and
characterized in banana genome. A total of 77 SRO
members from 15 species were clustered into two main
group with a distinct structure difference. The monocot
SROs were first found in the group II. The qRT-PCR
assay showed that half of MaSROs had high expression
levels in banana stems and roots. Based on transcript
levels induced by diverse stress and hormone treatments,
MaSROs might participate in the crosstalk of complex
stress signaling pathways. The numbers and types of
CREs further support expression profiles of MaSROs. Es-
pecially, MaSRO4 with numerous CREs in the promoter
region exhibited positive responses to multiple stress
treatments, suggesting that it could be a good source for
breeding stress-tolerant cultivars. The yeast two-hybrid
and Co-IP assays demonstrated that MaSRO4 could
interact directly with MaNAC6 and MaMYB4 through
the PARP domain. Therefore, our results provide some
novel information to stress-related physiological func-
tions of MaSROs, but their detailed roles still need a
number of experimental validation.

Methods

Plant materials and growth conditions

Micropropagated banana plantlets of “Williams (Caven-
dish subgroup, AAA)” and Foc TR4 were obtained from
the Chinese Academy of Tropical Agricultural Sciences,
Haikou, China. Plantlets were cultured on the
Murashige-Skoog medium [40]. Before treatment experi-
ments of biotic and abiotic stresses, micropropagated
plants were acclimatized in a secure shade environment
as described by Wang et al. (2012) [41].

Identification of SROs and phylogenetic tree construction
To identify SROs from 16 different species, sequence files
were downloaded from the respective project databases,
including banana [42, 43]: the Banana Genome Hub
(http://banana-genome-hub.southgreen.fr/, DH Pahang
Version 2), Arabidopsis thaliana [44]: the Arabidopsis In-
formation Resource (http://www.arabidopsis.org), Brachy-
podium distachyon [45]: the Munich Information Center
for Protein Sequences (http://mips.helmholtz-muenchen.
de/plant/brachypodium, Version 1.2), Medicago trunca-
tula [46]: the HapMap project (http://www.medicagohap-
map.org), Oryza sativa [47]: the Rice Genome Annotation
Project (http://rice.plantbiol ogy.msu.edu, Version 7.0),
Physcomitrella patens [48]: the Physcomitrella patens Re-
source (http://cosmoss.org/, Version 3.3), Zea mays [49]:
the Maize Genetics and Genomics Database (https://www.
maizegdb.org/, Version 3.0), and Malus domestica [50]:
the Genome Database for Rosaceae (http://www.rosaceae.
org/). Two websites (http://www.phytozome.net and
https://www.ncbi.nlm.nih.gov/) were used to search the
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SROs from Glycine max (Version 2.0) [51], Solanum lyco-
persicum [52], Setaria italic (Version 2.2) [53], Populus
trichocarpa (Version 3.0) [54], Vitis vinifera [55], Phoenix
dactylifera [56), Elaeis guineensis [57], and Chlamydomo-
nas reinhardtii [58]. Moreover, the PARP (PF00644) and
RST (PF12174) domains from the Pfam database (http://
pfam.xfam.org/, Pfam 32.0 accessed in September 2018)
were used as a query to identify all SRO sequences in the
respective project databases (p-value=0.001) [7]. The
redundant sequences were removed by the decrease
redundancy tool (http://web.expasy.org/decrease_redun-
dancy). The candidate protein sequences were finally con-
firmed wusing ScanProsite (https://prosite.expasy.org/
scanprosite/) [59] and SMART (http://smart.embl-heidel-
berg.de/, accessed on 4 January 2018) [60].

The full-length SRO protein sequences were aligned
using a ClustalW program (MEGA version 7.0.1) with
default parameters [61]. To compare the domain conser-
vation of SRO evolution, the PARP domain sequences
from SROs were also used to do the homology align-
ment. Two phylogenetic trees were constructed using
the Maximum-Likelihood (ML) method of MEGA 7.0.1
with the following parameters: WAG protein substitu-
tion model, gamma distribution and bootstrap (1000
replicates). The molecular weight, isoelectric point and
grand average of hydrophobicity (GRAVY) of each
MaSRO were calculated using the ExPASy website
(http://www.expasy.org/tools/) [62].

Prediction of chromosomal location, gene structure and
CREs of MaSROs

The starting and ending positions of all MaSROs on
each chromosome were obtained from the banana gen-
ome database. The exon-intron structure of each
MaSRO was determined by aligning the full-length
c¢DNA sequence with the genomic DNA sequence. The
schematic structure of each MaSRO was drawn by the
Gene Structure Display Server (http://gsds.cbi.pku.edu.
cn/index.php, Version 2.0) [63]. The putative CREs were
identified from the 1500 bp upstream sequences of the
start codon of each MaSRO using the PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/
html/) [64].

Prediction of conserved motifs and subcellular
localizations of MaSROs

The conserved motifs were detected using a MEME
tool (http://meme-suite.org/tools/meme,  Version
5.0.4), following the optimum motif width (210 and
<£150) and seven motifs. The Plant-mPLoc server
(http://www.csbio.sjtu.edu.cn /bioinf/plant-multi/, 2.0
version) was used to predict the subcellular localiza-
tions of MaSROs [65].
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Banana seedlings treated with various stresses and
inoculated with Foc TR4

For osmotic and salt stresses, the banana roots of
six-leaf seedlings were treated with 15% of PEG6000 and
200 mM of NaCl solutions [66], respectively. The sam-
ples were collected at 0, 3, 12 and 24 h after osmotic and
salt stress treatments. For cold and heat shock stress,
seedlings were transferred to a growth chamber at 4°C
(sampled at 0, 3, 12 and 24 h) and 42 °C (sampled at 0,
0.5, 2 and 4 h), respectively. For UV treatment, unfiltered
germicidal emitting lamps (1 =254nm) (TUV 15W/
G15 T8, Phillips, Netherlands) was located 15 cm above
the illumination area for 0, 3, 6, and 12 h. Banana root
tips were wounded with a scalpel and put on water at
room temperature for 0, 1, 3 and 6h. For exogenous
hormone treatments, banana roots were cultured in the
nutrient solution added with 100 pM of ABA, SA, GA3
or ethylene, respectively. The treated roots were sampled
after 0, 3, 6 and 12h. For Foc TR4 inoculation, this
strain was cultured on half strength potato dextrose agar
at 25 °C for two weeks. The spores were then centrifuged
at 5000 rpm for 5min and the pellet was re-suspended
in double distilled water. The optical density of fungal
suspension was adjusted to 10° spores per ml with sterile
water. The roots were dipped into 15 ml of fungal sus-
pension in a Petri dish (9 cm in diameter), and were
sampled at 0, 2, 24, 48 and 72 h. All samples were rap-
idly frozen in liquid nitrogen for RNA isolation. Each ex-
periment was repeated three times.

RNA isolation and qRT-PCR

Total RNAs of different banana tissues were isolated by
RNeasy Plant Mini Kit (Qiagen, Valencia, California,
USA). The first strand of cDNAs was synthesized from
2 ug of DNasel-treated total RNA using RevertAid™ First
Strand ¢cDNA Synthesis Kit (Thermo Scientific, USA)
according to the manufacturer’s instruction. The Light-
Cycler® 480 SYBR Green I Master Mix was used for
qRT-PCR analysis in a LightCycler® 480 System (Roche
Diagnositcs, Mannheim, Germany) according to the
standard protocol. A total 10 ul of reaction solution con-
tained 0.1 pl of reverse and forward primers (100 pmol),
1ul of cDNA, 5pl of FastStart SYBR Green I Master
Mix and 3.5 pl of nuclease-free water. The PCR reaction
was carried out as follows: 95 °C for 3 min and 40 cycles
(95°C for 10s, 57°C for 20s and 72°C for 20s). The
banana 18S rRNA gene (GenBank ID: U42083) was used
as an internal control. All reactions were repeated with
triple biological replicates. These primer sequences were
listed in Additional file 10.

Yeast two-hybrid screening
The full-length or truncated MaSROS was fused to the
Gal4 DNA binding domain (BD) in pGBKT7, and was
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transformed into the yeast strain AH109. The transfor-
mants were grown on SD/-Trp plates. The lacZ assay
was performed to examine self-activation of the
full-length or truncated MaSROS. The identified yeast
strain AH109 harboring the Gal4-BD -MaSROS5 fusion
was mated with Y187 (MATa) containing the
Gal4-AD-TF in pGADT7 (GAL4 AD fusion) on 96-well
plates. The mating products were plated onto SD/-Trp/
-Leu and SD/-Trp/-Leu/-His/-Ade supplemented with
3-amino-1,4,5-triazole (3-AT). The yeast growth was
followed for up to 7 d, and positive colonies were sub-
jected to a-galactosidase assay on SD/-Trp/-Leu/-His/
—Ade/X-a-Gal. Plates were incubated at 30°C and
photographed after 5 d of growth.

Co-immunoprecipitation assay

Arabidopsis protoplasts were prepared from 4-week-old
plants according to the protocol described by Yoo et al.
(2007) [67]. MaSROS-HA was co-expressed with
TF-FLAG in Arabidopsis protoplasts. For protein expres-
sion, protoplasts (1 ml, 2 x 10° cells) were transfected with
100 ug of plasmid DNA. Transfected protoplasts were
incubated in the dark at room temperature for 16 h. The
proteins were purified using commercial affinity resins
(anti-FLAG M2-resin from Sigma and anti-HA 3F10 resin
from Roche). The immuno-precipitates were separated by
10% SDS-PAGE and proteins on immunoblots were
detected with anti-FLAG and anti-HA antibodies [68].

Statistical analyses

Data processing and statistical analysis were performed
with the SPSS statistical software package (SPSS Inc.,
Cary, NC, USA, v.22). Differences between two treat-
ments were statistically analyzed by the Student’s t test.

Additional files

Additional file 1: The components of amino acids in the conserved
motifs. (XLSX 10 kb)

Additional file 2: Chromosomal location, subcellular localization and
putatively physicochemical characters of banana MaSROs. (XLSX 10 kb)

Additional file 3: Information of the SRO orthologs in representative
sequenced 16 plant species. (XLSX 14 kb)

Additional file 4: Protein sequences used for the construction of
phylogenetic trees. (TXT 39 kb)

Additional file 5: A newick file of the phylogenetic tree. (TXT 2 kb)

Additional file 6: Sequence logos of the WWE, PARP, and RST domains
in dicots and monocots. The overall height of the stack represented the
level of sequence conservation. Heights of residues within a stack indicated
the frequency of each residue at the indicated position. (TIF 7444 kb)

Additional file 7: Distribution of conserved motifs in the SROs. The
conserved motifs were identified through the MEME tool. The different
colored boxes represented seven motifs. The scale at the bottom was
used to estimate the lengths of proteins and motifs location of each
motif. (TIF 2906 kb)
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Additional file 8: Unrooted phylogenetic tree of the PARP domain of
SROs from 15 plant species. The amino acid sequences of the PARP
domain were aligned using Clustal W, and the phylogenetic tree was
constructed using MEGA 7.0. (TIF 947 kb)

Additional file 9: Expression analysis of six MaSROs in banana different
tissues by gRT-PCR. Total RNAs were isolated from the roots, stems and
leaves of the six-leaf banana seedlings and fruits, respectively. Data indi-
cated relative expression levels (means + SE) from three independent
biological replica (three RNA extractions; n = 3). Used primers of MaSROs
were listed in Additional file 10. (TIF 1464 kb)

Additional file 10: The primer sequences were used in the present
study. (XLSX 11 kb)
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