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Single-plant GWAS coupled with bulk

segregant analysis allows rapid
identification and corroboration of plant-
height candidate SNPs

Abiskar Gyawali1 , Vivek Shrestha1, Katherine E. Guill2, Sherry Flint-Garcia2,3 and Timothy M. Beissinger4,5*
Abstract

Background: Genome wide association studies (GWAS) are a powerful tool for identifying quantitative trait loci
(QTL) and causal single nucleotide polymorphisms (SNPs)/genes associated with various important traits in crop
species. Typically, GWAS in crops are performed using a panel of inbred lines, where multiple replicates of the same
inbred are measured and the average phenotype is taken as the response variable. Here we describe and evaluate
single plant GWAS (sp-GWAS) for performing a GWAS on individual plants, which does not require an association
panel of inbreds. Instead sp-GWAS relies on the phenotypes and genotypes from individual plants sampled from a
randomly mating population. Importantly, we demonstrate how sp-GWAS can be efficiently combined with a bulk
segregant analysis (BSA) experiment to rapidly corroborate evidence for significant SNPs.

Results: In this study we used the Shoepeg maize landrace, collected as an open pollinating variety from a farm in
Southern Missouri in the 1960’s, to evaluate whether sp-GWAS coupled with BSA can efficiently and powerfully
used to detect significant association of SNPs for plant height (PH). Plant were grown in 8 locations across two
years and in total 768 individuals were genotyped and phenotyped for sp-GWAS. A total of 306 k polymorphic
markers in 768 individuals evaluated via association analysis detected 25 significant SNPs (P ≤ 0.00001) for PH. The
results from our single-plant GWAS were further validated by bulk segregant analysis (BSA) for PH. BSA sequencing
was performed on the same population by selecting tall and short plants as separate bulks. This approach identified
37 genomic regions for plant height. Of the 25 significant SNPs from GWAS, the three most significant SNPs co-
localize with regions identified by BSA.

Conclusion: Overall, this study demonstrates that sp-GWAS coupled with BSA can be a useful tool for detecting
significant SNPs and identifying candidate genes. This result is particularly useful for species/populations where
association panels are not readily available.
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Background
Maize (Zea mays. L.) is one of the most widely grown
crops worldwide because of its importance for food, feed,
fuel, and raw material for industry [1]. In addition, it is also
an important model species with tremendous phenotypic
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and molecular diversity. Molecular diversity is evident from
different studies where millions of segregating markers
have been observed, even using a modest population size
[2–4]. Breeders have had remarkable success capturing this
diversity to develop modern maize varieties that exhibited
enhanced adaptation and production characteristics [5]. To
continue developing improved varieties, the identification
of genes or loci associated with important traits is the first
among many steps required to leverage these genes for
downstream use in breeding [6].
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Plant height (PH) is an important agronomic trait in
crop species such as maize. Breeders have identified a
correlation between PH, grain yield, and biomass [7–9].
PH is a complex quantitative trait which has been
explained by Fisher’s infinitesimal model, which posits
that it is controlled by many genes with small effect [10,
11]. Also, PH is a highly heritable trait, although only a
subset of the loci associated with PH have been identi-
fied [12–16]. Due to the agronomic importance of plant
height, scientists have frequently studied it using con-
ventional quantitative trait locus (QTL) mapping
approaches [17–19]. QTL mapping has been proven to
be a powerful approach to identify regions of the gen-
ome that contain the genes associated with important
traits [20, 21]. For instance, several linkage mapping-
based QTL studies have identified at least 5–12 loci
associated with PH [17–19]. Collectively, Gramene
shows more than 219 QTLs identified for PH in maize
across an assortment of mapping populations (http://
archive.gramene.org/qtl/). Many of the previous studies
on PH have identified gibberellin (GA) and brassinoster-
oids (BR) as major hormones involving in stem elonga-
tion [22–25]. In addition, auxin biosynthesis and
signaling also play a key role in regulating stem length
[26]. However, the QTL mapping approach has limita-
tions, the first of which is the fact that it requires the
creation of a mapping population, which can be a slow
and resource intensive process. Also, mapping resolution
is typically low, often encompassing several centimor-
gans including several hundred genes. Another limita-
tion is that QTL mapping captures only small portion of
the phenotypic variation of many agronomic traits—that
which differentiates the two parents that are crossed to
form a mapping population [27, 28].
Modern high throughput genotyping techniques have

made the identification of single nucleotide polymorph-
isms (SNPs) much easier [29]. SNP markers are often
used to conduct genome wide association studies
(GWAS) to identify genes associated with the variation
in the quantitative traits including many physiological,
molecular and cellular traits [30]. GWAS identify
associations by exploiting the genetic diversity within a
species that contributes to the phenotype. Historical
recombination events captured in the population greatly
increase mapping resolution. However, most GWAS in
crops have previously been performed using populations
consisting of panels of inbred lines phenotyped in multi-
ple replications [31–34]. In contrast, a new approach, F-
one association mapping (FOAM), was used to perform
GWAS with 4417 maize landrace accessions leveraging
heterozygous loci. The original FOAM method involved
a reproduction step during which each landrace acces-
sion was crossed to a small number of single cross
hybrid females, and phenotyping was done on each
family as a replicated set of progeny [35]. Unreplicated
phenotyping of individuals is common in human and
animal GWAS, where replicating genetically-identical
individuals can be difficult or impossible [36, 37]. The
ability to conduct replicated experiments in order to
reduce measurement error is possible and relatively
straight-forward in in self-compatible plants. Because of
this, the use of individual-plant phenotypes is not a stan-
dard practice in crop plants. But, if individual-plant
phenotypes can be used for GWAS in plants, this has
the potential to drastically reduce the time and resources
required to complete an experiment.
Bulk segregant analysis (BSA) is an alternative

approach that utilizes genome-wide marker data to iden-
tify the casual genes for complex traits [38]. BSA in
plants was initially used to detect markers in a segregat-
ing population to identify disease resistant genes [39]. In
[33], DNA libraries were constructed using bulks of
pooled F2 samples of phenotypically extreme progeny
that were generated from a cross of the two phenotypi-
cally contrasting parents. Then, markers were screened
for DNA variants with significantly different frequencies
between the pools. BSA has already proven to be useful
technique in crop species to detect QTL of large effect
such as resistance to abiotic/biotic stress or to map qua-
litative mutants [40–42]. Analogously to earlier BSA stu-
dies that involved bi-parental or other structured
populations, modified implementations of BSA can be
performed on unstructured populations by leveraging
sequence data. Such an approach was previously
implemented in maize by [43], where it was called
xp-GWAS.
Here, we perform a GWAS using a maize landrace

known as Shoepeg, which is an unimproved population
of randomly-mated individuals adapted to an environ-
ment and which possess particular morphological attri-
butes that are characteristic of that landrace. As
segregation is a fundamental pre-requisite for any map-
ping study, the shoepeg landrace ideally contains segre-
gating variation throughout the genome because of the
fact that the landraces are created through random mat-
ing and usually tend to be heterogenous. Therefore, at
any locus many individuals may be homozygous or het-
erozygous. We focused this study on plant height, which
serves as a model for moderately complex traits with the
ultimate goal of applying this method to more difficult
or expensive phenotypes. We implement our GWAS on
single-plant genotypes and phenotypes, and therefore
refer to the approach as single-plant GWAS (sp-GWAS),
since individual segregating plants are genotyped and
phenotyped for the association analysis. As we show, an
important benefit of sp-GWAS is that it can be effi-
ciently combined with BSA for rapid and independent
corroboration of candidate SNPs .
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Herein, we describe the application of this sp-GWAS
pipeline to PH as a model-trait. We demonstrate that
with inexpensive genotyping, a moderate number of
genotyped and phenotyped individuals, and a moderate
to high-heritability trait: PH, our pipeline involving sp-
GWAS and BSA-based SNP corroboration, can be used
to successfully and efficiently identify candidate loci.
Loci identified by our pipeline include previously
identified candidate genes, which are further validated
by performing BSA using extreme phenotypes on same
population.

Results
GWAS and BSA PIPELINE OVERVIEW
Details describing our pipeline to efficiently combine sp-
GWAS with BSA for rapid identification and corrobora-
tion of candidate trait-associated SNPs are described in
detail in the methods section of this manuscript. There-
fore, we have included only an overview of the approach
here, as well as a summary figure to demonstrate our
pipeline (Fig. 1). In Generation-0, we planted 5000
plants from the Shoepeg population in each of four
separate 0.1-ha plots (20,000 plants in total). In each
plot, 96 individual plants (384 in total) were phenotyped
for plant height and genotyped using GBS [44]. From
the phenotypic distribution of these plants, ~ 5% trunca-
tion thresholds were identified for each of the 0.1 ha
plots, and ears from plants taller (2 plots) or shorter (2
plots) than the truncation thresholds were harvested. In
Generation-1, seeds from the harvested ears were again
grown in four 0.1 ha plots with 5000 plants in each, and
96 plants/plot were genotyped and phenotyped (384 in
total). All 768 (384 × 2) phenotyped and genotyped
plants were used for sp-GWAS, and allele frequencies
computed from the 96-plants/plot in Generation-1 were
used to indicate allele frequencies of phenotypically
extreme Generation-0 plants for BSA. Scripts to imple-
ment our pipeline and analysis are available online
(https://github.com/abi01/sp-GWAS).

Phenotypic evaluation
We measured PH for 768 individuals across two Genera-
tions and four locations: 384 from Generation-0 in 2016
and 384 from Generation-1 in 2017. Descriptive statis-
tics for PH across all environments and both generations
are provided in Table 1. The phenotypic distribution of
Shoepeg PH in all four locations in both generations
shows wide variation and an approximately normal dis-
tribution (Fig. 2). Average heritability was computed
using GCTA (h2GCTA) for single-plant PH across all four
locations in both generations was estimated to be
0.7463, which indicated that the major proportion of
phenotypic variation detected in PH is due to genetic
factors making it suitable for association analysis.
Realized heritability was also computed using the bree-
der’s equation (h2bs) [45]. As described in more detail in
(Additional file 1), environmental differences with
respect to selection environments in different locations
and years complicate our application of the breeder’s
equation to estimate heritability in this setting. Even so,
using this technique we conservatively estimated an
average h2bs of 0.31 for plant height (Additional file 1).
We are more confident in our h2GCTA estimate than our
h2bs estimate of heritability, although both show a rela-
tionship between genotype and phenotype that can be
leveraged for mapping. Other researchers have success-
fully implemented GWAS in animal populations with
similar heritabilities and sample sizes [46, 47].

Genome wide association analysis
Principal component analysis (PCA) did not reveal sub-
stantial population structure within the overall Shoepeg
population or across Generations (0 or 1) or selection
regimes (tall or short) after normalization (Addi-
tional file 2). This was expected since Shoepeg is a single
random-mating population and therefore should not
contain major admixture features or reflect several gen-
erations of drift genetically separating plants. Therefore,
we used only generation (cycle 0 and cycle 1) and selec-
tion regime (tall and short) as covariates in our GWAS
model. GWAS was performed using FarmCPU. A total
of 25 significant SNPs associated with plant height (P ≤
0.00001) were detected by GWAS (Fig. 3a, Addi-
tional file 3, Table 2). This is low compared to some
association studies for PH that have been previously
conducted in maize [12, 48] likely due to the restricted
genetic diversity of the Shoepeg population as compared
to broad diversity panels. These 25 significant SNPs
explained 48 and 36% variance in Gen0 and Gen1
respectively. The two most significant SNPs were found
on chromosome 1 with P values 3.15e-10 and 7.17e-10,
respectively. The effect size of significant SNPs
varied from − 5.77 to 6.47 cm, with mean effect size
of 0.63 cm.

Bulk segregant analysis
BSA served as a valuable validation add-on to our sp-
GWAS pipeline that provided corroboration of the most
promising GWAS SNPs at minimal additional cost. (Fig.
1). BSA in this study was computed by selecting top 5%
as tall PH bulks and bottom 5% as short PH bulks from
Gen-0. A total of 243,303 SNPs were compared for allele
frequency differences between the 192 individuals geno-
typed in Cycle 1, which represented the tallest and
shortest individuals in Cycle 0. Allele frequency was esti-
mated based on an in-silico bulk of the individuals
(details in methods). A total of 1201 significant markers
across 37 regions were identified. Significant BSA SNPs

https://github.com/abi01/sp-GWAS


Fig. 1 Schematic pipeline of sp-GWAS coupled with BSA. Year1 (Generation-0): 5000 plants were planted in ~ 0.1 ha plots in four locations (20,000
plants total) and 96 individual plants were selected randomly in each location (384 in total) for genotyping and phenotyping. Based on the
phenotypic distribution of 96 plants, the ~ 5% truncation threshold was identified for each location. All the ears from plants taller (Location 1 and
2) or shorter (Location 3 and 4) than the truncation threshold were harvested. Year2 (Generation-1): Harvested seeds (5000 kernels) from year1
(Generation-0) were grown again in same location and 96 plants per location (384 in total) were genotyped and phenotyped in the same
manner as in year1. These populations are now named based on the selection regime; Generation1-Tall1, Generation1-Tall2, Generation1-Short1
and Generation1-Short2. Association analysis was done using all 768 (384 × 2) phenotyped and genotyped plants. Offspring of the selected
individuals from year1 were used for the modified bulk segregant analysis using tall and short populations to define in silico bulks

Table 1 Descriptive statistics for field trials, and plant heights observed for Cycle-0 and Cycle-1 plants

Gen-0-Tall1 Gen-0-Tall2 Gen-0-Short1 Gen-0-Short2 Gen-1-Tall1 Gen-1-Tall2 Gen-1-Short1 Gen-1-Short2

Year 2016 2016 2016 2016 2017 2017 2017 2017

Field Location Rollins Rollins Genetics Genetics Vineyard Low Rollins Vineyard High Genetics

Number 96 96 96 96 96 96 96 96

Minimum (cm) 130 130 145 130 155 140 110 125

Maximum (cm) 230 235 215 220 250 250 215 220

Range (cm) 100 105 70 90 95 110 105 95

Median (cm) 190 195 175 180 200 200 170 175

Average (cm) 184.8 192.5 176.8 175.6 201.5 200.5 168.1 172.1

Std. Deviation (cm) 20.9 19.9 16.9 19.3 19.6 21.3 19.8 17.6

Selection Truncation Threshold > 215 cm > 220 cm < 140 cm < 152 cm
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Fig. 2 Phenotype distribution of plant height (PH). The density plot shows the phenotypic distribution of plant height in all four locations for two
generation (top row: Generation-0 and bottom row: Generation-1). The blue dashed line shows the average value of each distribution. The red
portion of the Generation-0 distribution represents plants selected to form Generation-1
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with frequency of 0.05 or less was ~ 2% of the total
significant SNPs. The top two significant regions
were found on Chromosomes 2 and 4, and these
encompassed 15.7 and 28.3 Mb, respectively (Table 3;
Fig. 3b).
Fig. 3 Genome wide association mapping of plant height. a Manhattan pl
using FarmCPU. GWAS identified total of 25 significant SNPs for plant heigh
plot of the bulk segregant analysis (BSA) sequencing method for mapping
horizontal lines denote the significance threshold both for sp-GWAS and B
dots and the gene containing those three SNPs are highlighted and are ali
Candidate gene identification
Based on the information available from the B73 refer-
ence genome v3 [49], 9 of the 25 GWAS-identified SNPs
are located within gene models. Of these, four are
located in translated regions and the remaining five are
ot of the single plant genome-wide association analysis (sp-GWAS)
t that surpassed the significance threshold (P ≤ 0.00001). b Manhattan
plant height. BSA identified 37 significant regions (0.5% outlier). Red
SA. The overlapping SNPs in both GWAS and BSA is highlighted in red
gned by blue dashed line



Table 2 Top QTN associated with plant height identified by the sp-GWAS method

Chr Position P-value Maize Gene Annotation Nearby candidate Gene

1 136,947,083 7.17E-10

1 160,450,782 8.35E-06 GRMZM2G081151:
Camelliol C synthase

1 253,355,509 3.15E-10 GRMZM2G066234:
Protein OSB2 chloroplastic

GRMZM2G366373:
Auxin-responsive protein IAA4; Ortholog
of indole acetic acid 3/short hypocotyl 2 in A. thaliana

1 258,740,929 1.53E-08

2a 31,215,734 7.03E-07 GRMZM2G082191:
Probable leucine-rich repeat receptor-like protein kinase

GRMZM2G082191 (SNP in candidate):
receptor like protein kinase; Brassinosteroid
insensitive function in rice

2 236,038,975 1.27E-06

3a 9,953,933 1.01E-07 GRMZM2G100260:
D-Tyr-tRNA (Tyr) deacylase family protein

GRMZM2G004696:
Aux/IAA transcription factor 8

3 179,174,157 9.31E-10 GRMZM2G400390:
Laccase-7

GRMZM2G449033: nana plant1

3 198,776,203 6.46E-08

3 208,434,550 3.43E-06

4 36,939,527 6.59E-09 GRMZM2G508530:
unknown function

GRMZM2G170232:
tcp- transcription factor 39; Ortholog of tcp
transcription factor 1 in A. thaliana

4 74,075,452 9.21E-07

4 184,329,977 5.72E-06

4 184,329,983 5.72E-06

4 184,329,984 5.28E-06

4 184,329,985 4.29E-06

4a 199,976,446 1.38E-08 GRMZM2G393337:
3-hydroxy-3-methylglutaryl-coenzyme A reductase 2

GRMZM2G393337 (SNP in candidate);
Ortholog of Hydroxy Methylglutaryl CoA
Reductase 1 (hmg1) in A. thaliana

5 152,583,112 6.12E-06 GRMZM2G161299: mcf1 - mitochondrial
carrier family protein1

5 161,902,893 2.37E-07 GRMZM2G123587:
Protein ROS1

7 34,193,779 1.15E-07 GRMZM2G092129:
Calcium-dependent lipid-binding (CaLB domain) family protein

7 111,286,404 1.91E-07

7 125,687,609 1.65E-06

8 166,967,198 1.15E-06

9 32,107,065 8.33E-06

9 59,694,089 1.67E-09
aSNPs/regions that overlap between sp-GWAS and BSA
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in introns. Based on gene annotation information avail-
able in MaizeSequence (http://ensembl.gramene.org/
Zea_mays/Info/Index) and MaizeGDB (http://www.mai-
zegdb.org/gbrowse), we further evaluated the potential
function of candidate genes located near significant loci.
Fourteen annotated gene candidates were located within
150 kb of the 25 significant SNPs, and among these nine
have unknown function.
We identified several promising candidate genes based

on orthology with Arabidopsis thaliana genes involved
in plant stature. Maize TCP-transcription factor39,
GRMZM2G170232, which is located 29 kb downstream
of a significant SNP on chromosome 4 (position 36,939,
527), is an ortholog of tcp-transcription-factor1 (tcp1) of
A. thaliana. Another significant SNP on chromosome 4
is located within GRMZM2G393337, which is ortholo-
gous to hydroxy methylglutaryl coa reductase 1 (hmg1/
hmgr1) of A. thaliana which causes dwarfing when
mutated due to suppression of cell elongation [50].
Interestingly, the SNP in GRMZM2G393337 had the

http://ensembl.gramene.org/Zea_mays/Info/Index
http://ensembl.gramene.org/Zea_mays/Info/Index
http://www.maizegdb.org/gbrowse
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Table 3 Significant genomic regions and most significant SNP in each region identified by bulk segregant analysis (BSA)

Chr Left Position Right Position Length (kb) Most significant SNP (within the region) P-value of most significant SNP

1 3,882,962 5,339,260 1456.3 5,330,693 5.47E-04

1 60,757,940 62,234,211 1476.3 60,808,467 2.54E-03

1 208,068,095 208,216,068 148.0 208,145,209 1.67E-03

1 230,758,325 230,895,709 137.4 230,796,501 3.04E-03

1 238,020,521 238,027,732 7.2 238,024,306 5.99E-06

1 258,497,186 258,507,663 10.5 258,502,438 3.89E-03

1 267,066,207 267,228,747 162.5 267,219,432 1.82E-03

1 293,218,485 299,645,056 6426.6 299,541,586 8.15E-05

2 2,130,342 2,227,154 96.8 2,208,251 1.61E-03

2a 17,397,531 33,383,795 15,986.3 27,507,105 1.10E-07

2 41,034,083 41,067,877 33.8 41,038,235 1.57E-03

2 217,455,023 217,555,483 100.5 217,491,376 3.01E-03

3a 2,679,766 12,559,796 9880.0 6,936,331 7.33E-04

3 139,209,369 139,253,807 44.4 139,252,674 6.97E-04

3 146,347,706 154,225,475 7877.8 146,397,740 3.02E-04

3 223,622,887 229,075,692 5452.8 225,291,181 4.88E-05

4 26,431,986 26,532,076 100.1 26,434,686 1.79E-05

4 31,498,513 32,679,484 1181.0 31,546,290 2.97E-04

4 76,411,353 76,423,428 12.1 76,411,660 1.34E-03

4a 188,388,447 216,889,443 28,501.0 198,947,559 3.78E-10

4 229,854,776 239,419,902 9565.1 235,360,468 1.20E-05

5 3,996,779 4,035,497 38.7 39,912,899 7.54E-04

5 31,366,406 34,883,247 3516.8 34,774,969 6.08E-06

5 39,796,417 39,929,581 133.2 39,912,899 7.55E-04

5 49,927,102 58,754,489 8827.4 56,940,744 1.98E-05

6 39,702,906 39,826,253 123.3 39,724,316 1.62E-03

6 63,924,853 68,656,185 4731.3 68,361,841 4.57E-04

6 74,549,141 74,625,826 76.7 74,625,635 5.00E-04

6 117,970,384 124,481,894 6511.5 118,935,475 2.39E-04

6 135,039,689 135,267,591 227.9 135,110,742 3.49E-03

6 147,215,787 151,134,287 3918.5 151,039,462 3.86E-04

6 158,676,084 166,187,944 7511.9 164,751,856 2.96E-04

7 130,739,179 130,913,149 174.0 130,910,813 7.33E-04

7 159,797,611 159,817,662 20.1 159,809,085 4.05E-03

8 121,946,436 121,954,911 8.5 121,951,520 3.46E-03

9 144,576,519 153,778,981 9202.5 152,798,129 8.53E-07

10 108,394,057 108,436,541 42.5 108,399,093 1.08E-03
aSNPs/regions that overlap between sp-GWAS and BSA
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largest effect of 6.4 cm. We identified a gene
GRMZM2G366373, which is an ortholog of A. thaliana
iaa3 - aux/iaa-transcription factor 3 (iaa3)/short hypoco-
tyl 2 (shy2), located 6.5 kb downstream of the peak SNP
on chromosome 1 (GRMZM2G066234; P = 3.15e-10).
Gain of function shy2 mutants shows dwarf phenotype
in A. thaliana [51]. A highly significant SNP on the long
arm of chromosome 3 (position 179,174,157) is 133 kb
upstream of nana plant 1 (na1) which causes dwarfing
when mutated in maize and is homologous to the de-
etiolated2 (det2) gene involved in brassinosteroid
synthesis in A. thaliana [52]. We identified mcf1 - mito-
chondrial carrier family protein1 as a candidate gene
located 112 kb upstream of a significant SNP on
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chromosome 5 (position 152,583,112). This is the same
class of family protein was identified as a candidate gene
for PH in [31].
Additional potential candidate genes associated with

PH were identified from BSA. In total, BSA identified
37 regions distributed across all 10 chromosomes.
Since many of the BSA regions were relatively large
(mean size 3.5 Mb), there is a strong possibility that
some of the candidates within these regions are not
causal in this experiment. Nevertheless, genes candi-
date genes within the BSA regions included maize
arftf2 – auxin response factor transcription factor 2,
located within 16 kb in chromosome 1, which is
orthologous to the putatively expressed OsARF18.
Rice transgenic plants with OsARF18 alleles are short
in height compared to wild type [53]. We also identi-
fied nana plant2 (na2), the maize ortholog of the A.
thaliana DWF1 gene, on chromosome 6. DWF1
plants exhibit severe dwarfism similar to BR- deficient
mutants. Several GRAS-population transcription fac-
tors involved in gibberellic acid signaling were identi-
fied in the BSA: Gras45 (GRMZM2G02809) and
gras69 (GRMZM2G153333) are identified in within
the significant BSA regions in chromosome 9 and
chromosome 6 respectively. In previous research,
gras45 was identified as a significant GWAS hit in
tropical lines [48].

Overlapping GWAS hits with BSA regions
BSA identified 37 regions and GWAS identified 25 sig-
nificant SNPs associated with PH. Three significant
GWAS SNPs overlapped with BSA regions:
GRMZM2G082191 on chromosome 2 (position 17.4–
33.2Mb), GRMZM2G100260 on chromosome 3 (posi-
tion 2.6–12.5Mb), and GRMZM2G393337 on chromo-
some 4 (position 188.4–216.8Mb). The candidate for
the chromosome 4 region is the ortholog to hydroxy
methylglutaryl coa reductase 1 (hmgr1) in Arabidopsis as
discussed above. A second overlapping SNP/region is
located on chromosome 2 in GRMZM2G082191, a
receptor like protein kinase, orthologous to rice (LOC_
Os04g42700.1) and Arabidopsis (AT5G63930.1). The
third overlapping SNP/region located on chromosome 3
within GRMZM2G100260 was related to D-Tyr-tRNA
(Tyr) deacylase family protein. None of these genes have
functions obviously related to PH based on their gene
annotations per se. However, two more likely candidate
genes are located near GRMZM2G100260 and still
within the BSA region on chromosome 3: dwarf plant1
(d1; GRMZM2G036340) was identified ~ 500 Kb away
from GRMZM2G100260; and iaa8 - aux/iaa-transcrip-
tion factor 8 (iaa8; GRMZM2G004696), a homolog to
Arabidopsis (axr3/ iaa17) was located 122 kb upstream
of GRMZM2G100260.
Discussion
Genome wide association studies have been extensively
used to identify candidate genes associated with complex
traits [54]. Plant height is a commonly studied complex
trait because it is a relatively simple phenotype to mea-
sure and because of its relationship with biomass [55],
lodging resistance [56], and grain yield [57]. Association
studies for maize plant height have been conducted
using a variety of populations and marker sets [12–15,
31, 48, 58]. GWAS in plant genetics has been very suc-
cessful for identifying causal genes for complex quantita-
tive traits such as plant height, vegetative architecture,
reproductive architecture and metabolic processes [30,
59]. Like GWAS, BSA is a technique to identify markers
associated with a phenotype. The development of next
generation sequencing has made the BSA approach
much more feasible for mapping casual genes [60]. Initi-
ally BSA was used to analyze model organisms such as
Arabidopsis and yeast [38, 61]. More recently this
approach has been used in important crop species
including rice [62, 63], soybean [64, 65], and maize
[66–68]. All of these studies successfully identified
significant QTL and candidate genes associated with traits.
Conventional GWAS is used to identify casual SNPs

associated with important traits in crop species. How-
ever, almost every plant GWAS leverages a panel of
inbred lines [30]. Recently an approach called FOAM
was introduced, which involves the use of non-inbred
landraces evaluated in un-replicated trials [35]. However,
this approach still requires making a test cross to evalu-
ate the phenotype for the association mapping. Using
inbreds can increase the length and expense of a study if
inbreds are not available beforehand, and because each
inbred line must be planted separately (e.g. in its own
row/plot) to maintain its identity. A recent association
study to identify regions associated with kernel row
number used pooled sequencing of individuals from a
previously-studied diversity panel [43]. Although this
approach cuts down the genotyping expense, it still
requires generation of a mapping population and large
phenotypic trials. In contrast, sp-GWAS relies on the
use of individual-plant phenotypes scored within a single
heterogeneous, random-mated population. GWAS on
single-individuals is commonplace outside the plant
world—for human [69, 70] and animal [71–73] GWAS,
single-individual phenotypes have very successfully been
used for mapping, as inbred panels are rarely available
or impossible to create. Still, to ensure that sp-GWAS
results are valid, the pipeline implemented in this study
additionally allows the efficient combination of both the
GWAS with BSA for corroboration of results (Fig. 1).
The importance of plant height for plant genetic

studies has been recognized since Mendel [74]. Much
research has been conducted trying to elucidate the
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molecular mechanisms explaining the wide variation
observed for PH. Based on our analysis of the Shoepeg
maize population using sp-GWAS and BSA, we identi-
fied a collection of major known candidate genes for PH
in maize. However, only a limited number of additional
putatively PH-related SNPs were identified by our study.
A potential reason for this is that our study was only
capable of identifying causal variants that are segregating
in the Shoepeg population.
Many previous association studies for plant height and

reverse genetics approaches using dwarf mutants have
identified loci that are involved either in BR and GA
synthesis or signaling. Both of these hormones have
shown a direct impact on plant height or shoot length
[23, 75]. M Suzuki, et al. [50] demonstrated that hmg1
mutants show a similar phenotype to those of BR defi-
cient mutants where the cell elongation is suppressed
resulting in a dwarf phenotype. A recent publication
identified PH QTN using GWAS in a panel of exotic
introgression lines in the Stiff Stalk and Non-Stiff Stalk
backgrounds [76]. Our study identified a significant
overlapping SNP (both sp-GWAS and BSA) on chromo-
some 2 within the genic region of GRMZM2G082191
which was identified as a candidate gene by Hu et al.
[76]. GRMZM2G082191 encodes a receptor like protein
kinase and has a putative brassinosteroid insensitive
function in rice [76]. Another study by [15] used joint
linkage QTL mapping and joint linkage GWAS to iden-
tify the PH associated QTL and QTNs in the US-NAM
and the North Central Region Plant Introduction Station
(NCRPIS) Ames diversity panel. We identified d1 as a
major QTN in our study (both GWAS and BSA) which
coincides with the major QTN identified in maize NAM
populations [15]. D1 encodes ZmGA3ox which catalyzes
the GA biosynthesis in maize and its mutant shows phe-
notype of dwarf PH [77–79]. Na1 is another important
gene in BR synthesis and affects PH [80]. It was identi-
fied as one of the candidate genes in the QTL study of
PH using recombinant inbred lines [81]. In our study,
na1 was identified only in the sp-GWAS but not in the
BSA.
Importantly, our pipeline demonstrates that with a

very limited amount of additional labor, BSA can be
combined with sp-GWAS for independent candidate
SNP corroboration. Our GWAS was conducted across
two years and four locations of observation, and by
including an additional screening and selection step at
the end of the first year, we were able to include BSA
without even conducting additional sequencing. It is
worth noting that in the case of PH, this additional
screening step could be achieved in a very short time by
walking through each field with measuring sticks (0.5–1
h for a year-location with a crew of four people). For a
single year-location, 5000 k seeds were planted in 0.1-ha
area. Plants were randomly selected, and phenotyping
and genotyping was done on those randomly selected
individuals for both the year. However, the difference is
that in the first year, divergent selection was conducted
based on the top or bottom ~ 5% of individuals as tall
and short PH bulks. This approach allowed us to use
genotypic and phenotypic data from both years for the
association analysis, while only genotypic data from the
second year was used for BSA. No spatial checks were
incorporated in our experimental design in order to pre-
vent pollen-contamination that would have been proble-
matic for our BSA results. However, the incorporation
of checks in future study may represent a promising way
to confirm field uniformity, especially if a trait other
than PH Is being assessed so that plants can be de-
tasseled without the phenotype being affected.
Our study also demonstrates that significant associa-

tions can be achieved using sp-GWAS in a heteroge-
neous, random-mated population, such as an open
pollinated maize landrace. Moreover, we were able to
obtain corroborating evidence for a subset of the identi-
fied SNPs using BSA, which also provided an additional
collection of putative QTL for PH. As was shown in a
simulation study by Dell’Acqua, et al. [16], for a trait
with 70% heritability, at least 500 individuals are needed
to detect associations between markers and the trait.
Field studies also show that an increase in number of
individuals improves the power to detect marker-trait
association [82, 83]. AD LongCH Langley [47] demon-
strated that the power of association between marker
and trait depends on the variation attributable to quanti-
tative trait nucleotide (QTN) and the number of indivi-
duals. In our association study, we used 768 individuals
with 306,522 SNPs (MAF < 0.05) to identify 25 signifi-
cant SNPs (P ≤ 0.00001) associated with PH. While 25
associations is not tremendous based on a comparison
to other PH experiments (references), a potential reason
for this discrepancy, in addition to experimental power
considerations, is that Shoepeg is a single populations
with limited genetic variation.
As an add-on to the sp-GWAS pipeline, BSA was used

to identify loci associated with PH by selecting divergent
phenotypes from Generation-0. Using BSA on the popu-
lation, we identified 37 genomic regions for PH. We
identified a larger number of QTL in BSA than in
GWAS. This was expected based on simulations that
have shown that BSA has increased power to identify
minor and rare alleles even of very small effect [38, 84].
Of the 37 QTL mapped for PH, three significant GWAS
associations fall within distinct BSA peaks on chromo-
somes 2, 3 and 4, while other BSA peaks are located
near significant SNPs (Tables 2 and 3).
In this study we demonstrated that sp-GWAS can effi-

ciently and affordably produce results comparable to
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those from conventional GWAS experiments. Many of
the candidate gene identified from the sp-GWAS are the
major quantitative genes controlling the plant height. In-
spite of the fact that we looked at one maize landrace
population with limited genetic variation, we still suc-
cessfully identified many candidate genes that have been
implicated in standard GWAS studies. The corrobora-
tion of results from our linked but independents BSA
for three of these SNPs provides additional evidence that
our implementation of sp-GWAS is effective. Most of
the previous validation work in conventional GWAS has
been done using linkage mapping, and BSA has generally
been used to validate either linkage mapping or pooled
GWAS [43, 85]. However, BSA has been proven effective
for mapping candidate QTLs [43, 69, 86–88].
There are several potential factors contributing to less

number of overlapping signals identified by sp-GWAS
and BSA. First of all, single plant measurements have an
inherently lower heritability than plot-based phenotypes,
and this certainly lowers the power of our approach.
Also, BSA resolution is heavily dependent on the recent
recombination pattern from one study-generation
whereas association study is based on the ancient history
of recombination. Finally, the power of identifying candi-
date gene in BSA depends on the tail size (number of
individuals in the bulk) [86]. However, for the three
regions that did overlap, our pipeline combining sp-
GWAS and BSA provides strong evidence of a causal
association. In this study BSA was done in 384 indivi-
duals (192 in each bulk only from generation 1) com-
pared to GWAS which was done in 768 individuals.
Due to macro- and micro-scale variation between

plants measured in field settings, researchers are often
hesitant to utilize single-plant measurements. Instead, it
is common to proceed by averaging measured values
across a plot. Our results demonstrate that this practice
may not always be necessary, particularly given the fact
that plot-based experiments take up substantially more
space, time, and effort than single-plant measurements.
In our case, planting, phenotyping and harvesting was
achieved in approximately 1 h. for each year-location
with a crew of four people. It is worth noting that con-
ducting studies based on a plot-design introduces alley-
effects [89], which are not present in a single-plant
experiment such as that described herein. However, our
design may be further improved by the incorporation of
appropriate checks and spatial variation into our model.
This approach may be particularly beneficial in crops
where association panels are unavailable or in which
inbreeding is not feasible.
In a practical breeding setting, direct phenotypic selec-

tion for PH is likely more efficient than utilizing QTL in
marker-assisted selection scheme. We are therefore
using PH as a model for traits with moderate genetic
complexity, but which may be more labor intensive or
expensive to evaluate. Depending on the goals of the
breeding program, PH could be targeted as part of a
multiple-trait index along with other traits using geno-
mic selection. Results from association mapping in a sin-
gle landrace population, as implemented here, instead of
in a more diverse panel, may be useful for incorporating
genetic variation from a specific donor population into
elite breeding material. Also, identification of significant
loci in one setting can have discovery implications for
identifying or generating new variation at genes of inter-
est in other populations. Even with these advances, the
gap between identifying and incorporating QTLs from
GWAS into marker assisted selection pipelines for trait
under improvement is unlikely to be affected.

Conclusion
In conclusion, herein we have demonstrated a pipeline
whereby sp-GWAS be powerfully coupled with BSA to
efficiently identify significant trait-associated SNPs. The
major advantage of using this approach is its simplicity,
time-requirement (on the field and off field), and low
cost. Our approach we described can be compared with
the concept of FOAM [35], in which where multiple
landrace populations are studied. The similarity between
both approaches is that they both use heterozygous indi-
viduals, but differences include that FOAM involves
sampling a large number of very diverse landraces and
phenotyping multiple individuals for replication at the
family-level, while sp-GWAS involved phenotyping com-
pletely unreplicated individuals. This means that the cost
of sp-GWAS is extremely low, even after it is coupled
with BSA to achieve immediate independent corrobora-
tion of results. However, the power of sp-GWAS could
be further increased by having larger sample sizes,
higher precision with replicated phenotyping and higher
marker density. It is unlikely that the power of sp-
GWAS will ever rival the power of a traditional, repli-
cated trial, plant GWAS that leverages a panel of inbred
lines. There are times when a cost-benefit analysis will
lead to sp-GWAS as the ideal approach, but when preci-
sion is of utmost importance a more traditional GWAS
still makes sense. However, when researchers are inter-
ested in finding candidate genes in crops where associa-
tion panels are not available or are time consuming to
make, or when efficiency is and cost are critically impor-
tant, sp-GWAS represents a potential approach to iden-
tify candidate genes for important traits. Future areas of
research into the pipeline we have described herein that
may be fruitful include developing a strategy for effi-
ciently incorporating experimental checks into the field
plan without introducing pollen contamination, and
assessing whether or not an sp-GWAS and BSA pipeline
has the potential to identify causal loci in diverse
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germplasm sets in addition to closed populations such
as Shoepeg.

Methods
Plant materials and field experiments
The Shoepeg maize landrace was used as the base popu-
lation for this study. Shoepeg is a southern US dent corn
[90, 91]. One hundred kernels of accession PI 269743
were obtained from the National Plant Germplasm Sys-
tem (www.ars-grin.gov). These segregating kernels were
first planted in a greenhouse where they were bulk-
pollen randomly mated to generate Generation-0 seed
for the experiment. In the summer of 2016, approxi-
mately 5000 seeds were bulk-planted in each of four ~
0.1-ha plots (20,000 plants in total). Seeds were planted
approximately 15 cm apart at 91 cm row spacing. Field
trials were conducted in two plots in Genetics farm and
two in Rollins farm near Columbia, MO. Plots were
planted in isolation from other maize fields so that
plants could open-pollinate without the risk of cross pol-
lination from the other plots or other maize fields. No
spatial checks were included in our experimental plots
because plants were allowed to open-pollinate, and we
could not allow foreign pollen to contaminate the popu-
lation (see section on Bulk Segregant Analysis). In a sin-
gle year, in each plot, 96 plants of the 5000 (96 × 4 = 384
out of 20,000 total plants) were chosen randomly to be
genotyped and phenotyped. All 384 of the randomly
chosen plants were individually measured at reproduc-
tive maturity for PH in five-centimeter increments from
the ground to the collar of the flag leaf. A truncation
threshold corresponding to the tallest or shortest ~ 5%
of individuals in each plot was identified based on phe-
notypes collected from the 96 individually measured
plants in each plot (Table 1, Fig. 1). Each of 5000 plants
in the four plots were then phenotyped for their status
above/below the truncation threshold and only ears
beyond these truncation thresholds harvested. An
equal number of seeds were then bulked from each
location to form four new populations: Generation-1-
Tall1, Generation-1-Tall2, Generation-1-Short1, and
Generation-1-Short2. The four plots were chosen at
random for tall- or short-plant selection.
In the summer of 2017 (year2-Generation1), the four

populations were planted separately in bulks of approxi-
mately 5000 seeds again in the isolated 0.1-ha plots in
the same four approximate locations in Columbia, Mis-
souri. The process of genotyping, phenotyping, was
repeated as for 2016.

Genotyping
Leaf tissue from 96 randomly selected plants from each
of the four locations for each year was collected and
freeze-dried. Eight to ten leaf punches from each plant
were used to extract DNA using the Qiagen DNeasy 96
plant kit, with the only modification being that samples
were briefly shaken with a stainless-steel bead after addi-
tion of initial lysis buffer. DNA yield was quantified with
Promega QuantiFluor on a Tecan Spark 10M. Using
100 ng DNA and the ApeKI genotyping-by-sequencing
(GBS) protocol [44], libraries for each of the four 96 well
plates were prepared for each year. Slight modifications
to the protocol included separating the 96 well into 4
pools of 24 of the adapter-ligated, pre-polymerase chain
reaction (pre-PCR) pooling, and PCR amplification using
ThermoFisher Phusion II master mix. Enriched library
pool quantities were determined by Qubit and size dis-
tributions were checked on the Agilent Bioanalyzer high
sensitivity DNA chip. All separate pools were then com-
bined into one final pool for sequencing as there were
384 distinct barcodes to identify each sample. Barcoded
adapters were designed on DeenaBIO and synthesized
by IDTdna. The University of Missouri, Columbia DNA
Core NEXTseq high output single end 75 bp run
sequencing reads were mapped to the maize B73 refer-
ence genome version3 [AGPv3; http://ftp.maizese-
quence.org/ [49]] using the Tassel 5 GBS v2 pipeline
[92]. This resulted in 414,361 initial SNPs with mean
read depth of ~ 2.01x. Markers with minor allele fre-
quency (MAF) < 0.05 and read count less than 40 were
excluded from further analysis. SNPs were also filtered
to include only diallelic loci. Imputation of missing mar-
kers was performed using Beagle version 4.1 [93]. After
these filtering and imputation steps, a final dataset of
306,522 markers were used for downstream analysis.

Phenotypic data analysis
The phenotypic data were standardized across years
using a linear model where locations were treated a fixed
effect with the lm function in R [94]. The residuals from
the model were then used as the response variable for
GWAS and BSA as described below. Heritability was
estimated using GCTA v1.26.0 [95]. First, all genotyped
SNPs were used to calculate the genomic relationship
matrix (GRM) among all 768 individuals. This GRM was
then used as a predictor to estimate the heritability.
Principal component analysis (PCA) was performed
using the R package adegenet to assess population
structure [96].

Association analysis
There are many statistical models used for association
analysis, a common one being the Mixed Linear Model
(MLM). Incorporating kinship and population structure
in the MLM can control the false positives, but can
compromise the true positives as well [97]. Fixed and
Random Model Circulating Probability Unification
(FarmCPU) is a model for association studies which has

http://www.ars-grin.gov
http://ftp.maizesequence.org/
http://ftp.maizesequence.org/


Gyawali et al. BMC Plant Biology          (2019) 19:412 Page 12 of 15
been shown to be effective at controlling false positive
without compromising the true positives compared to
other statistical models for GWAS [97]. In the FarmCPU
model, to control the false positive, Multiple Loci Linear
Mixed Model (MLMM) is divided into two parts: Fixed
Effect Model (FEM) and Random Effect Model (REM),
and these are used iteratively [97]. Model overfitting in
FarmCPU is avoided by estimating kinship using asso-
ciated markers in REM which is then used by FEM to
test markers as covariates to control false positives
and false negatives. The FarmCPU model used for
GWAS in our study was done using the FarmCPU R
package [97]. Generation and selection regime were
incorporated in the model as covariates. Significant
SNPs were defined based on a significance threshold
of P < 0.00001. Since approximately 300,000 SNPs
were tested, this threshold means that we expect
fewer than three false positives across the entire set
of markers. Moreover, this threshold is more conser-
vative than others that have been used for GWAS for
plant height in maize [12, 15, 31]. Genes within 150
kb of significant SNPs were manually screened for
potential annotations related to PH. Annotations were
downloaded from Ensembl (http://ensembl.gramene.
org/Zea_mays/Info/Index) and the MaizeGDB data-
base (http://www.maizegdb.org/gbrowse).

Bulk segregant analysis
A modified form of bulk segregant analysis (BSA) was
performed by evaluating the 384 plants observed in
Generation-1.While the original method of RW
Michelmore, et al. [39] used bi-parental populations in
their analysis, we used a segregating population as a base
which is also akin to one-generation selection experi-
ment. BSA is not an inherent necessity of sp-GWAS, but
we believe that combination of BSA with GWAS pro-
vided a strong corroboration of the candidate that we
identify, and these approaches complement each other
well in one pipeline. The 384 randomly chosen plants
genotyped in Generation-0 provided an estimate of the
base allele frequencies. Then, the 384 randomly chosen
plants genotyped in Generation-1 provided an estimate
of the allele frequencies of the 5% tallest and shortest
plants from Generation-0 for BSA. Markers were first
filtered for > 0.05 MAF and read count greater than 40.
After filtering, 243,303 SNPs were used for further ana-
lysis. The frequency of the reference allele at each site
was estimated using the “sm” R-script from Haase et al.
[68]. Significance for each locus was computed by using
a two-sided Z test. To identify the significant SNP, first
the significant region was identified that included all the
SNPs with -log10(p-value) over the outlier threshold of
0.5% [98]. Then a 15-SNP sliding window was applied to
smooth results [68].
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