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Abstract

Background: Increasing wheat (Triticum aestivum L.) production is required to feed a growing human population. In
order to accomplish this task a deeper understanding of the genetic structure of cultivated wheats and the detection
of genomic regions significantly associated with the regulation of important agronomic traits are necessary steps. To
better understand the genetic basis and relationships of adaptation and yield related traits, we used a collection of
102 Argentinean hexaploid wheat cultivars genotyped with the 35k SNPs array, grown from two to six years in three
different locations. Based on SNPs data and gene-related molecular markers, we performed a haplotype block
characterization of the germplasm and a genome-wide association study (GWAS).

Results: The genetic structure of the collection revealed four subpopulations, reflecting the origin of the germplasm
used by the main breeding programs in Argentina. The haplotype block characterization showed 1268 blocks of
different sizes spread along the genome, including highly conserved regions like the 1BS chromosome arm where the
1BL/1RS wheat/rye translocation is located. Based on GWAS we identified ninety-seven chromosome regions
associated with heading date, plant height, thousand grain weight, grain number per spike and fruiting efficiency at
harvest (FEh). In particular FEh stands out as a promising trait to raise yield potential in Argentinean wheats; we
detected fifteen haplotypes/markers associated with increased FEh values, eleven of which showed significant effects
in all three evaluated locations. In the case of adaptation, the Ppd-D1 gene is consolidated as the main determinant of
the life cycle of Argentinean wheat cultivars.

Conclusion: This work reveals the genetic structure of the Argentinean hexaploid wheat germplasm using a wide set
of molecular markers anchored to the Ref Seq v1.0. Additionally GWAS detects chromosomal regions (haplotypes)
associated with important yield and adaptation components that will allow improvement of these traits through
marker-assisted selection.
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Background

World population is projected to grow to nearly 10 billion
by 2050 and more than 11 billion by 2100 and, on a global
scale, agriculture expansion has slowed down and produc-
tion increases have been achieved mainly through agri-
cultural intensification [1]. Satisfying the increasing feed
and food demand will mainly come from yield improve-
ment: it will be required that wheat yield (and other
staple crops) be increased by at least 50% in the next few
decades [2], which will depend, among other components,
on improving yield potential [3]. This scenario becomes
more complex if we consider that each degree-Celsius
increase in global mean temperature would, on average,
reduce global and in particular Argentinean wheat yields
by 6.0% [4, 5]. Furthermore, crop management will need
to be environmentally more sustainable in the future [1].
Under this restrictive context, yield genetic gain will be
required to increase by 1.16—1.31% per year to satisfy the
projected demand of cereals for food, feed and biofuels by
2050 [6]. Unfortunately, genetic gains reported in wheat
from different countries for the last decades seem to have
been increasing less than required [7-9].

In Argentina, with 4.46 Mha, wheat is the third most
important crop in terms of planted area after soybean and
corn, average 2012-2016 [10], spanning a wide range of
environments. Since 1999 the genetic gain of local culti-
vars has shown signs of stagnation, as indicated by genetic
gain values of only 0.18% per year, mostly explained by
a stabilization in grain number per unit area without
changes in grain weight. Modern cultivars have increased
the number of grains per spike without changes in spike
number per unit area; fruiting efficiency (a.k.a. spike fer-
tility index) was the trait that better explained the changes
in grain number per unit area, and its improvement might
be a way to promote increments in grain number without
penalization in grain weight [11-13].

Quantitative trait locus (QTL) mapping is currently
key for understanding the genetic basis of complex
traits [14], including yield components and adapta-
tion. Cost-effective, high-throughput genotyping tools
for genetic study, such as single nucleotide polymor-
phism (SNP) arrays, are now available for all major crop
species, including wheat [15], enabling the characterisa-
tion of (i) genome-wide population diversity and struc-
ture; (ii) selective sweeps and directional selection; and
(ii) marker-trait relationships in genome-wide associa-
tion studies (GWAS) [16, 17]. Nonetheless, in this latter
context, certain limitations are found: (i) SNPs only pro-
vide biallelic information [18]; and (ii) associations are
likely to be due to loci in linkage disequilibrium (LD) with
a gene or a controlling sequence, rather than to underlying
causal reasons [19]. To overcome the biallelic problem and
increase the resolution of candidate regions, the analysis
of haplotypes can be employed, i.e. of the combination of
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co-inherited markers from polymorphic sites within a cer-
tain chromosome region. Exploring haplotypes in this way
can take full advantage of ancient recombination events
in order to identify the genetic loci underlying traits at a
relatively high resolution [20].

The recently released wheat reference genome
assembly (IWGSC Ref. Seq. v1.0), developed by the
International Wheat Genome Sequencing Consortium
(IWGSC) [21], allows a more accurate comparison of
the chromosome regions associated with agronomic
traits from independent research studies and helps
accelerate cloning of further important genes for wheat
breeding.

In this study, 102 Argentinean wheat cultivars were
genotyped by using the 35k Axiom Wheat Breeder’s
Genotyping Array [22]. The polymorphic SNPs were
physically anchored to the wheat reference genome
assembly [21] and the genetic structure of the collec-
tion was determined. Based on multi-environmental trial
data, haplotype-based GWAS was conducted to identify
chromosome regions affecting crop adaptation and the
building of yields. Adaptation traits include heading date,
a relevant trait since it will determine the environment
to which the crop will be exposed during its reproductive
stages, and plant height, which is the trait most asso-
ciated with lodging in Argentinean cultivars [23]. Yield-
related traits include thousand grain weight and number
of grains per spike, currently called "numerical compo-
nents of yield", which are the main factors proposed by
[24] to analyze the differences in yield between cultivars.
Additionally, [25] proposed considering the number of
grains (GN) as the product between two variables cur-
rently known as "ecophysiological components": the spike
dry weight at anthesis (SDWA) and the fruiting efficiency
(FE, aka spike fertility index, ie the quotient between GNS
and SDWA). Later [26] proposed the use of spike dry
weight at harvest without grains (or chaff) as a substitute
to SDWA. Then, the fruiting efficiency is calculated in
this work as the grain number produced per unit of chaff
(FEh). The FEh has shown a high association with the GN
in both Argentinean [13, 27-29] and foreign [30] culti-
vars and moderately high heritability [12, 28, 29]. GWAS
provides valuable information for a better understanding
of the major genetic components involved in adaptation
and yield components for bread wheat, with major impli-
cations for breeding programs aimed at increasing yield
potential of new cultivars, in order to contribute to food
security.

Results

SNP-based genetic structure of the Argentinean wheat
collection

The genotyping of the 102 Argentinean hexaploid wheat
cultivars collection yielded a total of 7972 polymorphic
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SNPs with MAF > 10%. A set of 6486 polymorphic SNPs
was genetically anchored to specific wheat chromosomes
based on mapping information from five biparental pop-
ulations described previously [22]. A second set of 909
additional SNPs were anchored to specific chromosomes
using three local biparental populations and an additional
577 SNPs were anchored using the association method
mentioned above (Additional file 1: Table S1). Of all the
anchored SNPs, 3034 were on the A subgenome, 4010
on the B subgenome and the lowest number, 928 SNPs,
on the D subgenome. To reveal the genetic relationships
among the 102 Argentinean hexaploid wheat cultivars col-
lection, we conducted a model-based approach using R
STRUCTURE software [31]. A model-based approach is
a cluster analysis that evaluates genetic similarity among
genotypes without using prior information. For the analy-
sis we used the 7972 SNPs anchored to the wheat genome
described before. We detected four subpopulations in the
collection reflecting the origin of the germplasm used
by the main breeding programs in Argentina (Additional
file 2: Table S2). A graphical representation of the STRUC-
TURE Q matrix was included (Additional file 3: Figure
S1). Subpopulation 1 (Table 1) included only introduced
cultivars of French origin (100%), with the Nidera, Syn-
genta and Sursem breeding companies exclusively rep-
resented in this group. Subpopulation 2 included most
of the old cultivars (9 out of 12 released between 1930
and 1990), also known as traditional germplasm [32, 33]
and all cultivars from the Don Mario breeding company
released up until 2010. Subpopulation 3 included culti-
vars released by the Klein breeding company (46.15%)
and, in lower frequency, cultivars belonging to the ACA,
Buck, INTA and Relmé breeding companies, most of
them with pedigrees including CIMMYT germplasm.
Finally, subpopulation 4 included cultivars released by
INTA (33.33%), Buck, Klein, ACA and Relmé, with
most of them also having pedigrees including CIMMYT
germplasm.
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SNP and gene marker-based haplotype blocks
construction and characterization of the Argentinean
wheat cultivar collection

A detailed information about the haplotype-based map
construction for the Argentinean wheat collection is
found in the Table 2. A total of 1268 haplotype blocks
(HBs) were built in our wheat cultivars collection, of
which 518 were on the A subgenome, 641 on the B
subgenome and 109 on the D subgenome. The 94% of the
SNP and gene markers were involved in these HBs and
only 495 SNP/gene-related markers were not included in
any HB. The average block sizes were significantly larger
on the D subgenome chromosomes than on the A or
B subgenomes, with observed averages of 13.5, 6.7 and
4.8 Mb, respectively (Table 2). In general, within each
chromosome, the largest HBs (> 30 Mb) were placed in
the centromeric region, where recombination is lower,
while the smallest HBs were located towards the telomeric
regions, where the recombination rate and gene density
are higher (Fig. 1a). The average distance between HBs on
the D subgenome was 8 times larger than that for the B or
A subgenomes, with an average of 16.1, 2.7 and 2.4 Mb,
respectively. The maximum spacing between segments
was also significantly higher in the D subgenome with
respect to B and A, with average values of 106.6, 57.1 and
44.2 Mb, respectively (Table 2). An interesting case can be
described for chromosome 1 B, where we observed several
large HBs on the short arm, from HB 9 to 20 (HB aver-
age size 24 Mb in the region). A possible explanation is the
presence of the 1BL/1RS wheat/rye translocation which
is maintained at high frequency in Argentinean cultivars.
The lack of recombination events within the translocation
generates a highly conserved block involving almost the
entire short arm of chromosome 1B (Fig. 1b) (Table 2).

Broad sense heritability and correlations among traits
All evaluated traits showed high heritability: the crop
adaptation traits HD and PH showed broad sense heri-

Table 1 Distribution of the 102 Argentinean bread wheat cultivars in the four subpopulations detected using a model-based approach

Subp. Cultivar

1 Baguette 10; Baguette 17; Baguette 18; Baguette 19; Baguette 21; Baguette 30; Baguette 31; Baguette 9; Baguette P. 11; SY 100; SY 200;
SY 300; SRN Nogal

2 ACA 201; ACA 320; Barletta 77; BIOINTA 1004; BIOINTA BONAERENSE 2001; BIOINTA 2004; Buck Chacarero; Buck Guapo; Buck Malevo;

Buck Mangrullo; Buck Meteoro; Buck Napostd; Buck Nortefo; Buck Pingo; Buck Ranquel; Buck Taita; Don Mario Arex; Don Mario Atlax;
Don Mario Cronox; Don Mario Onix; Don Mario Themix; LE 2249; LE 2271; Klein 32; Klein Atlas; Klein Centauro; Klein Escorpion; Klein
Impacto; Klein Proteo; Klein Rendidor; KleinTauro; Olaeta Artillero; Sinvalocho

3 ACA 223; ACA 903B; ACA 906; BIOINTA 1001; BIOINTA 3004; Buck Baqueano; Buck Huanchen; Buck Puelche; Klein Brujo; Klein Cacique;
Klein Carpincho; Klein Castor; Klein Don Enrique; Klein Gavilan; Klein Gladiador; Klein Guerrero; Klein Nutria; Klein Tigre; Klein Yararg;
Klein Zorro; LE 2333; LE 2341; ProINTA Gaucho; ProINTA Granar; ProINTA Guazy; ProlNTA Oasis

4 55 CL 2; ACA 202; ACA 801; ACA 901; ACA 907; BIOINTA 1000; BIOINTA 1002; BIOINTA 1003; BIOINTA 1005; BIOINTA 1006; BIOINTA 3003;
BIOINTA 3005; Buck 75 Aniversario; Buck AGP Fast; Buck Bigud; Buck Brasil; Buck Pronto; INIA Centinela; LE 2294; Klein Capricornio; Klein
Chaja; Klein Ledn; Klein Pantera; Klein Rayo; LE 2330; LE 2331; Marcos Judrez INTA; ProlNTA Elite; ProINTA IslaVerde; Relmo Sirirf
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Table 2 Detailed information about the haplotype-based map construction for the Argentinean wheat collection

Chr. SNPs/ Haplotype HB? SNPs per HB HB size* HB spacing®

SG' GM? count count Avg. Max Avg. Max Avg. Max.
1A 431 244 66 6.2 26 4.5 594 34 1254
1B 919 327 91 9.7 168 58 115.6 13 216
1D 253 74 22 10.8 90 85 488 10.0 115.8
2A 421 239 70 54 60 79 166.7 2.1 26.7
2B 709 459 127 52 40 38 88.8 1.8 359
2D 272 79 23 114 38 16.7 240.6 9.0 91.1
3A 389 268 75 48 22 6.7 261.7 23 286
3B 597 421 116 48 18 35 403 2.7 1013
3D 115 56 15 74 21 218 1245 16.9 80.7
4A 326 216 59 5.1 36 9.5 211.3 22 16.3
4B 253 141 42 53 26 4.7 39.1 6.6 162.4
4D 47 29 8 4.1 14 16.0 783 17.6 103.2
5A 544 340 99 53 38 4.6 2479 2.1 49.8
5B 641 365 102 58 67 45 110.1 1.7 19.7
5D 110 36 M 93 28 137 1337 216 106.2
6A 433 227 60 7.0 55 82 168.9 2.5 335
6B 532 300 86 58 55 5.6 2021 2.0 21.1
6D 69 45 13 4.8 12 46 321 20.6 153.5
7A 509 330 89 53 34 52 1214 2.3 28.8
7B 374 270 77 45 18 6.0 89.2 29 378
7D 80 50 17 4.2 1 132 185.0 16.9 95.7
A 436.1 266.3 74 56 38.7 6.7 176.8 24 442
B 575.0 326.1 92 59 56.0 48 979 27 57.1
D 82.1 52.7 16 7.5 30.6 135 1204 16.1 106.6
Overall 436.9 269.5 60 6.3 416 83 131.7 7.1 69.3

1 SG = Subgenomes. 2 GM = Gene-related Markers. > HB = Haplotype Blocks. 4 The units are expressed in Mb based on the coordinates in the IWGSC Ref. Seq. v1.0 wheat

genome assembly

tability values higher than 0.95 and the yield related traits
FEh, TGW and GNS displayed values in all cases higher
than 0.80 (Table 3).

Regarding correlations between traits across the tested
locations, the most consistent pattern was observed for
FEh vs GNS, with positive correlations in most years at
the Southern locations, Azul and Balcarce, and in all years
at the Northern location Marcos Juarez (Table 4). The
relationship between FEh vs TGW showed no significant
correlations in all tested environments, except Azul 2014.

The PH showed a positive correlation with TGW
in Azul (one year) and in all years in Marcos Judrez
with higher significant values. On the other hand,
the PH showed negative correlations with GNS in
most years at the Southern locations, contrasting
with Marcos Judrez with no significant correlation in
most tested years. A similar pattern can be described
for PH vs FEh, with negative correlations in most

years at the Southern locations, contrasting with
Marcos Judrez with no significant correlations in all
years (Table 4).

The HD showed a positive correlation with GNS in
the Southern locations (2 years), contrasting with Marcos
Judrez with negative correlations in three years. The HD
also showed negative and highly significant correlations
with TGW in Azul (1 year) and Marcos Judrez (2 years). A
positive correlation between HD and FEh was observed in
Azul (2 years), differing from Marcos Juarez with no sig-
nificant correlations in most tested years. The HD vs PH
showed contrasting correlations at the Southern locations
and no significant correlations in most years in Marcos
Judrez. The TGW vs GNS correlation showed positive
values in Marcos Judrez (3 years), with no significant
correlations in most Southern environments (Table 4).

Contrasting correlations observed across the South-
ern and Northern locations for PH vs GNS, PH vs FEh,
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HD vs GNS, HD vs FEh and, to a lesser extent, PH
vs TGW, might suggest different strategies are involved
in building site-specific yield components performance:
genotypes adapted to the Northern latitudes would be
favored by taller plants improving TGW, but affected by
late flowering penalyzing TGW and GNS, whereas geno-
types adapted to Southern latitudes would be favored by
late flowering improving GNS and FEh, but affected by
taller plants penalyzing FEh. Interestingly, independently
of the environment, genotypes with high FEh would favor
GNS, one of the most important yield components.

Haplotype-based gWAS analysis

Fruiting efficiency at harvest (FEh):

We identified 17 haplotypes/markers associated with FEh
of which one belongs to chromosome 1A, seven to 2A,

Table 3 Broad sense heritability (H?) and variance components
for the best linear unbiased predictors (BLUPs) of five traits across
the tested environments

Trait No. env. o o} a? H?

FEh 10 74.69 232.24 13943 0.84
TGW 10 524 20.19 12.63 0.81
GNS 10 1743 28.59 34.77 0.83
HD M 89.31 143.44 39.76 0.96
PH 1 79.94 109.18 26.52 0.97

62 = genotypic variance; o = environmental variance; o2 = residual variance (here
= “5x£ since BLUPs have a single replication per environment); H* = broad sense
heritability. All genotype and environment variances were signifcant at P<0.001

one to 3B, two to 4A, two to 5A, three to 6A and one
to 7A (Table 5; Additional file 6: Table S5). Eleven haplo-
types associated with FEh were significant in at least one
year in each of the three locations, i.e. Southern (Azul
and Balcarce) and Northern (Marcos Judrez). Five hap-
lotypes were significant exclusively in Southern locations
and only the SNP AX-94874921 located on chromosome
2A (707.1Mb) showed significant association exclusively
in Marcos Juarez.

An example of a haplotype with significant associa-
tion with FEh across Southern and Northern locations
is Chr5A-B43-Hapl, located on chromosome 5A (476.4-
476.7 Mb) (Fig. 2a). The HB Chr5A-B43 is composed of
seven SNPs, and the significantly associated haplotype
Hapl.The Chr5A-B43-Hapl was detected in 16 out of
102 evaluated cultivars (Fig. 2b). The presence of Chr5A-
B43-Hapl significantly increased FEh in the three tested
locations, albeit with different intensities, with a stronger
effect in Southern locations (Fig. 2c).

Three haplotypes significantly associated with FEh were
detected as colocating with additional traits: haplotype
Chr2A-B49-Hap2 on 2A (704.8-705.8 Mb) was colocated
with GNS, haplotype Chr5A-B33-Hap4 on chromosome
5A (445.2-445.2 Mb) with PH and Chr6A-B24-Hap2 on
chromosome 6A (205.1-233.3 Mb) with TGW. The corre-
lations for the first two haplotypes were significant only
in Southern locations (Azul and Balcarce), while the third
was significant in all locations. In the case of Chr2A-B49-
Hap?2, the correlation with GNS was positive, as shown in
Table 5, and the cultivars with the haplotype for higher
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Table 4 Pearson’s correlation among traits in the different tested environments

South locations North location

Azul Balcarce Marcos Judrez
Traits 13 14 14 15 12 13 14 15 16
HDvsPH -0.23* ns 0.26* 0.32*% ns ns 0.35%* ns ns
HDvsFEh 0.23* 0.52%** ns ns ns ns ns ns -0.31*
HDvsTGW ns -0.42%%x ns ns ns ns ns -0.47%%x -0.34**
HDvsGNS ns 0.447 0.26* ns ns -0.31% ns -0.41%% -0.44%%
PHvsFEh -0.28% ns -0.32% -0.35%* ns ns ns ns ns
PHVSTGW ns 0.24* ns ns 0.48%** 0.37%* 0.40%** 0.39%** 0.43***
PHVSGNS -0.23* ns -0.38*** -0.31* 0.21* ns ns ns ns
FEhvSTGW ns -0.67%%* ns ns ns ns ns ns ns
FEhvsSGNS ns 0.47%* 0.35%* 0.24* 0.58%** 0.31% 0.38** 0.36** 0.58***
TGWvVSGNS 0.22* -0.21* ns ns ns ns 0.25% 0.48%** 0.43%**

! years after 2000; ns = not significant, * P <0.05, ** P <0.001, *** P <0.0001. HD, heading date; PH, plant height; FEh, fruiting efficiency at harvest; TGW, thousand grain weight;

GNS, grains number per spike

FEh also presented higher GNS. In the case of Chr5A-
B33-Hap4, the correlation with PH was negative (Table 5)
and cultivars with the haplotype for higher FEh values
showed lower values for PH. Finally, for Chr6A-B24-Hap2,
the correlation was also negative (Table 5): cultivars with
the haplotype for higher FEh values showed lower values
for TGW.

Thousand grain weight (TGW):

We identified 11 haplotypes/markers associated with
TGW, of which one belongs to chromosome 2D, two to
3A, one to 3B, four to 6A and three to 7B (Table 5).
The SNP AX-95257035 located on chromosome 3A (686.8
Mb) was significantly associated with TGW only in Mar-
cos Judrez in four of five tested years. The remaining ten
haplotypes/markers showed significant associations with
TGW across Southern and Northern locations with, in
general terms, higher significance values at the Northern
location (Table 5).

Two haplotypes significantly associated with TGW and
colocating with other traits were detected. The Chr3B-
B111-246 Hap4 on chromosome 3B (817.4-817.8 Mb)
colocated with PH, with the previously described Chr6A-
B24-247 Hap2 on chromosome 6A (205.1-233.3Mb) colo-
cating with FEh. In the case of Chr3B-B111-Hap4, the
correlation with PH was positive, as cultivars carrying
the haplotype for higher TGW also expressed higher PH
(Table 5).

grain number per spike (GNS):

We identified two haplotypes associated with GNS, one
belonging to chromosome 2A and the second to 4A
(Table 5). The Chr2A-B49-Hap2 was significantly associ-
ated across all locations and Chr4A-B19-Hap5 was signif-
icantly associated in Azul and Marcos Juarez, though with

no significant effect in Balcarce. The haplotype Chr2A-
B49-Hap2 colocated with FEh and its effect was previously
described (Table 5).

Heading date (HD):

A total of 16 haplotypes/markers showed significant
associations with HD. The regions were distributed as
follows: three on chromosome 1B, two on 2B, one on 2D,
four on 3A, one on 3D, one on 5B, two on 6A, one on 6B
and one on chromosome 7A. For this trait, it is important
to highlight the consistent effect of the functional marker
for the Ppd-DI gene on chromosome 2D, which showed
significant associations over the three tested locations
during in all evaluated years. The highest associations
were detected in Marcos Judrez with latitude 5° lower
than Southern locations (Azul and Balcarce). Cultivars
carrying the Ppd-D1I sensitive allele (42 of the 102 culti-
vars tested) delayed flowering in all environments. Also it
is important to mention that all haplotypes affecting HD
showed significant associations at the Northern location
in two or more years, contrasting with Southern loca-
tions Azul, showing three haplotypes with no significant
effects on HD, and Balcarce, with nine haplotypes in the
same situation. Additionally, we identified one haplotype
colocated with PH, Chr6B-B26-Hap3 (157.6-157.8Mb),
that increased HD values and negatively affected
PH (Table 5).

Plant height (PH):

In the haplotype-based GWAS, 51 chromosome regions
were associated with this trait. Among these, one was
located on chromosome 1A, three on 1B, three on 1D,
two on 2A, eight on 2B, three on 3A, five on 3B, one on
4A, two on 4B, four on 5A, three on 5B, six on 6A, seven
on 6B, one on 7A and two on chromosome 7B. Forty-
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Table 5 GWAS results for FEh, TGW, GNS, HD and PH. Information of haplotypes/SNPs physical location, frequency in the collection

and effect direction, P values in each environment and the colocated traits

Ref. Seq. v1.0 (Mb) Freqg. Azul Balcarce Marcos Juérez

Trait  Haplotype/SNP! Chr.  Start  End Effec? 13> 14 13 14 15 11 12 13 14 15 16  Coloc.

FEh Chr1A-B32-Hap4 1A 4823 4870 6+ * ns * * ** - ns ns ns ns ns
Chr2A-B19-Hap3 2A 70.2 729 12+ * ns * * ns - ** ns * ns ns
Chr2A-B23-Hap1 2A 83.8 84.5 52- * * * * ns - * ns ns * *
Chr2A-B26-Hap3 2A 1020 1027 36+ * ** ** * ns - ns ns ns ns *
Chr2A-B30-Hap4 2A 1658 1821 7+ ** ns * * ns - ns * ns ns ns
Chr2A-B49-Hap2 2A 7048 7058 15+ * * * ** * - ns ns ns ns ns GNS
AX-94874921 2A 707.1 - 16+ ns ns ns ns ns - o ns * * *
Chr2A-B55-Hap1 2A 7168 7189 12+ * X * * - ns ns ns ns ns
Chr3B-B14-Hap4 3B 23.0 24.0 6+ ns ns *x * * - ** ns ns * ns
AX-94869767 4A 6064 - 18+ * ns * * ns - * * ns * *
Chr4A-B35-Hap3 4A 6257 6259 23+ ** * ** * * - ns ns ns ns ns
Chr5A-B33-Hap4 5A 4452 4452 7+ ** * * * ns - ns ns ns ns ns PH
Chr5A-B43-Hap1 5A 4764 4767 15+ * ns * * ns - ns ** ns * ns
Chr6A-B24-Hap2 6A 205.1 2333 17+ Frx * * ns ns - ns ns ns ns * TGW
Chr6A-B28-Hap4 6A 448.7 4546  9- * * * o * - * ns ns ns ns
Chr6A-B29-Hap2 6A 4556 4670 25+ ox ns * * ns - ns ns * ns *
Chr7A-B36-Hap2 7A 119.0 126.0 10+ * ns * o * - ns ns ns ns *

TGW  Chr2D-B5-Hap3 2D 176 18.2 7- * * ns ns ns - ns ns * * *x
Chr3A-B12-Hap3 3A 46.7 526 5- ns * ns * * - *x * * ns ns
AX-95257035 3A 686.8 - 11+ ns ns ns ns ns - * ns e *
Chr3B-B111-Hap4 3B 8174 8178 1+ ns ns ns * ns - o ns * * ns PH
AX-94459169 6A 0.6 - 30+ ns x* * ns ns - ns * IE wee xx
ChréA-B20-Hap3 6A 63.8 74.0 21- ns ns * ns ns - ns ns * ** *
ChreA-B21-Hap3 6A 74.5 1013 20- ns ns * ns ns - ns ns * ** *
Chr6A-B24-Hap2 6A 205.1 2333 17- ns ns ** ns ns - * ns * HEX FEh
Chr7B-B38-Hap3 7B 626.1 6276 5+ ns R R ns ns - ns * * ns o
Chr7B-B60-Hap2 7B 7023 703.7 27+ ns ns ns * ns - * * ** * *
Chr7B-B60-Hap3 7B 7023 703.7 15+ ns ns * ns ns - * * *x *x **

GNS Chr2A-B49-Hap2 2A 7048 7058 15+ * ns * ** *x - ns ns * ns ns FEh
Chr4A-B19-Hap5 4A 2310 3493 13+ * o ns ns ns - *x * * ns *

HD Chr1B-B76-Hap2 1B 643.1 6457 35+ * ** ns ns ns ** * * ns * *
Chr1B-B84-Hap3 1B 667.2 667.8 17- ns ns ** ** * ns * * * ns ns
Chr1B-B89-Hap4 1B 6768 6780  6- ns ns * * * * * ns * * ns
Chr2B-B40-Hap4 2B 1629 1669 10+ * e ns ns ns ns % ns * * ns
Chr2B-B62-Hap1 2B 564.2 569.0 10+ * o ns ns ns * ns ns ns * ns
Ppd-D1 sensitive oD 34 B} 404 * * * * * X% wwx xx xxxowEx xx
Chr3A-B31-Hap1 3A 5048 5075 59- ns ns * ns * ** * * * * *
Chr3A-B49-Hap3 3A 631.2 633.1 12- ** ns * * ns * * ns * ** *
Chr3A-B59-Hap3 3A 6955 6957 19+ ns * ns ns ns ** * ** * * ns
Chr3A-B60-Hap4 3A 6994 7006 10+ ns ** ns ns ns ** * FrE * ns
Chr3D-B7-Hap1 3D 5182  560.1 54- * * ns ns ns % * ** * * *
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Table 5 GWAS results for FEh, TGW, GNS, HD and PH. Information of haplotypes/SNPs physical location, frequency in the collection

and effect direction, P values in each environment and the colocated traits (Continued)

Ref. Seq. v1.0 (Mb) Freq. Azul Balcarce Marcos Judrez

Trait  Haplotype/SNP' Chr.  Start  End Effect? 133> 14 13 14 15 17 12 13 14 15 16  Coloc.
Chr5B-B75-Hap4 5B 5972 6014 11- * ns ns ns ns * * ns * *x ns
AX-94610041 6A 13.8 - 46+ * * ** * * *x ns * * * ns
Chr6A-B43-Hap1 6A 5917 5925 61- ns ** ns ns ns * * ** * * *
ChréB-B26-Hap3 6B 157.6 157.8 1+ * ** ns ns ns ns ns ns % * ** PH
Chr7A-B24-Hap2 7A 68.0 70.2 8+ ns ns * ** * * ns ** * * ns

PH Chr1A-B38-Hap3 1A 5086 5104 16+ * ** ns ns ns * ns ns * ns ns
Chr1B-B17-Hap4 1B 1210 124.0 5+ * * * ** * ¥ * * * **
AX-94510167 1B 5487 - 21+ ns * ns ** * ** ns ns % ns ns
Chr1B-B54-Hap1 1B 5805  581.2  43- * ** ns * * * ns ns ¥ ¥ g
Lr10 1D 8.6 - 10+ * * ** ns % ns * ns % * ns
Chr1D-B5-Hap4 1D 11.6 1.9 19- * x> ns * * * ns * * * *
Chr1D-B10-Hap4 1D 311 325 10+ * ns ¥ ns * * ns ns ns ns
Chr2A-B39-Hap1 2A 6112 6119  70- ** ns ** ns ns * ns * ns ns *
Chr2A-B48-Hap3 2A 701.0 702.1 15- * . ns * * ns ns * * ns
Chr2B-B56-Hap4 2B 469.2 4766 6+ ns * ** * ns % ns * ns ** *
Chr2B-B79-Hap3 2B 6642 6649 5+ * ns ** * ns  ** ns * ns ** *
AX-94687989 2B 7022 - 52+ ns ** ns ns ns ns * ns  ** * ns
Chr2B-B97-Hap1 2B 7195 7195  38- ns ** ns ns ns ns * ns  ** * *
Chr2B-B114-Hap4 2B 7620 7639 8+ o * * ns * ns ns ns * ns ns
AX-94585596 2B 7764 - 15+ * x> ns ns % xx * * * ns ns
AX-94624485 2B 7768 - 10+ * * * ns ns ** * * ns ns ns
Chr2B-B122-Hap3 2B 777.1 7772 6+ * * * ns * R R * * * ns
Chr3A-B22-Hap2 3A 3915 3934 53+ * * ns * ns % ** * * ns *
AX-95090222 3A 7006 - 18+ ** ns ns * ns ns ** ns % ns ns
AX-95083205 3A 7439 - 46+ ** * ns ns * ns ns * * ns ns
Chr3B-B6-Hap1 3B 164 17.1 65- * * * ns * ns * * e ** *
Chr3B-B55-Hap4 3B 5111 5136  6- o * ns ns * ns ns ns ns * *
Chr3B-B60-Hap6 3B 5415 544.5 5+ * ns * * ns o * * * * ns
Chr3B-B109-Hap2 3B 796.0 799.1 9- * ** * ns ns ns ns ns ns * *
Chr3B-B111-Hap4 3B 8174 8178 11+ o ns * * ** ¥ ** * * * TGW
Chr4A-B57-Hap6é 4A 7387 7397 9 * ns ns ** ns ** ns ns ns * ns
Chr4B-B28-Hap5 4B 612.2 613.2 6+ * ** * * * * * * * * ns
Chr4B-B36-Hap2 4B 650.7 6507  57- ** * * * ns ¥ ** ** ns * ns
Chr5A-B16-Hap4 5A 33.0 332 5+ * * * * * ** * ns ns ns ns
Chr5A-B33-Hap4 5A 4452 4452 7- ns ¥ ns ns * ns ns ns * * FEh
Chr5A-B54-Hap3 5A 516.1 5279 5+ ns * * ** *x xx ns ns * * *
Chr5A-B82-Hap2 5A 6116 6135 10+ * ns * ns ns * X ns * ns *
Chr5B-B26-Hap2 5B 430.7 4307 17+ ** * ns * * * * ns ns ns *
AX-94550178 5B 4557 - 46+ ns ns e * * ns ns ¥ ns ns
Chr5B-B92-Hap4 5B 6835 6840 5+ * ns * * ns  ** * * * ns **
ChreA-B2-Hap5 6A 0.6 0.8 5+ * ns ** ** * ns ns ns % * ns
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Table 5 GWAS results for FEh, TGW, GNS, HD and PH. Information of haplotypes/SNPs physical location, frequency in the collection
and effect direction, P values in each environment and the colocated traits (Continued)

Ref. Seq. v1.0 (Mb) Freq. Azul Balcarce Marcos Juérez

Trait  Haplotype/SNP'  Chr.  Start  End Effect? 133 14 13 14 15 11 12 13 14 15 16  Coloc.
Chr6A-B4-Hap2 6A 22 2.7 26+ * ns * * ** ns * ns ns * ns
Chr6A-B4-Hap3 6A 22 2.7 17- ** * * ns * ns * ns * o *
Chr6A-B16-Hap1 6A 48.6 49.8 57+ ns ns ns * ns * * ns ** * **
ChreéA-B17-Hap3  6A 50.3 514 33- ns * * * ns ** ns * * ** ns
ChreA-B54-Hap5  6A 6100 6102 6+ ns ns * * ns Frx ns ** ns ns ns
ChréB-B7-Hap2 6B 19.8 20.7 82- *x o ** * ns * e * * * *
ChréB-B20-Hap4 6B 1244 126.1 6+ * ns ns ns ns o * * ns * *
Chr6B-B25-Hap4 6B 1514 156.4 25- * xx * * x* ns ns ns * * ns
Chr6B-B26-Hap3 6B 1576 1578  11- * *ooops ¥ ns ¥ * * ns ¥ *** HD
Chr6B-B31-Hap2 6B 195.3 197.8 5+ * ns ** ** * ** ns ns * * *
AX-94943227 6B 234.8 - 17+ ** xx ** * * * e * * * *
ChréB-B47-Hap3 6B 4804 4916  24- ns ns ns * ** ns ns ns * ns *
AX-94476474 7A 5616 - 14+ ** * * ns ns ns ns ** * * ns
Chr7B-B14-Hap4 7B 59.6 61.6 22- e ns ns ns * ns * ns ns * ns
Chr7B-B76-Hap3 7B 7435 743.6 10- *x e * * ns * ns * *x *x *

! Information about SNPs ID and/or gene molecular marker that were involved in the haplotypes was detailed in the Additional file 6: Table S5.2 Freq. = Number of
genotypes that present the SNP / haplotype in the collection. Effect (+) the SNP / haplotype increases the phenotypic value and (-) reduces the phenotypic value. > Years
after 2000. Only SNPs that passed selection criteria in GWAS are presented in the table. ns = not significant, * P <0.05, ** P <0.001, *** P <0.0001, "-" = not available

six haplotypes/markers showed significant associations
across all locations, including haplotype Chr1B-B17-Hap4
and SNP AX-94943227 on chromosome 6B that showed
consistent significant effects in all tested locations and
years. Three haplotypes significantly associated with PH
colocated with traits FEh, TGW and HD, with contribu-
tions previously described (Table 5).

Discussion

Genetic structure and haplotype characterization

In this work, results of a model-based cluster analysis dif-
ferentiated four subpopulations, whereas previously [32],
using the same 102 cultivars and a small number of
markers associated with genes of agronomic interest and
neutral markers (SSRs and ISBPs), detected three subpop-
ulations, which nonetheless and as expected overlapped
with the four identified here. In general terms, subpopula-
tions 1 and 2 in our study matched with subpopulations 1
and 3 of the previous work, in including introductions of
European origin and traditional germplasm, respectively.
Subpopulations 3 and 4 in our study matched subpopu-
lation 2 of the previous work, all including in most cases
germplasm with pedigrees of CIMMYT origin. Differ-
ences between subpopulations 3 and 4 may be related to
the presence of the 1BL/1RS wheat-rye translocation, as
24/26 cultivars in subpopulation 3 carry this, whereas no
cultivar is in a similar situation in subpopulation 4 (data
not shown). This translocation has been widely used in

breeding to achieve resistance to several pathogens and
insects, to broaden adaptation and to increase yield [34].
Argentina is no exception, as modern cultivars carrying
1BL/1RS have shown: Klein Gladiador, Klein Nutria, Klein
Yarard, LE 2333, LE 2341 and ACA 906, released between
2009 and 2010, confirm the consistent contribution of
the translocation to biotic and abiotic stress tolerance. In
spite of these advantages, special attention should be given
to the use of 1BL/1RS, due to its detrimental effects on
gluten strength and bread-making quality, albeit that they
vary depending upon the genetic background [35].

Wheat has been exposed to intense artificial and natural
selection since its domestication, resulting in large HBs as
observed in elite germplasm [18, 36]. This issue can be
observed in our work with the just mentioned presence
of the 1BL/1RS wheat-rye translocation (Fig. 1b). In any
case, we must also take into account the position of the
HB in the chromosome, as we see in Fig. 1a, where large
haplotypes (> 30 Mb) are formed in centromeric and peri-
centromeric regions of each chromosome. As previously
reported in the work of [37], these regions can be a chal-
lenge when introducing allelic variants of interest in the
region and reducing the size of the HBs.

GWAS analysis

Yield potential related traits:

Fruiting efficiency has been proposed as a promising trait
for increasing yield potential in wheat [12, 13, 28, 38,
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39]. We detected 15 significant haplotypes/markers with
positive effects on FEh and only two negatives (Table 5).
The strongest genetic associations for FEh were detected
in the Southern locations Azul and Balcarce, with lower
associations observed in Marcos Judrez. These results
imply FEh could provide an avenue to increase yield in
regions where yield potential is high, as in the case of the
Southern locations in our study.

In a previous study, a positive correlation between
FEh and grain number was detected [13, 39]. Here, we
detected a haplotype Chr2A-B49-Hap2 (704.8-705.8Mb)
on chromosome 2A, that positively modifies both the
traits FEh and GNS (Table 5). In a further study, [40]
detected a SNP associated with FE and grains per spikelet
(RFL_Contig3780_64), located at 676.24 Mb on chro-
mosome 2A. They proposed CONSTANS 4 (CO4) and
TaVrsl genes as candidates to explain the variation
detected. However, based upon the IWGSC Ref Seq.
V1.0, CO4 is located at 594.58 Mb (81.66 Mb proximal
to RFL_Contig3780_64). Our haplotype Chr2A-B49-Hap2
is located 28.56 Mb distal from RFL_Contig3780_64.
The physical distance between the Chr2A-B49-Hap2
and CO4 is estimated as 110.22 Mb, and, taking into
account the critical value for the decay of linkage

desequilibrium (LD) by 0.1 is estimated as an average of
50 Mb for the wheat genome [41], would discard CO4
as a candidate for the FEh QTL detected at Chr2A-
B49-Hap2. On the other hand, the gene TaVrsi, also
called GNI-A1, was recently cloned and characterized
by [42]; unfortunately the GNI-AI gene is not assem-
bled on IWGSC Ref Seq. V1.0 chromosome 2A and its
location cannot be compared to the Chr2A-B49-Hap2
haplotype.

In contrast, a negative relationship between FEh and
TGW has also been described [28, 39]. In the current
work, we detected haplotype Chr6A-B24-Hap2 (205.1-
233.3Mb) that increases FEh values, but penalizes TGW.

Little is known about the relationship between FEh and
PH. We detected a haplotype on chromosome 5A, Chr5A-
B33-Hap4 (445.2 Mb) that associates with both traits, but
in opposite directions.

Another relevant trait in the determination of yield
potential is grain weight. We detected six significant hap-
lotypes/markers with positive effects and five with nega-
tive effects on TGW (Table 5). This list includes four hap-
lotypes on chromosome 6A associated with TGW, one of
them Chr6A-B24-Hap2 (205.1-233.3Mb). This haplotype,
negatively associated with TGW and positively associated
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with FEh, was located 4.5Mb proximal to the gene
TaGW?2-A1, which is located at 237.75Mb on chromo-
some 6A and has been shown to be related to grain weight
[43]. Non-functional mutants for this gene increase the
weight and size of wheat grains [44]. Shared function and
physical location would turn 7aGW2-A1 into a promising
candidate gene for Chr6A-B24-Hap2. On the other hand,
the gene TuGS5-3A located at 176.55Mb on chromosome
3A has also been associated with larger grain size and
higher thousand grain weight [45]. We found one haplo-
type and one SNP associated with TGW on chromosome
3A (Table 5), but they were located too far away from
TaGS5-3A (123 and 510Mb apart, respectively) to be con-
sidered as a gene candidate. In the opposite direction to
that observed for FEh, the strongest genetic associations
for TGW were detected in the Northern location Marcos
Juérez, promoting TGW as an interesting trait to increase
yield for those latitudes.

For GNS, [46] used GWAS to detect a region located
at 691.22Mb on chromosome 2A that significantly affects
the number of grains per spike. We detected the haplo-
type Chr2A-B49-Hap2, located at 704.8-705.8 Mb, that
positively affects GNS, only 13 Mb distal from the [46]
region.

Crop adaptation related traits:

For HD, we found that the Ppd-D1 gene marker [47] is
the strongest associated with the trait, especially in the
location Marcos Judrez, situated at the lowest latitude in
our study. These results agree with those obtained by
[33], where the Ppd-D1 gene was found to be the main
determinant of life cycle in Argentinean wheat cultivars.

On chromosome 1B, we detected three haplotypes
associated with HD. [48] proposed the gene TaFT-B3
(581.4Mb) as a HD modifier for short days on this chro-
mosome. Our nearest significant haplotype, Chr1B-B76-
Hap2 (Table 5), is located 61.7 Mb distal from TaFT-B3,
being slightly farther than the critical value of 0.1 for LD
decay estimated as 50 Mb [41].

On the other hand, [49] showed that loss of function
mutants of the PHYTOCLOCK 1 (WPCLI) gene, located
at 740.1Mb on chromosome 3A, were associated with
extra-early flowering time. We detected four haplotypes
on chromosome 3A associated with HD. Our nearest sig-
nificant haplotype, Chr3A-B-Hap4 (Table 5), is located
39.5Mb proximal to WPCLI positioning WPCLL1 as can-
didate for the Chr3A-B-Hap4 HD association.

Finally, no significant associations were detected for
HD with the genes Vrn-AI (5A) [50], Vin-Bl (5B),
Vrn-D1 (5D) [51] and Ppd-BI (2B) [52], indicating
that this set of genes did not appear to affect head-
ing time in our cultivar collection. The most likely
explanation is that may come from the field condi-
tions where the collection was evaluated, with satisfied
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vernalization requirements, or potentially high epistatic
interactions among vernalization genes, causing diffi-
culties in the detection of minor effects on flowering
time.

In the case of PH, we did not find significant associ-
ations between the trait and the molecular markers for
the “green revolution” dwarfism genes Rht-BI and Rht-
D1, described by [53]. Although the collection presented
a wide variation in PH, it should be mentioned that the
wheat collection used in our study is mainly composed
of semi-dwarf elite germplasm and that the Rkht-BI and
Rht-D1 genes are balanced.

Within the 51 significant associations detected, the
chromosome 1B haplotype Chrl1B-B17-Hap4 and the
chromosome 6B SNP AX-94943227 (234.8 Mb) were par-
ticularly noteworthy, since they were significant across
the three locations in all analyzed years. To our knowl-
edge, there are no plant height related genes described
on these chromosomes, which suggest these consistent
PH-HB/SNP associations are promising targets for further
gene cloning projects.

We detected four haplotypes on chromosome 5A asso-
ciated with PH. In a mapping work [54] located the GA-
responsive Rht genes Rht9 and Rht12 on chromosome arm
5AL, where Rht9 was linked to the SSR barc151 (558.34
Mb) and Rhti12 was located 5.4cM from the SSR Xgwm?291
(698.19 Mb). Our haplotype Chr5A-B54-Hap3 mapped at
516.1-527.9 Mb might be associated with RAt9 linked to
SSR barc151 at 558.34Mb. However, such an association
with Rht12 has to be discarded in our study, since addi-
tional PH haplotypes are placed in genetic regions distant
to this PH gene.

On chromosome 6A, we detected six haplotypes asso-
ciated with PH; in particular, the haplotype Chr6A-B54-
Hap5 (610.0 Mb) was significantly associated with PH in
the three locations and in all evaluation years, except Bal-
carce 2015. However, none of the associated haplotypes
was located in physical positions close to any of the known
PH genes on 6A, namely Rht25 (144.0-148.3 Mb) detected
by [55] and Rht18/Rht14/Rht24(413.73 Mb) described
previously [56].

It is important to highlight that small association pan-
els have been shown to increase both type 1 and type
2 error rates, failing to detect true associations while
also generating a higher rate of false positive associa-
tions [57]. In this work, we used a small association panel
(102 cultivars), but we used a conservative approach for
GWAS, in order to reduce spurious associations. How-
ever, we may be failing to detect genomic regions that
have low rates of explanation of phenotypic values or
are found in low frequency in the panel. It is recom-
mended to validate the associations reported in indepen-
dent populations before being used in wheat breeding
programs.
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Conclusion

The genetic structure of the Argentinean hexaploid wheat
collection was determined by the use of SNP markers,
in which a strong relationship was displayed between the
subpopulations obtained and the germplasm origin used
by the main breeding programs in the country. Based on
SNP and gene-related markers physically anchored to the
IWGSC Ref Seq v1.0, a haplotype map was constructed,
allowing the detection of highly conserved and selected
regions like the 1BL/1RS translocation. A GWAS detected
ninety-seven chromosome region associated with yield
components and adaptation. In the case of yield compo-
nents, we highlight regions on chromosomes 1A, 2A, 3B,
4A, 5A, 6A and 7A associated with FEh, particularly at
higher yield potential locations. For adaptation, the most
relevant effect on HD was the Ppd-D1 gene on chromo-
some 2D, being the main determinant in the variations
in the life cycle of the Argentinean wheats. The use of
the IWGSC Ref Seq v1.0 allowed us to precisely com-
pare all detected associated regions with genes and QTLs
reported in previous studies.

Methods

Plant material

A previously described [32] set of 102 bread wheat cul-
tivars that includes old (such as cv. Barletta 77 released
in 1927) and recent (up to 2010) commercial cultivars
were selected from the main wheat breeding companies in
Argentina and used for the haplotype block construction
and GWAS analysis . Seed stocks were kindly provided
by the Instituto Nacional de Tecnologia Agropecuaria
(INTA) Experimental Station Marcos Judrez, Wheat
Germplasm Bank (Marcos Judrez, Argentina).

Genotypic data

The population was genotyped at the Instituto de
Genética Veterinaria (IGEVET) Genotyping Laboratory,
La Plata, Argentina, using the 35k Axiom Wheat Breeder’s
Genotyping Array [22]. Information about the 35k SNPs
Axiom array is publicly available in CerealsDB!. SNPs
with minor allele frequency (MAF) <0.10 and/or with
more than 10% of missing data were discarded. The
polymorphic SNPs were genetically anchored to specific
wheat chromosomes according to previously described
map information [22]. In a second step, linkage informa-
tion from three biparental mapping populations was used
to anchor new markers to wheat chromosomes. Addi-
tionally, several SNPs were anchored by transforming the
SNP nucleotide information into numerical format and
using this information as a phenotypic value for an asso-
ciation study. SNPs with an association of P <0.0001
to a chromosome were assigned to it (Additional file 1:

http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php
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Table S1). The physical position of each SNP marker
in each wheat chromosome was determined by blast-
ing their flanking sequences against the IWGSC Ref Seq
v1.0 genome assembly [21]. Molecular data of mark-
ers associated with agronomic traits previously described
[32] were also included. In the case of adaptation traits,
markers were included for the genes Rht-Bl, Rht-DI
(53], Vin-Al [50], Vin-B1, Vin-D1 [51), Elf3-DI1 [58],
Ppd-B1 [52] and Ppd-D1 [47]. Regarding diseases, mark-
ers for leaf rust resistance genes Lri0 [59], Lr34 [60]
and Lr24 [61] were incorporated. Additionally, indus-
trial quality related markers, Ppo-Al, Ppo-DI1 [62], R-
Al, R-B1, R-D1I [63], Glu-Blal [64], Wx-Al, Wx-BI [65],
VpI-B3 [66], Glu-A3 [67), PinA-DI and PinB-DI [68]
were included. Finally, high-molecular-weight glutenin
subunit (HMW-GS) loci Glu-Al, Glu-B1 and Glu-D1I
were characterized based upon the protocol described
by [69].

SNP-based haplotype construction

The SNP-based haplotype structure for each wheat chro-
mosome was evaluated using the Haploview 4.2 software
package [70]. The package defines haplotype blocks (HB)
and provides the number of haplotypes and their phys-
ical length (bp) for each block, as well as the number
of tagged SNPs based on the solid spine of linkage dis-
equilibrium (LD) (Extend spine if D’ > 0.8). This means
that the first and the last marker in a block are in
strong LD with the intermediate markers that are not
necessarily in LD with each other [18, 70]. The HBs
from Haploview were converted to a table by using
an in-house python script available on GitHub 2. The
script transforms the table file results into a suitable
input for the ‘Genome Association and Prediction Inte-
grated Tool' (GAPIT) software [71]. Detailed informa-
tion about the haplotype map constructed is given in
Additional file 4: Table S3.

Field experiments and phenotypic trait assessment

In Marcos Judrez, the field experiments were carried out
during 2011 to 2016 (6 years) at INTA Experimental Sta-
tion Marcos Juarez (32° 42’ S, 62° 07" W, 114 m.a.s.L).
In Azul, the field experiments were carried out during
2013 and 2014 at the Experimental Field of the Fac-
ulty of Agronomy, Universidad Nacional del Centro de
la Provincia de Buenos Aires, Azul (36° 48’ S; 59° 51/
W, 137 m a.s.l.). In Balcarce, the field experiments were
carried out during crop seasons 2013, 2014 and 2015
at INTA Experimental Station Balcarce (37° 45" S; 55°
18 W; 130 m a.s.l). In all experiments except Marcos
Judrez 2011 and Balcarce 2013 a Randomized Complete
Block Design (RCBD) with two replications was used.

Zhttps://github.com/INTABiotechM]/haploview2gapit
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Table 6 Description of experiments for the Argentinean hexaploid wheat association mapping collection

Exp. Location Year Blocks Exp. unit Traits phenotyped

1 Azul! 2013 2 One meter row FER, TGW, GNS, HD, PH
2 Azul 2014 2 One meter row FEh, TGW, GNS, HD, PH
3 Balcarce? 2013* 1 Half meter row FEh, TGW, GNS, HD, PH
4 Balcarce 2014 2 Plot® FEh, TGW, GNS, HD, PH
5 Balcarce 2015 2 Plot FEh, TGW, GNS, HD, PH
6 Marcos Juérez3 2011 1 One meter row HD, PH

7 Marcos Judrez 2012 2 One meter row FER, TGW, GNS, HD, PH
8 Marcos Judrez 2013 2 One meter row FER, TGW, GNS, HD, PH
9 Marcos Juérez 2014 2 Plot FER, TGW, GNS, HD, PH
10 Marcos Judrez 2015 2 Plot FEh, TGW, GNS, HD, PH
11 Marcos Juarez 2016 2 One meter row FEh, TGW, GNS, HD, PH

!Conducted under no nutrient limitations and rainfed conditions with chemical control of pests and fungal diseases. 2 Conducted under no nutrient or water limitations,
with chemical control of pests and fungal diseases. > Conducted under rainfed conditions without disease control. # Five sowing dates were used for all 102 cultivars; heading
date information was collected for each cultivar at each sowing date and used for grouping cultivars into three groups of similar heading date. In 2014 and 2015 experiments
at Balcarce, each cultivar was sown at one of each three sowing dates, in order for all cultivars to have similar heading date (around the first week of November). > Plot: 5m

long seven-row plot, with a 0.2m inter-row distance

More detailed information of the field experiments car-
ried out for GWAS is described in Table 6. The collection
was evaluated for two crop adaptation traits: heading
date (HD) and plant height (PH), and three yield com-
ponent related traits: fruiting efficiency at harvest (aka
spike fertility index; FEh), grain number per spike (GNS)
and thousand grain weight (TGW). The HD (in days)
was measured from emergence until 50% of the spike
had emerged from the flag leaf [72]. The PH (in cm)
was determined after maturity as the mean of 10 to 20
randomly selected plants (according to experiment) by
measuring the main tiller of each plant from the ground
to the top of the spike, excluding awns. At maturity, 5 to
15 random spikes (according to experiment), were sam-
pled. They were cut at the lowest spikelet level, weighed
and threshed. Spike chaff dry weight (in g) was calculated
as the difference between total spike dry weight before
threshing and total grain weight. The FEh (in grains g-1)
was calculated at harvest as the quotient between grain
number and spike chaff dry weight per sample according
to [26]. The GNS was measured as the mean of the total
number of grains in the selected spikes. The TGW (in
g) was determined by weighing 1000 grains. In Ms]z, the
phenotypic data was collected using Phenobook software
[73]. All the phenotypic data used for GWAS is given in
Additional file 5: Table S4.

Statistical analysis

The best linear unbiased predictors (BLUPs) of traits
in each environment were obtained (except for Marcos
Judrez 2011 and Balcarce 2013, where no experimental
replicates were made) and were used for Pearson’s cor-
relation analyses and broad sense heritability estimates.

Broad sense heritability (H?) was estimated using the
formula

H? = oé/ (O’é + (aez/r)) (1)

where aé is the genotypic variance, o2 is the residual
variance, and r is the number of environments. The geno-

type by environment variance was used as error variance

(08 = 0Gur)-

Haplotype-based GWAS

GWAS were performed using 4516 haplotypes (from 1268
HB) and 495 informative SNP/gene markers anchored to
the wheat genome and the SUPER method [74] imple-
mented in the R package GAPIT [71]. In order to reduce
spurious associations, genetic structure in the population
level (Q values) was evaluated using R STRUCTURE soft-
ware [31].The R scripts used for GWAS are available on
GitHub 3 From the GWAS for each trait, we selected hap-
lotypes/markers that were significant (P <0.05, marker-
wise) at four environments, with at least one environ-
ment with highly significant differences (P <0.001). All
the haplotypes/markers that satisfied these criteria are
presented in Table 5. Based on the formula described
in [75], the probability of a haplotype/marker being sig-
nificant by chance simultaneously for four GWAS was
estimated to be less than 1.25E-07(0.05x0.05x0.05x0.001).
Based on this number, the probability of at least one error
in the 5011 haplotypes/SNPs was estimated as 1 - (1 -
1.25E-07)°%11 = 0.00063 (per trait).

3https://github.com/INTABiotechM]J/AssociationMappingScripts
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