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Abstract

Background: Catalpa bungei is an important tree species used for timber in China and widely cultivated for
economic and ornamental purposes. A high-density linkage map of C. bungei would be an efficient tool not only
for identifying key quantitative trait loci (QTLs) that affect important traits, such as plant growth and leaf traits, but
also for other genetic studies.

Results: Restriction site-associated DNA sequencing (RAD-seq) was used to identify molecular markers and
construct a genetic map. Approximately 280.77 Gb of clean data were obtained after sequencing, and in total, 25,
614,295 single nucleotide polymorphisms (SNPs) and 2,871,647 insertions-deletions (InDels) were initially identified
in the genomes of 200 individuals of a C. bungei (7080) × Catalpa duclouxii (16-PJ-3) F1 population and their parents.
Finally, 9072 SNP and 521 InDel markers that satisfied the requirements for constructing a genetic map were
obtained. The integrated genetic map contained 9593 pleomorphic markers in 20 linkage groups and spanned
3151.63 cM, with an average distance between adjacent markers of 0.32 cM. Twenty QTLs for seven leaf traits and
13 QTLs for plant height at five successive time points were identified using our genetic map by inclusive
composite interval mapping (ICIM). Q16–60 was identified as a QTL for five leaf traits, and three significant QTLs
(Q9–1, Q18–66 and Q18–73) associated with plant growth were detected at least twice. Genome annotation
suggested that a cyclin gene participates in leaf trait development, while the growth of C. bungei may be
influenced by CDC48C and genes associated with phytohormone synthesis.

Conclusions: This is the first genetic map constructed in C. bungei and will be a useful tool for further genetic
study, molecular marker-assisted breeding and genome assembly.
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Background
Catalpa bungei (2n = 2 × =40) is a woody plant belong-
ing to the genus Catalpa, family Bignoniaceae [1], and
an important ornamental tree species widely used in
urban forests in central and northern cities in China due
to its beautiful flowers, straight stems and moderate

efficiency in particulate matter removal [2, 3]. C. bungei
is native to China and remains mainly distributed in
China. According to the records, people in ancient
China started to cultivate and utilize C. bungei as early
as the Han dynasty (202 BC to 220 AD) [4]. In addition
to its value in landscaping, C. bungei has wood with ex-
cellent mechanical properties and high durability that
can resist the corrosion caused by microorganisms and
insects. It is usually used to make coffins, musical instru-
ments, boats and other upscale wooden products in an-
cient China [5–8]. Even today, it is still a popular
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material for upmarket furniture making and house dec-
orating. To satisfy the vast demand for timber supply
and urban landscaping in China, efforts have been made
towards C. bungei hybridization for economic and eco-
logical purposes [9, 10]. However, the lack of genetic in-
formation for the target traits has made the formulation
of a highly efficient breeding strategy in C. bungei much
more difficult than in crops.
As C. bungei is a timber and urban forest tree, its

growth traits are its most important economic traits, and
recent studies have demonstrated that leaf traits such as
leaf area (LA), petiole length (PL) and others are associ-
ated with its capacity to capture particles from the air
[11]. These traits are complex quantitative traits that
may be determined by several factors, including cell div-
ision and expansion, phenology, and photosynthesis effi-
ciency [12]. An understanding of quantitative trait loci
(QTLs) would be beneficial to reveal the genetic archi-
tecture of these important traits.
Genetic mapping is one of the main methods used to

identify QTLs and genes that regulate complex but im-
portant traits, such as plant growth [12], flowering time
[13] and abiotic stress resistance [14, 15], in plant breed-
ing. Genetic mapping in forest studies mostly employs
F1 populations, and because of the long lifespan and
large size of trees, building a genetic mapping population
usually requires large fields and a long duration of land
use, which makes the application of genetic mapping
much less common in perennial forest species than in
annual crops. Despite the difficulties in population con-
struction, limited studies have demonstrated that linkage
mapping is still a powerful tool for dissecting complex
quantitative traits in forest species. For example, Xia
et al. identified nine QTLs and candidate genes regulat-
ing leaf shape using a genetic map constructed from an
F1 population of Populus deltoides × Populus simonii
Carr [16]. Du et al. revealed the genetic architecture of
growth traits in poplars using linkage analysis and asso-
ciation studies [17]. Other traits, such as bud burst tim-
ing [18], lignin content [19], reproduction-related traits
[20], and fruit-related traits [21, 22], have also been sub-
jected to linkage-based QTL mapping in forest species
and other woody plants. According to QTL studies, gen-
etic mapping is still one of the most efficient methods
for studying genetic characteristics. In addition, genetic
maps are also basis for map-based cloning and other
genetic analyses [23, 24].
Genetic maps are constructed according to the linkage rela-

tionships between molecular markers in the genome, includ-
ing random amplified polymorphic DNA (RAPD) [25, 26],
amplified fragment length polymorphisms (AFLPs) [26–28],
simple sequence repeats (SSRs) [26, 28–30], sequence-related
amplified polymorphisms (SRAPs) [31], single nucleotide
polymorphisms (SNPs) [32], and insertions-deletions (InDels)

[33]. Among these types of markers, SNPs and InDels are
considered potential applied molecular markers [34]. Cur-
rently, next-generation sequencing (NGS) technology, such as
whole-genome resequencing and reduced-representation gen-
ome sequencing (RRGS), has facilitated the identification of
SNP and InDel markers and the construction of high-density
genetic maps with molecular markers throughout the plant
genome [35]. Restriction site-associated DNA sequencing
(RAD-seq) is an RRGS method and has been effectively ap-
plied in high-throughput molecular marker discovery and
QTL mapping of important traits in woody plants [36–38].
Consequently, the construction of a C. bungei high-density
genetic map using RAD-seq will not only aid in the develop-
ment of markers for genetic studies but also help accelerate
the breeding process in C. bungei; however, such work has
not yet been reported.
In this study, an F1 segregating population derived

from two Catalpa cultivars, namely, C. bungei “7080”
(female parent) and Catalpa duclouxii “16-PJ-3” (male
parent), was generated. A high-density genetic map was
constructed using RAD technology based on the F1
population. Subsequently, we located and analysed QTLs
associated with leaf traits using the genetic map. In
addition, we also studied QTLs associated with plant
height at six time points during the growing season. This
is the first genetic map in C. bungei and lays a founda-
tion for future genetic studies and marker-assisted selec-
tion (MAS) of C. bungei.

Results
Construction of the genetic map
Nearly 288.75 Gb (288,747,675,610 bp) of raw data con-
taining paired-end reads was generated by Illumina se-
quencing of the 200 F1 progeny and their parents using
RAD-sequencing (for offspring individuals) and resequen-
cing (for parents). After data filtering, we obtained 963,
326,642 clean reads totalling more than 280.72 Gb of
clean data with an average Q30 (%) value of 93.0% and a
guanine-cytosine (GC, %) content of 37.0%. For the two
parents, approximately 9.90 and 9.97 Gb of resequenced
clean data was obtained from 16-PJ-3 and 0708, with rese-
quencing coverage of 10.09× and 10.47×, respectively. For
the offspring, an average of approximately 1.30 Gb of
clean data (ranging from approximately 0.83 to 2.17 Gb)
was obtained (Table 1). The clean reads were aligned to
the C. bungei genome (Additional file 1). Clean reads
aligned to multiple positions or no position in the refer-
ence genome were discarded. Consequently, 90.76% clean
reads for the female parent and 93.74% clean reads for the
male parent were obtained. For F1 individuals, an average
of 94.79% clean reads were aligned to unique positions in
the reference genome. All clean reads aligned to unique
positions in the reference genome were kept for subse-
quent SNP calling and genotype determination.
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SNPs and InDels were identified using the filtered
clean reads with the Unified Genotyper. A total of 25,
614,295 SNPs and 2,871,647 InDels were initially identi-
fied in 200 F1 individuals (Table 1). After removal of the
markers with low quality and shallow sequencing depth,
712,786 polymorphic sites were retained and classified
into eight segregation patterns. Then, we removed the
SNP markers with abnormal bases, a low calling rate in
progeny individuals and significant segregation distor-
tion. Finally, 9593 polymorphic sites (including 9072
SNPs and 521 InDels) with four segregation patterns,
namely, “nn × np” (3570), “hk × hk” (1119), “lm × ll”
(4883) and “ef × eg” (21), were used for linkage analysis.
The read counts of individual alleles at the 9593 poly-
morphic loci were showed in Additional file 2: Table S1.
Female and male maps were first constructed using

the selected markers. In the female map (7080), a total
of 6023 polymorphic markers fell into 20 linkage groups
(LGs) with a 3440.02 cM total distance and a 0.57 cM
average marker interval distance. LG2 was the largest
LG with a total distance of 212.84 cM and 179 markers
(Table 2). LG18 had 662 markers, the maximum number
of markers among the 20 LGs. The average distance
ranged from 0.22 (LG12) to 1.81 (LG20) cM. Among the
6003 gaps, no gap was less than 5 cM in length, and the
length of the largest gap, which was located in LG2, was
approximately 4.53 cM. In the male map, 4710 markers
fell into 20 LGs, and the total genetic distance was
3226.28 cM, with an average marker interval distance of
0.73 cM. Among the 20 LGs, LG1 had the maximum
number of markers (413), with a 173.48-cM total distance,
and LG11 had the longest total distance (198.42 cM), with
119 SNPs. The average marker distance ranged from 0.37
(LG18) to 1.8 (LG10) cM. In the male map (16-PJ-3), the
longest gap was 3.35 cM in LG11, and no gap was less
than 5 cM in length (Table 3). Subsequently, the male and
female maps were merged into an integrated map. The
final map spanned 3151.63 cM and contained 9593

markers in 20 LGs. Among the 20 LGs, LG5 and LG14
were the longest and shortest groups, spanning 198.05 cM
and 125.5 cM and containing 450 and 441 polymorphic
sites, respectively. The average distance between markers
was 0.32 cM, with a range from 0.16 cM (LG18) to 1.08
cM (LG10). All gaps were fewer than 5 cM in length, and
the longest gap was 4.12 cM in LG2 (Table 3). Detailed in-
formation on the markers used for genetic map construc-
tion and the distances between adjacent markers are
provided in Additional file 3: Table S2.
Haplotype analysis and heat maps are two effective

methods for evaluating the quality of genetic maps [39]. In
our study, we constructed haplotype maps of the 20 LGs
with polymorphic markers to reflect the recombination
events of each offspring. The haplotype maps indicated
that the missing marker ratio in the genetic map was
0.19%, suggesting high quality (Additional file 4: Figure S1
and Additional file 5: Table S3). Heat maps can reflect the
recombination relationships between all the markers in
the same LG. Heat maps of 20 LGs indicated that the ad-
jacent markers in the linkage groups were strongly linked
and became gradually less linked with increasing distance,
suggesting a correct order of the markers in most LGs
(Additional file 6: Figure S2). In addition, for most LGs,
the Spearman correlation coefficient between the genetic
and physical locations was 0.99, with an average physical
coverage of 99%, suggesting a relatively high level of gen-
etic collinearity (Additional file 7: Table S4).

Analysis of leaf and growth traits
A wide range of variation in the seven leaf traits and
plant height at six time points was observed (Table 4).
The leaves of “7080” were larger and wider than those of
“16-PJ-3”, but the remaining five leaf traits did not show
significant differences between the parents. In addition,
“7080” grew faster than “16-PJ-3” at all six time points,
which may be partly due to the higher efficiency of ni-
trogen utilization and distribution in the photosynthetic

Table 1 Summary of RAD-seq and re-sequence data

7080 16-PJ-3 Offspring (average) Total

Clean reads

AANo. of reads 33,078,367 32,809,373 4,487,195

GC (%) 35.93 36.81 37.12 37.09

Q30 (%) 93.89 94.24 92.51 92.61

Average depth (×) 10.47 10.09 1.30

Initial variable sites

No. of SNPs 11,605,507 13,221,020 1,492,295 22,319,406

No. of InDels 1,307,918 1,428,832 147,808 1,593,074

Markers on the map

No. of markers 6023 4710 9593

Average depth (×) 13.70 12.86 13.46
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system, according to our previous study [10]. The fre-
quency distribution analysis (Fig. 1) indicated that most
of the phenotypic values were generally normally distrib-
uted, which suggested that the phenotypic data could be
used for further QTL analysis. The coefficient of vari-
ation (CV, %) in the seven leaf traits ranged from 11.18
to 25.61%. The leaf perimeter (LP) and leaf length (LL)
had similar CVs: 17.93 and 17.03%, respectively. Plant
height varied from 1.78 to 3.75 m on the 10th of Octo-
ber, and the CV at the six time points ranged from 10.02
to 14.42%. The plant heights on the 31st of July, 15th of
August, 31st of August and 10th of October had very
similar CVs (10.07, 10.15, 10.02 and 10.20%, respect-
ively), which suggested only minor differences between
these growth time points.
Correlation analysis of the seven leaf traits and plant

height (10.10) showed that leaf traits have no correla-
tions with plant height, suggesting that the two types of
traits may develop independently of each other (Fig. 1).
Similarly, the SPAD readings had no correlations with
the other six leaf traits, which implied that the chloro-
phyll content of leaves may not significantly influence
their development. LA exhibited strong positive correla-
tions with leaf width (LW) (0.87) and moderate positive
correlations with LL (0.69) and LP (0.68) and weak

positive correlations with PL (0.31) but no correlations
with L/W. Four leaf traits, LA, LL, LW and LP, had cer-
tain positive correlations with each other; PL had weak
positive correlations with LA (0.31), LL (0.24), LW
(0.35) and LP (0.29), suggesting a possible minor associ-
ation between the development of petioles and leaves. In
addition, no significant negative correlations were found,
except for the L/W ratio and LW (−0.35).

QTL mapping of leaf and growth traits
A total of 33 QTLs for seven leaf traits and plant height at five
time points were successfully identified using the integrated
genetic map and the phenotypic data (Additional file 8: Figure
S3 and Additional file 9: Figure S4). Twenty QTLs for leaf
traits, including six LA associations, five LL associations, one
LW association, one LP association, one L/W ratio associ-
ation, four PL associations and two SPAD value associations,
explained 2.33 to 16.51% of the phenotypic variation. Two
QTLs, Q3–172 (LA) and Q17–84 (SPAD), exhibited over-
dominance, while six QTLs, Q16–60 (LA), Q16–67 (LA),
Q16–60 (LL), Q16–60 (LP), Q16–60 (L/W) and Q16–60
(PL), showed partial dominance. Among the 20 QTLs for leaf
traits, Q16–60, Q16–67 and Q16–97 were mapped to
chromosome 16, and Q16–60, which was identified for LA,
LL, LP, the L/W ratio and PL, explained 5.16, 16.51, 14.0, and

Table 2 The description of total marks and distance for the 20 linkage groups

Linkage
groups
(LGs)

Total Marker Total Distance (cM)

7080 16-PJ-3 Integrated map 7080 16-PJ-3 Integrated map

1 509 413 844 135.41 173.48 169.88

2 179 134 289 212.84 152.89 196.76

3 315 252 500 207.62 121.42 156.11

4 159 189 306 187.06 161.84 127.77

5 239 280 450 170.10 180.62 198.05

6 204 177 351 181.78 194.96 192.45

7 218 149 331 177.67 136.33 152.19

8 270 125 353 185.33 144.81 129.63

9 177 214 338 203.10 151.75 138.26

10 96 91 165 122.66 161.59 177.98

11 62 119 172 140.22 198.42 153.44

12 559 370 842 121.76 194.03 141.11

13 440 281 672 194.144 155.63 149.51

14 281 209 441 199.82 120.88 125.5

15 381 351 616 197.15 155.91 142.12

16 297 270 519 172.33 188.81 149.22

17 545 259 733 127.61 152.87 138.05

18 662 486 996 171.66 179.08 164.09

19 327 198 455 146.85 160.91 169.17

20 103 143 220 184.91 140.03 180.35

Total 6023 4710 9593 3440.02 3226.28 3151.63
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Table 4 The phenotypic information of C. bungei “7080”, C. duclouxii “16-PJ-3” and their F1 Population

Traits Male
(mean)

Female
(mean)

F1 Population

Mean ± SD Min Max Repeatability CV (%)

LA (cm2)a 127.99 170.63 133.41 ± 34.17 48.69 205.70 0.89 25.61

LL (cm) 17.98 19.59 17.84 ± 3.03 10.61 31.86 0.87 17.03

LW (cm)a 12.68 15.06 13.43 ± 1.82 5.29 16.51 0.92 13.57

LP (cm) 52.83 63.79 57.57 ± 10.32 30.98 101.19 0.90 17.93

L/W 1.41 1.30 1.34 ± 0.20 0.83 2.53 0.86 15.41

PL (cm) 13.88 13.98 14.03 ± 2.97 7.46 24.22 0.94 21.19

SPAD 43.50 42.98 42.55 ± 4.76 29.84 55.88 0.91 11.18

Plant height (m)

6/30a 1.07 1.42 1.28 ± 0.18 0.77 1.84 – 14.42

7/15a 1.60 2.01 1.85 ± 0.23 1.11 2.51 – 12.85

7/31a 1.92 2.42 2.22 ± 0.22 1.44 2.92 – 10.07

8/15a 2.36 3.02 2.72 ± 0.27 1.70 3.54 – 10.15

8/31a 2.48 3.06 2.85 ± 0.28 1.75 3.66 – 10.02

10/10a 2.55 3.21 2.89 ± 0.29 1.78 3.75 0.92 10.20

“a” indicates a significant difference of the measured traits between male and female parent (one-way ANOVA, P < 0.05, α = 0.05)

Table 3 The description of basic characteristics for the marker distance of 20 linkage groups

Linkage
groups
(LGs)

Average Distance (cM) Max Gap (cM)

7080 16-PJ-3 Integrated map 7080 16-PJ-3 Integrated map

1 0.27 0.42 0.20 0.88 0.97 1.03

2 1.20 1.15 0.68 4.53 3.32 4.12

3 0.66 0.48 0.31 1.65 1.06 1.3

4 1.18 0.86 0.42 2.90 2.17 1.79

5 0.71 0.65 0.44 2.47 2.00 2.37

6 0.90 1.11 0.55 2.65 2.76 2.74

7 0.82 0.92 0.46 1.93 1.73 1.76

8 0.69 1.17 0.37 3.80 2.43 2.25

9 1.15 0.71 0.41 2.80 2.20 1.87

10 1.29 1.80 1.09 3.02 3.34 3.92

11 2.30 1.68 0.90 4.21 3.56 3.19

12 0.22 0.53 0.17 0.67 1.20 0.81

13 0.44 0.56 0.22 1.48 1.42 1.24

14 0.71 0.58 0.29 1.99 1.33 1.29

15 0.52 0.45 0.23 1.37 1.25 1.05

16 0.58 0.7 0.29 1.32 1.43 1.13

17 0.23 0.59 0.19 0.95 1.30 1.1

18 0.26 0.37 0.16 0.75 1.04 0.81

19 0.45 0.82 0.37 1.63 2.04 1.94

20 1.81 0.99 0.82 4.31 2.02 3.04

Total 0.57 0.68 0.33 4.53 3.56 4.12
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6.21% of the phenotypic variation in LA, LL, LP and L/W
with LOD scores of 3.28, 17.64, 5.47 and 4.27, respectively,
and the high phenotypic variance explained (PVE) of LA and
LL at Q16–60 suggested that this site may be highly associ-
ated with these two traits. In addition, four QTLs were
detected on chromosome 19, three of which (Q19–106,
Q19–116 and Q19–126) were associated with LA and an-
other of which (Q19–137) was associated with SPAD value.
We also detected 13 QTLs for plant height at five

time points, except for time point 7.31. The QTLs ex-
plained 5.81 (Q18–60) to 9.02% (Q18–73) of the
phenotypic variation. Eight QTL sites (13 associations)
were mapped to LG3 (1), 9 (1), 16 (2), 18 (2) and 19
(1), and eight QTLs were detected at more than one
time point: Q9–1 (at time points 6.30 and 7.15), Q18–
66 (at time points 8.15 and 8.31) and Q18–73 (at time
points 6.30, 7.15, 8.15 and 8.31). Three of the 13 QTLs,
Q9–1 (6.30), Q9–1 (7.15) and Q19–59 (7.15), showed
over-dominance, and Q16–56 (8.15) showed partial
dominance. Detailed information on the QTLs has been
provided in Additional file 10: Table S5 and Additional
file 11: Table S6.

Candidate gene prediction in a subset of QTLs
To further test the accuracy and usability of our genetic
map, the leaf trait QTL Q16–60 and plant height QTLs
Q18–66 and Q18–73 were used for gene prediction be-
cause they were identified at more than one time point
or for more than one leaf trait (Fig. 2, Additional file 12:
Table S7). Q18–66 was found as a QTL for plant height
(8.15) and plant height (8.31). Similarly, Q18–73 was
found as a QTL for plant height (6.30), plant height
(7.15), plant height (8.15) and plant height (8.31). Al-
though Q9–1 was also identified as a QTL at more than
two time points (plant height 6.30 and 7.15), no genes
were found between marker sca9_231994 and sca9_
261968 in the physical map. The QTL region of Q16–60
was 0.45 cM in length, exhibited a physical distance of ap-
proximately 58 Kb and contained 5 putative predicted
genes in the reference genome of C. bungei. Four of these
genes were annotated in the Gene Ontology (GO) data-
base, but none were identified in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway database. GO
annotation suggested that the genes were involved in
DNA binding (evm.model.group5.473), cyclin regulation

Fig. 1 Scatter plots (lower triangle) and correlations (upper triangles) among seven leaf traits and plant height (10.10) in the F1 mapping population
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(evm.model.group5.471), and embryo development (evm.-
model.group5.475), among other processes.
The QTL regions of Q18–66 and Q18–73 were

mapped to 0.320 and 0.359 cM, respectively, and their
physical distances were approximately 213 Kb and 52 bp
in the reference genome. The 52-bp sequence of Q18–
73 was located in the coding region of one putative gene,
evm.model.group7.1784, which may encode a cleavage
and polyadenylation specificity factor 3 (CPSF) subunit
3-II isoform X3 according to its annotation. GO annota-
tion suggested that this gene mainly participates in cata-
lytic activity, mRNA processing, polar nucleus fusion,
and protein binding, among other processes. Fifteen pu-
tative predicted genes were found in Q18–66. Except for
one unknown gene, GO annotation suggested that the
remaining 14 genes in Q18–66 mainly participate in fla-
vonoid biosynthesis, DNA binding, and magnesium ion
binding, among other processes. KEGG annotation sug-
gested that two genes, namely, evm.model.group7.1478
and evm.model.group7.1479, mainly participate in gly-
colysis, carbon metabolism, and biosynthesis of amino
acids, among other processes, suggesting possible func-
tions in plant growth. Other genes in Q18–66 may be
involved in anthocyanin biosynthesis, alpha-linolenic
acid metabolism, aminobenzoate degradation, and the
mRNA surveillance pathway, among others.

Discussion
Using the RAD-seq strategy to identify molecular markers
Genetic maps have been used as an important tool to assist
in plant breeding and to elucidate the genetic architecture of
complex quantitative traits of interest to breeders. Genetic
maps with a high marker density are essential for marker dis-
covery and precise QTL location. RRGS methods, such as
RAD-seq, genotyping-by-sequencing (GBS) and specific
locus amplified fragment (SLAF) sequencing, have strongly
facilitated molecular marker identification. For example, by
using 3868 SNPs identified with GBS, Zhang et al. con-
structed a high-density genetic map of tree peony (Paeonia

suffruticosa Andr.) with a much longer total genetic distance
(13,175.5 cM) and shorter average marker interval distance
(3.40 cM) than the genetic map containing 35 SSR markers
with a 9.70 cM average marker interval and 338.2 cM total
genetic distance obtained by Guo et al. for the same mapping
population [40, 41]. A similar outcome was observed for gen-
etic maps of groundnut, in which SSR-based genetic maps
contained approximately 135 to 191 markers and an RRGS-
based map contained 1685 SNPs [42]. RAD-seq has proven
to be an effective method for identifying large numbers of
polymorphic sites in plants. For example, in a report on Vitis
plant genetic map construction, RAD-seq identified 8,481,
484 SNPs and 1,646,131 InDels in the parents and 176 F1
plants, 65,299 and 4832 of which, respectively, were used to
construct a high-density genetic map spanning 3014 cM,
with an average coverage of 99.83% and with 99.99% of gaps
fewer than 5 cM in length [35]. Using the same method,
Guo et al. constructed a genetic map of peach (Prunus per-
sica) that included 1310 SNPs spanning 454.2 cM with an
average marker distance of 0.347 cM [43]. This map was of
much higher quality than maps constructed with SSRs or
other markers [44, 45] because the former included many
more markers and was of a larger scale. Although the
process of RAD library construction is more complicated
than double digest-RAD (dd-RAD), SLAF and GBS, longer
genome fragments can be obtained for other studies [46]. In
total, 260.85 Gb RAD reads with an average length of nearly
290 bp were obtained from the 200 progeny, and these data
could also be used for other studies. The GC content of the
RAD sequences was approximately 37.11%, which is slightly
different from that of the reference genome (34.12%); this
difference may be due to the selection of restriction enzymes.
We initially found 22,319,406 SNPs and 1,563,074 InDels ac-
cording to the RAD sequences. For the SNPs, approximately
66.85% were transition-type, which is similar to the results
for Taxodium distichum (64.52%) [12], Juglans regia
(68.32%) [47], Corchorus capsularis (69.07%) [48] and other
species. In addition, of the initial variants, more than 50%
SNPs showed polymorphic between the parents, which sug-
gested a high genetic diversity of C. bungei and provided
various genetic and genomic information for further studies.

Analysis of the genetic map
We constructed a genetic map using an F1 population,
which is usually used for genetic map construction in
forest trees due to their long life cycle, of C. bungei × C.
duclouxii. The final genetic map contained 9593 poly-
morphic markers and 20 LGs with an average of nearly
500 markers on each LG. Compared with the genetic
maps of other woody species constructed using the
RRGS strategy, the number of mapped markers was
greater than those of Ziziphus jujube [49], Juglans regia
[47] and Paeonia suffruticosa [50], but less than those of
Taxodium distichum [12], Vitis [35], and Actinidia

Fig. 2 LOD profile for QTL associated with five leaf traits: LA (red), LL
(green), LP (blue), L/W (purple), PL (yellow) at Q16–60; Plant growth
traits: 8/15(rosy), 8/31(pink) at Q18–66 and 6/30(light pink), 7/
15(dusty blue), 8/15(rosy), 8/31(pink), at Q18–73
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chinensis [51]. The smaller number of mapped markers
compared to a few previous studies may be partly due to
the smaller depth of sequencing in the offspring individ-
uals in our study, which may have led to the elimination
of markers that did not satisfy the sequencing depth
threshold. To further optimize our genetic map, more
markers will be added in the future. The total genetic
distance of the genetic map was 3151.63 cM, with a 0.32
cM average interval distance. Moreover, all gaps (dis-
tances between adjacent markers) were less than 5 cM,
suggesting a high density. Increasing the number of indi-
viduals in the mapping population could effectively im-
prove the resolution of the genetic map by detecting the
homologous recombination of chromosomes with lower
recombination rates during meiosis [12]. Our results
suggested that a mapping population with 200 individ-
uals may be enough for the construction of a high-
density genetic map. The markers on the 20 LGs were
not evenly distributed in our study: a maximum of 996
markers was found on LG 18 and a minimum of 165
markers on LG 10. More than half of the LGs (11) con-
tained fewer than 500 markers (fewer than the average
level), which may indicate a lack of genetic information
on these LGs. RRGS strategies using double enzyme di-
gestion, such as dd-RAD and SLAF, could obtain
markers that are more uniformly distributed, and these
techniques could be considered in later studies.

QTL analysis of leaf and growth traits
Concerning leaf and growth trait variation, we found
high repeatability for all measured traits. The repeatabil-
ity ranged from 0.86 (L/W) to 0.94 (PL). Our results
suggested that the phenotypic stability of the offspring
clones was high. The high-quality genetic map developed
in our study allowed for high-resolution QTL mapping,
and a total of 16 QTLs for seven leaf traits were mapped,
including Q16–60, which was identified as a QTL for
LA, LL, LP, the L/W ratio and PL, for a total of five
traits. According to the correlation analysis, most of the
six leaf traits (LA, LL, LW, LP, L/W ratio and PL) were
correlated with each other; however, no QTL associated
with all six leaf traits was identified. Similar results can
also be found in the QTL mapping of leaf or growth
traits in other species [12, 52, 53]. This may be because
these traits are complex quantitative characters that are
controlled by multiple QTLs, and it is not easy to pre-
cisely identify all the QTLs for the target traits. More-
over, several previous studies have found that the results
of QTL mapping for flag leaf size in crops could be in-
fluenced by the environment, which suggested QTL
mapping in different environments could be used to en-
hance accuracy, and in fact, this strategy has been tried
in other studies [54, 55]. In a recent study, Xia et al.
mapped 42 QTLs for nine leaf traits in an F1 poplar

population at three time points, and 9 of these QTLs
were found at two or more time points. This repeatabil-
ity at different time points suggests high QTL mapping
confidence [16]. However, in our study, only one time
point was mapped; in a future study, QTLs for leaf traits
will be mapped at multiple time points and locations to
enhance QTL mapping accuracy. Leaf size is controlled
by the interconnection between cell division and cell ex-
pansion [56]. According to a previous study, changing
the expression of cyclin B1;1 and other cell cycle-related
genes significantly influences the cell division rate of
leaves [57, 58], and a moderate increase in CYCD3 ex-
pression in Arabidopsis increases the cell number and
LA [59, 60]. In addition, cyclin genes also influence leaf
flatness and erectness [61, 62]. In our study, a possible
cyclin gene (evm.model.group5.471) was found in Q16–
60, which implied that cyclin-mediated cell division may
participate in the formation of leaf traits.
In recent years, examination of the dynamic QTLs for

plant growth characteristics in a continuous set of time
points has been performed; for example, Du et al.
mapped the growth traits of poplar at 12 successive time
points and found that some QTLs were specific to one
time point, while some QTLs were found at several con-
tinuous or discontinuous time points, which may be due
to their specific functions in plant growth at different
growth stages [63]. In the present study, QTLs for plant
height at five time points were mapped, and 8 QTLs
were detected at more than one time point for a cumu-
lative PVE of 61.4%. Thus, these loci were further exam-
ined to analyse the candidate genes. In our study, the
inclusive composite interval mapping (ICIM) method
was used to map the QTLs associated with leaf traits
and plant height. Yang et al. mapped QTLs of growth
traits of Taxodium ‘Zhongshansha’ and identified 5 com-
mon QTLs by the CIM and ICIM methods to ensure the
reliability of the QTLs. In their study, the number of
QTLs detected by the CIM method was only half that
identified by the ICIM method, which may have been
due to the higher detection power of the ICIM method
[12]. Similarly, Dodia et al. used the CIM and ICIM
additive (ICIM-ADD) methods to map QTLs for stem
rot disease resistance and plant architecture in ground-
nut and obtained different results: the QTLs obtained
with the CIM method explained more phenotypic vari-
ance [42]. Improper mapping methods may lead to false
results, and different methods may influence QTL map-
ping results; for this reason, using more mapping
methods may be an effective strategy for improving QTL
mapping accuracy [12], and more mapping methods
should be used to precisely identify QTLs.
By using QTL mapping, we identified two genomic re-

gions of 213.76 Kb and 52 bp on Chr18 that contained
QTLs for plant height. The 213.76-Kb genomic region
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with the flanking markers sca18_15484674 and sca18_
15698439 (0.32 cM in the genetic map) had a PVE of ~
6.6%. A total of 15 genes were identified in this region
according to the genome annotation. The gene evm.mo-
del.group7.1464 located in this region is an orthologue of
AT3G01610.1 in the genome of Arabidopsis thaliana.
AT3G01610.1 encodes the cell division control protein 48
homologue C-like (CDC48C), which is involved in cell
division, cell expansion, and cell differentiation, among
other processes [64]. CDC48 is reportedly involved in
plant growth: Bae et al. suppressed the expression of the
CDC48 homologue gene in tobacco by virus-induced gene
silencing, and antisense RNA interference caused not only
severe growth cessation in the shoot and leaf but also
flower sterility [65]. Another gene located in this region,
evm.model.group7.1477, is an orthologue of AT1G76680.2
in A. thaliana, which encodes a 12-oxophytodienoate re-
ductase that participates in jasmonic acid (JA) biosynthesis
[66, 67]. Although a high level of JA inhibits the growth of
plant stems [68], low concentrations of JA can promote cell
expansion and shoot elongation [69, 70], which indicates that
endogenous JA synthesis may influence plant height in our
mapping population; however, this possibility requires fur-
ther verification. Additionally, we found an AT5G04660.1
orthologue, namely, evm.model.group7.1470, which may en-
code a cytochrome P450 family member. Several cytochrome
P450 family members have been shown to participate in
plant growth. For example, EUI1, a cytochrome P450 mono-
oxygenase cloned in rice, regulates internode elongation by
modulating the gibberellin response [71, 72]. In addition,
cytochrome P450 members also participate in brassinosteroid
[73] and indole-3-acetic acid [74] biosynthesis and influence
cell elongation or plant height [75, 76]. The 52-bp sequence
in Q18–73 was located in evm.model.group7.1784 in the
physical map, which may encode a possible cleavage and
polyadenylation specificity factor 73 (CPSF73) homologue
subunit. CPSF73 is an endonuclease that participates in small
nuclear RNA (snRNA) 3′-end processing and plays roles in
flower and embryo development [77]. However, it is not clear
whether it influences plant height.
To increase the precision of candidate gene prediction,

transcriptomics or quantitative real-time PCR analyses
can be used to identify RNA variants and the expression
of genes within the mapped QTL regions. Other omics
analyses, such as metabolomics, can also provide some in-
formation on the chemical compounds related to pheno-
typic variations. In future studies, these analyses will be
used to further verify the candidate genes in our study.

Conclusion
A high-density genetic map of C. bungei × C. duclouxii
was constructed using the RAD-seq strategy, with the help
of which 20 and 13 QTLs were identified that were associ-
ated with leaf and growth traits, respectively, which

explained moderate phenotypic variation. Our study has
laid a foundation for molecular marker-assisted breeding
in C. bungei. Moreover, the genome sequences we ob-
tained have enriched the resources for the public to study
the evolution and functional genomics of C. bungei. The
candidate genes identified within the QTLs may be prom-
ising genes for regulating leaf traits and increasing plant
growth in C. bungei and will be further studied.

Methods
Mapping population and DNA extraction
C. bungei “7080” (female parent, entire leaf, Additional
file 13: Figure S5) is an excellent clone selected by Luo-
yang Academy of Agriculture and Forestry, Luoyang,
Henan Province and we have got the permission to
applicate “7080” as breeding material from Luoyang
Academy of Agriculture and Forestry and cultivated this
C. bungei clone in an artificial forest belonging to Re-
search Institute of Forestry, Chinese Academy of For-
estry in Luoyang (34.71°N, 112.54°E) in the year 2006. C.
duclouxii Dode “16-PJ-3” (male parent, lobed leaf, Add-
itional file 13: Figure S5) is a wild individual grown in
Panjiang town, Guizhou, China (25.75°N, 103.83°E). In
the year 2016, Dr. Wenjun Ma collected the pollen and
shoots of “16-PJ-3” (the collection of “16-PJ-3” did not
need any necessary permission after we consulting to
the relevant department) and carried out the
hybridization. Finally, a total of 681 F1 progenies were
obtained by crossing “7080” and “16-PJ-3”. The seeds of
F1 progeny were sown and grown into seedlings in the
greenhouse of Chinese Academy of Forestry in 2017. In
the year 2018, 200 randomly selected F1 individuals and
the two parents were asexually propagated and planted
in the experimental field of Luoyang Academy of Agri-
cultural and Forestry Science (Luoyang, China, N
112.55°, E 34.71°). A randomized block design was ap-
plied, with two ramets per clone in each plot and 5 repli-
cates. All the plant material collections in our study
were complied with national guidelines. The field experi-
ment we made were in accordance with local legislation.
The voucher specimens were deposited in Research In-
stitute of Forestry, Chinese Academy of Forestry. Dr.
Wenjun Ma and Dr. Junhui Wang undertook the formal
identification of the samples.
Young and healthy leaf samples (second or third leaves

from the apex) of both parents and 200 F1 individuals
were collected in June 2018. All leaf samples were frozen
in liquid nitrogen immediately and stored at −80 °C. We
extracted genomic DNA using a modified cetyltrimethy-
lammonium bromide (CTAB) method [78, 79]. To elim-
inate residual RNA, all extracted DNA samples were
treated with RNase (Takara, Shuzo, Otsu, Japan). Finally,
DNA concentration and purity were determined by a
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NanoDrop 2000 UV-vis spectrophotometer and checked
on 1% agarose gels.

RAD library construction and high-throughput
sequencing
We prepared the 200 RAD libraries according to the
RAD protocol [80] with minor modification. Briefly, 200
ng of qualified genomic DNA from each sample (200 F1
individuals) was fully digested by 20 U of restriction
endonuclease EcoRI (New England Biolabs, Ipswich,
MA, USA) at 37 °C in a 50 μl reaction mixture based on
an evaluation of the reference genome and the result of
a DNA digestion pre-experiment (Additional file 14: Fig-
ure S6). After digestion, barcoded P1 adapters were li-
gated to the EcoRI restriction site for each sample
individually. Then, all the samples were sheared to an
average size of 500 bp using a Bioruptor (Diagenode,
Liège, Belgium). DNA fragments 350 to 450 bp in size
were collected using 2% agarose gel for library construc-
tion. Thereafter, the fragments were blunt end repaired,
and a 3′ adenine overhang was added to the sequences.
Finally, a P2 adapter containing unique Illumina bar-
codes (San Diego, CA, USA) was added to each library.
All libraries were amplified using PCR with high-fidelity
thermostable DNA polymerase (New England Biolabs,
Ipswich, MA, USA) and purified before sequencing. The
resequencing libraries of the two parents, “7080” and
“16-PJ-3”, were constructed at the same time. The RAD
libraries and two resequencing libraries were sequenced
using the Illumina HiSeq X Ten platform using 150-bp
paired-end reads by Shanghai Major Biological Medicine
Technology Co., Ltd.

SNP and InDel calling and genetic map construction
To ensure read quality for later analysis, all raw reads
were filtered using Trimmomatic [81] to discard low-
quality reads (quality score below 30), reads with more
than 10% unidentified nucleotides and reads aligned to
the adapter. Next, the clean data were analysed using a
standard SNP and InDel calling pipeline. Briefly, all the
clean reads were first mapped to the C. bungei reference
genome using Burrows-Wheeler Aligner (BWA) soft-
ware [82] with the setting of “mem -t 4-k 32-M”. To
avoid false mapping results, only reads with a unique
mapping position in the genome were sorted using
SAMtools [83]. Subsequently, variants were called and
filtered using the Genome Analysis Toolkit (GATK) uni-
fied [84] using standard filtering parameters according
to the GATK Best Practices pipeline [85]. Then, the vari-
ants were more precisely filtered based on the following
three strict criteria: (1) a mapping quality less than 37;
(2) a quality depth less than 24; and (3) a sequence
depth less than 10-fold (in parents) or 3-fold (in

offspring). The screened variant markers were further di-
vided into eight segregation patterns: “ab×cd” (four
alleles), “nn × np” (two alleles and one parent heterozy-
gous), “hk × hk” (two alleles and double heterozygous),
“ef × eg” (three alleles and double heterozygous), “cc ×
ab” (three alleles and maternal homozygous), “aa×bb”
(two alleles and double homozygous), “ab×cc” (three al-
leles and parental homozygous) and “lm × ll” (two alleles
and maternal heterozygous). Finally, unqualified molecu-
lar markers were further removed based on the following
three strict criteria: (1) abnormal bases; (2) a variant call
rate (missing rate) less than 70%; and (3) significant seg-
regation distortion (chi-square test, P value<0.05). The
SNP calling parameters were determined after we overall
considering the results of several parameter combina-
tions to guarantee the us enough credible markers for
later study (Additional file 15: Table S8).
Because an F1 population was used in our study, markers

with the segregation patterns “ab×cd”, “ab×cc”, “cc × ab”,
“ef × eg”, “nn × np”, “hk × hk”, and “lm × ll” were selected to
construct the genetic map. All filtered markers were first di-
vided into 20 groups according to their physical locations
on the same chromosome, and the markers were then or-
dered using MSTmap software [86]. Next, the SMOOTH
algorithm [87] was used to correct the genotyping errors or
deletions according to the relationship between the ordered
markers. The genetic distance between markers was calcu-
lated using the Kosambi mapping function. Furthermore, a
haplotype map and heat map analysis were used to evaluate
the quality of the genetic map.

Phenotyping of leaf traits and dynamic plant height
The leaf trait parameters in the “7080 × 16-PJ-3” F1
population were measured on 2018/9/5. We chose the
3rd whorl of fully expanded leaves below the apex to de-
tect the leaf traits (according to our previous study, the
3rd whorl of fully expanded leaves of C. bungei were ma-
ture functional leaves, and their characters were stable at
the collection time chosen for our study). The chloro-
phyll content was measured five times at different posi-
tions on the surface of each leaf using a SPAD-502 Plus
chlorophyll meter (Konica Minolta Holdings, Inc.,
Chiyoda-ku, Tokyo, Japan), and the average value was
calculated to represent the chlorophyll content. After we
measured the chlorophyll content, the leaves were har-
vested and scanned by a CI-203 Portable Laser Leaf Area
Meter (CID Inc., Washington, USA) for a total of five
leaf parameters: leaf length (LL), leaf width (LW), the
leaf length/width (L/W) ratio, leaf area (LA) and leaf
perimeter (LP). The petiole length (PL) was measured
using a ruler.
The development of trees is a complex dynamic

process that is regulated by both gene networks and the
environment. A traditional mapping strategy using
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phenotypic data measured at only one time point may
not exactly reflect the genetic control of developmental
processes [88], so growth data at multiple time points
were used to map QTLs. According to our previous ob-
servations, the growth of C. bungei in Luoyang usually
started at the end of April, proceeded rapidly in early
July, and finished at the end of September. The height of
all plants was measured on 2018/6/30 (before the rapid
growth period), 2018/7/15 (during the rapid growth
period), 2018/7/31 (during the rapid growth period),
2018/8/15 (during the rapid growth period), 2018/8/31
(the end of the rapid growth period), and 2018/10/10
(the end of the growing season), for a total of six time
points, which included the entire rapid growth period
(from July to August), in a growth season.
We had two plants of each clone in each block, and

the average values of all parameters in each block were
calculated from the individual seedlings of the same
clone and used as the trait data. The five blocks of plants
were measured as five replicates. The correlations be-
tween different traits and frequency distribution of the
F1 population were calculated using R software with the
Pearson method [89]. The repeatability of plant height
and leaf traits was calculated using the R ASReml pack-
age [90]. The phenotypic data were analysed by a one-
way ANOVA to discriminate the seven leaf traits and six
growth traits between “7080” and “16-PJ-3” using SPSS
version 19.0 (SPSS Inc., Chicago, IL, USA).

QTL mapping and candidate gene selection
Quantitative trait locus (QTL) analysis was conducted
using GACD software [91] with the inclusive composite
interval mapping (ICIM) method [92]. A significant loga-
rithm of odds (LOD) threshold was determined using
1000 permutation tests (P < 0.05) for all traits. Finally,
because the average LOD significance thresholds of both
the seven leaf traits and the six growth traits were 3.0, a
LOD significance threshold value of 3.0 with a 95% con-
fidence interval was determined for the traits [63]. The
potential locations of the QTLs were described accord-
ing to their LOD peak locations and their surrounding
regions. Additive (a) and dominance (d) effects were cal-
culated based on the formulation of Muchero [93], ac-
cording to the computed results by GACD, which has
been introduced in detail by Nzuki [94]. The QTL mode
of action was calculated as the ratio of dominance to the
absolute additive value (d/|a|), where d/|a| ratios larger
than 1 were regarded as over-dominance; ratios between
0 and 1 were regarded as partial dominance and ratios
less than 1 were regarded as under-dominance [95]. In-
formation about the candidate genes in the mapped
QTL regions was obtained according to the annotation
of the reference genome.
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