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Abstract

Background: Pear is one of the most important fruit crops worldwide. Anthocyanins and procyanidins (PAs) are
important secondary metabolites that affect the appearance and nutritive quality of pear. However, few studies
have focused on the molecular mechanism underlying anthocyanin and PA accumulation in pear.

Results: We conducted metabolome and transcriptome analyses to identify candidate genes involved in
anthocyanin and PA accumulation in young fruits of the pear cultivar ‘Clapp Favorite’ (CF) and its red mutation
cultivar ‘Red Clapp Favorite’ (RCF). Gene—metabolite correlation analyses revealed a ‘core set’ of 20 genes that were
strongly correlated with 10 anthocyanin and seven PA metabolites. Of these, PcGSTF12 was confirmed to be
involved in anthocyanin and PA accumulation by complementation of the tt719-7 Arabidopsis mutant. Interestingly,
PcGSTF12 was found to be responsible for the accumulation of procyanidin A3, but not petunidin 3, 5-diglucoside,

future functional studies and pear breeding.

opposite to the function of AtGSTs in Arabidopsis. Transformation with PcGSTF12 greatly promoted or repressed
genes involved in anthocyanin and PA biosynthesis, regulation, and transport. Electrophoretic mobility shift and
luciferase reporter assays confirmed positive regulation of PcGSTF12 by PcMYB114.

Conclusion: These findings identify a core set of genes for anthocyanin and PA accumulation in pear. Of these,
PcGSTF12, was confirmed to be involved in anthocyanin and PA accumulation. Our results also identified an
important anthocyanin and PA regulation node comprising two core genes, PcGSTF12 and PcMYB114. These results
provide novel insights into anthocyanin and PA accumulation in pear and represent a valuable data set to guide
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Background

Pear is an important fruit for human consumption, and
its total global production is ranked third after grape
and apple [1]. Pear is cultivated commercially in 76
countries or regions worldwide [2], among which China
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is the world’s leading pear producer. In 2017, China
produced 164 million tons (Mt) of pear fruits,
accounting for 68% of global pear production (24.2 Mt)
(FAOSTAT, 2017).

Pears are a good source of anthocyanin and procyani-
din (PA) metabolites. To date, five anthocyanins
(cyanidin 3-galactoside, cyanidin 3-glucoside, cyanidin 3-
arabinoside, peonidin 3-galactoside, and peonidin 3-
glucoside) and two PAs (procyanidin Bl and procyanidin
B2) have been identified in the red pear cultivars
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‘D’Anjou’ [3] and ‘Red Zaosu’ [4]. Anthocyanins and PAs
are abundant in the skin of pear fruits, they contribute
to their color, taste, and nutrition [5].

The anthocyanin and PA biosynthesis pathways have
been well characterized in plants. Anthocyanin and PA
are initially biosynthesized from phenylalanine, and
share most steps in the flavonoid biosynthetic pathway.
They are biosynthesized in the cytosol by enzymes in-
cluding phenylalanine ammonia lyase (PAL), chalcone
isomerase (CHI), chalcone synthase (CHS), flavonoid 3-
hydroxylase (F3H), and dihydroflavonol reductase (DFR)
[6]. Leucoanthocyanidins and anthocyanidins are two
important branch points between the anthocyanin and
PA biosynthesis pathways. Downstream of these branch
points, anthocyanins are synthesized by anthocyanidin
synthase (ANS) and UDP-glucose flavonoid 3-Oglucosyl
transferase (UFGT), and PAs are synthesized by
leucoanthocyanidin reductase (LAR) and anthocyanidin
reductase (ANR) [7, 8]. O-methyltransferase (OMT) and
glycosyltransferase (GT) are responsible for the elabor-
ation of diverse anthocyanins and PAs [9, 10]. After an-
thocyanins and PAs are synthesized in the cytosol, they
are transported to their final destination, the vacuole.
Some glutathione S-transferases (GSTs) and multidrug
and toxic compound extrusion proteins (MATEs) are
believed to function as anthocyanin and PA carrier pro-
teins to sequester them into vacuoles [11].

The molecular mechanism underlying anthocyanin
and PA accumulation has been extensively studied in
numerous plants. Many anthocyanin and PA structural
genes and their upstream regulators have been identified
and characterized. Of these, R2R3-MYB TFs play key
roles in controlling anthocyanin and PA accumulation
by acting together with bHLH and WD40 proteins to
regulate structural genes. Genes encoding R2R3-MYB
TFs that contribute to anthocyanin accumulation in-
clude MdMYBI in apple, PyMYBI10 and PyMYBI114 in
pear, and VWMYBAI in grape [12—-15]. Some R2R3-MYB
TFs regulate both anthocyanins and PAs, including
VWMYBSa and VvMYB5b in grape, MdMYB9 and
MdMYBI11 in apple, PbMYBIOb and PbMYB9 in pear,
and PpMYBI18 in peach [4, 16—19]. Other R2R3-MYB
TFs are related only to the regulation of PAs, including
VWMYBPAI in grape and PpMYBPAI in peach [16, 20].
In addition, other TFs such as AUX and ERF also regu-
late anthocyanin or PA biosynthesis by directly or indir-
ectly interacting with R2R3-MYB TFs and structural
genes [21, 22].

Recent technical advancements in transcriptome and
metabolome analyses have provided effective ways to
identify new genes and metabolites, and to elucidate
complex secondary metabolic bioprocesses in plants. In
fig (Ficus carica L.), integrated transcriptome and me-
tabolome analyses have revealed genes in flavonoid and
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anthocyanin pathways that show differential expression
between purple- and green-skinned cultivars [23].
Another study using combined transcriptome and
metabolome datasets successfully constructed expres-
sion—anthocyanin metabolite networks in potato [24].
Recently, seven flavonoid metabolites and six genes were
identified as candidates associated with the pigmentation
of the red-fleshed and green-fleshed cultivars of Actini-
dia arguta [25].

Red pears have high nutritional and economic value
because they are rich in anthocyanins and PAs. There-
fore, studies on the regulation of anthocyanins and PAs
are of great interest for the improvement of anthocyanin
and PA production in pears. Considering the large num-
ber of anthocyanins and PAs, the molecular mechanisms
of their biosynthesis and embellishment in pear might
be more complex than expected. Bud mutation is an im-
portant method of selecting new red pear varieties. Red
mutations are ideal materials to study the molecular
mechanism of anthocyanin and PA accumulation be-
cause of their highly similar genetic backgrounds [13]. In
the present study, we carried out metabolome and tran-
scriptome analyses to identify candidate genes involved
in anthocyanin and PA accumulation in pear using the
young fruits of ‘CF’ and its red mutant ‘RCF’. Correlation
analyses between differentially expressed genes (DEGs)
and anthocyanins/PAs revealed 203 candidate genes for
the accumulation of 10 anthocyanins and seven PAs in
pear. Of these, 20 genes were strongly correlated with all
10 anthocyanins and seven PAs. Thus, they seemed to
be the core candidate genes related to anthocyanin and
PA accumulation in pear. The GST gene PcGSTF12 was
correlated with most anthocyanin and PA metabolites.
PcGSTFI2 was confirmed to play an important role in
anthocyanin and PA accumulation in pear by functional
complementation analyses. In addition, PcGSTFI2 was
found to be directly and positively regulated by
PcMYB114, a well-known TF regulating anthocyanin ac-
cumulation in pear. These results greatly extend our
knowledge of the molecular mechanism of anthocyanin/
PA accumulation in pear.

Results

Anthocyanin and PA profiles of ‘CF’ and its red mutant
‘RCF’

Except for skin color, no significant morphological dif-
ferences were observed between the fruits of ‘CF’ and its
red mutant ‘RCF. The young fruits of both ‘CF and
‘RCF’ initially had a deep green appearance. The color
difference between ‘CF’ and ‘RCF became visible from
about 5 days after full bloom (DAFB). The ‘RCF fruits
quickly turned dark red, and retained their strong color
until maturity. In contrast, the fruits of ‘CF’ only
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developed a slight red blush on the sun-exposed surface
(Fig. 1a).

We identified and quantified the individual anthocya-
nins and PAs in ‘CF and its red mutant ‘RCF’. We iden-
tified and quantified 12 anthocyanins and seven PAs
from ‘CF1’, ‘RCF1’, ‘CF2’, and ‘RCF2’. The anthocyanin
metabolites included pelargonin, cyanidin 3-rutinoside,
pelargonidin 3-Glu, malvidin-3-galactoside chloride, cya-
nidin 3-O-malonylhexoside, oenin, delphinidin, peonidin
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O-hexoside, cyanidin, and rosinidin O-hexoside; and the
PAs included procyanidin A, procyanidin B3,
procyanidin B, procyanidin Al, and procyanidin A2,
which were all detected for the first time in pear. As
shown in Fig. 1b, most anthocyanins and PAs were
significantly up-regulated in ‘RCF’ compared with ‘CF.
The levels of anthocyanins and PAs in ‘CF’ and ‘RCF
were initially low and then sharply increased during fruit
coloration, except for delphinidin and rosinidin O-
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hexoside (Fig. 1b). These patterns of pigment accumula-
tion were consistent with the strikingly different fruit
color phenotypes of ‘RCF” and ‘CF.

The thresholds for significant differences in metabolite
levels between the two cultivars were variable import-
ance in projection (VIP) value >1 and | log2(fold change)
| = 1. Against these criteria, six, eight, six, and eight
anthocyanin metabolites, and four, seven, seven, and
seven PA metabolites were significantly differentially ac-
cumulated in the four comparison groups: RCF1’ vs.
‘CF1’, 'RCF2’ vs. ‘CF2’, ‘RCF2’ vs. ‘RCF1’, and ‘CF2’ vs.
‘CF1’, respectively (Supplementary Table S1). Therefore,
these anthocyanins and PAs were selected for further
metabolite and transcript correlation analyses.

Transcriptome analysis

The RNA-seq process yielded 95.6 G clean bases and
637 million clean reads. The mean number of clean
reads per sample was 53 million. Of the clean reads,
93.54% were mapped in total, and 90.72% were mapped
uniquely against the improved apple reference genome
sequence. In total, 14,514 genes were expressed with
FPKM =10 (Supplementary Table S2).

We identified 4065 DEGs in the four comparison
groups. There were 340 DEGs in ‘RCF1’ vs. ‘CF1’, 252 in
‘RCF2’ vs. ‘CF2’, 2379 in ‘RCF2’ vs. ‘RCF1’, and 3055 in
‘CF2’ vs. ‘CF1’ (Supplementary Table S3): in those com-
parison groups, 123, 155, 858, and 1060 genes were up-
regulated, and 217, 97, 1521, and 1995 genes were
down-regulated, respectively (Fig. 2a). Only 12 DEGs
were common to all four comparison groups (Fig. 2b).

The DEGs between group 2-1 and group RCF-CF
were subjected to GO (Supplementary Table S4) and
KEGG functional pathway analyses (Supplementary
Table S5). For correlation tests with anthocyanins and
PAs, we chose DEGs in group 2-1 categorized into
DNA binding, plant hormone signal transduction,
flavonoid biosynthesis, phenylpropanoid biosynthesis,
flavonoid metabolism, phenylalanine = metabolism,
glutathione metabolism, and DEGs in group RCF-CF
categorized into DNA binding, plant hormone signal
transduction, phenylpropanoid biosynthesis, flavonoid
biosynthesis, glutathione metabolism, and phenylalanine
metabolism (Fig. 2¢, d). In total, we selected 203 DEGs.
Of these, there were 12 DEGs that overlapped between
group 2-1 (‘RCF2’ vs. ‘RCF1’, and ‘CF2’ vs. ‘CF1’) and
group RCE-CF (‘RCF1’ vs. ‘CF1’, ‘RCF2’ vs. ‘CF2’). These
12 DEGs encoded a B-glucosidase (PCP011059), two
peroxidases (PCP024451 and PCP017906), a CHS
(PCP023048), a homeodomain protein (PCP024513), an
ERF (PCP044584), a RBR (retinoblastoma-related
protein, PCP007207), an AUX (PCP036703), a NAC
(PCP028501), a GST (PCP025171), and two SAURs
(PCP037299 and PCP040169) (Fig. 2e). Of these, PcGST
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(PCP025171) was the most up-regulated gene in the
comparison groups RCF1 vs. CF1’ and ‘RCF2 vs. CF2’

(Fig. 21).

Correlation analysis between selected transcripts and
anthocyanins/PAs

To identify the candidate genes in anthocyanin and PA
accumulation in pear, we conducted correlation analyses
between selected transcripts and metabolites. In total,
we detected 420 significant correlations (correlation
coefficient, R*>0.8) between 203 transcripts and 17
metabolites, including 10 anthocyanins (kuromanin
chloride, pelargonin, cyanidin 3-rutinoside, pelargonidin
3-Glu, malvidin-3-galactoside chloride, cyanidin 3-O-
malonylhexoside, oenin, delphinidin, peonidin O-
hexoside, cyanidin, and rosinidin O-hexoside) and seven
PAs (procyanidin A, procyanidin Al, procyanidin A2,
procyanidin B, procyanidin Bl, procyanidin B2, and
procyanidin B3) (Supplementary Table S6). Each metab-
olite was correlated with many different transcripts.
Malvidin-3-galactoside chloride, oenin, and delphinidin
were correlated with the fewest transcripts: five, seven,
and three transcripts, respectively. Kuromanin chloride
and pelargonin were correlated with the highest num-
bers of transcripts: 184 and 56 transcripts, respectively.
Interestingly, kuromanin chloride and pelargonin shared
the largest number of common transcripts (36 tran-
scripts). This suggested that kuromanin chloride and
pelargonin might have evolved similar accumulation
mechanisms.

The 203 transcripts were annotated with descriptions
from the SwissProt and NR databases. Six transcripts
have been functionally characterized to play roles in
anthocyanin accumulation in pear previously: PcMYBI0,
PcMYB114, PcCHS, PcCHI, PcF3H, and PcANS (Supple-
mentary Table S7). The rest were newly identified as
candidate genes involved in anthocyanin and PA accu-
mulation in pear. The 203 transcripts were grouped into
two clusters (I-II) (Supplementary Table S7). Genes in
cluster I were strongly correlated with anthocyanins.
Cluster I comprised 183 genes (90.1%). Of these, 147
genes were correlated with a single anthocyanin: 142
genes were correlated with kuromanin chloride, three
genes were correlated with cyanidin, one gene was cor-
related with malvidin-3-galactoside chloride, and one
gene was correlated with pelargonin. The remaining
genes in cluster I were closely correlated with two or
more anthocyanins: 31 genes were commonly correlated
with kuromanin chloride and pelargonin, two genes were
correlated with pelargonin and cyanidin, two genes were
correlated with malvidin-3-galactoside chloride and
oenin, and one gene was correlated with cyanidin 3-
rutinoside, oenin, and cyanidin. Cluster II contained 20
genes (9.9%) that were strongly correlated with both
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anthocyanins and PAs. Of these genes, two phenylpropa-
noid structural genes (encoding 4CL1 and 4CL2), six fla-
vonoid structural genes (encoding CHS, 3 CHlIs, F3H,
and ANS), six TF genes (encoding bZIP1, MYB3,
MYB86, MYB111, MYB114, and KNAT1), two phyto-
hormone signal transduction genes (encoding IAA13
and ERF003), two DNA-directed RNA polymerase genes
(encoding rpoB and Rpbl) and one GST transporter
gene (encoding GSTF12) were positively correlated with
anthocyanins and PAs. One WRKY TF gene, WRKY2S,
was negatively correlated with anthocyanins and PAs
(Supplementary Table S7, S8). Each gene in cluster II
was strongly correlated with many metabolites. We
found that these 20 genes were strongly correlated with

all 17 anthocyanin and PA metabolites (Fig. 3a). Thus,
they were considered to represent the core genes for
anthocyanin and PA accumulation in pear. Of these,
PcRPB1 (PCP004386) was correlated with the fewest me-
tabolites: one anthocyanin and three PAs; and PcGSTFI12
(PCP025171) was correlated with the most metabolites:
seven anthocyanins and seven PAs (Fig. 3b).

gPCR analysis of DEGs related to anthocyanin and PA
accumulation

To validate the RNA-seq data, we conducted qPCR ana-
lyses of 10 of the anthocyanin and/or PA candidate
genes: PcCHI, PcCl, PcMYBI114, PcHB7, PcGAIl,
PcCHS, PcGSTFI12, PcANS, PcHBI12, and PcMYBI10 (for
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gene IDs and primers, see Supplementary Table S9). The
transcript profiles of all selected genes were very similar
to those detected from the RNA-seq data (Fig. 4). The
results showed that PcGSTFI12 was most up-regulated in
comparison groups ‘RCF1 vs. CF1” and ‘RCF2 vs. CF2".
This result was highly consistent with the results of
RNA-seq, and provided further evidence for the crucial
role of PcGSTFI2 in anthocyanin and PA accumulation

in pear. Thus, we conducted further analyses to confirm
the function of PcGSTFI2.

PcGSTF12-mediated anthocyanin and PA accumulation in
pear

Our combined metabolite and transcriptomic analyses
revealed a core set of genes closely correlated with pear
anthocyanins and PAs, which strongly suggested that
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they play key roles in anthocyanin and PA accumulation
in pear. To test this, we focused on the most up-
regulated gene among the core set of anthocyanin and
PA candidate genes, PcGSTF12, for functional analysis.

Functional analysis of PcGSTF12

The phylogenetic analysis showed that PcGSTFI2 is a
homolog of FVRAP in strawberry, Riant2 in peach, and
MdAGST in apple, all of which are in the phi subfamily
[26] (Fig. 5a). Members of the phi subfamily are
anthocyanin transporters. To test the potential role of
PcGSTFI2 in  anthocyanin  accumulation,  35S:
PcGSTFI12 was transformed into the Arabidopsis mutant
tt19-7 (for primers, see Supplementary Table S9). The
tt19-7 plants showed a green hypocotyl phenotype,
while the #£19-7-OE transgenic plants showed the red
hypocotyl phenotype, like that of the wild type (WT)
(Fig. 5b). However, the brown color of seed coats was
not rescued in the 19-7-OF lines (Fig. 5b). This
result was consistent with the fresh seed phenotype
obtained by transferring 35S:: RAP-RFP into Arabi-
dopsis tt19-7 [26].

To explore the role of PcGSTFI2 in anthocyanin and
PA accumulation, we conducted a metabolite analysis
using Arabidopsis seedlings. Three PAs and nine
anthocyanins were significantly up-regulated, and three
anthocyanins were significantly down-regulated in #£19-
7-OE compared with t219-7. Procyanidin A3, cyanidin
O-acetylhexoside, delphinidin 3-O-rutinoside, and cyani-
din 3-p-hydroxybenzoylsophoroside-5-glucoside were

specifically up-regulated in #£19-7-OE compared with
tt19-7 (Fig. 5¢). Five anthocyanins (malvidin 3-acetyl-5-
diglucoside, pelargonidin 3-O-beta-D-glucoside,
delphinidin 3-O-rutinoside, pelargonin, cyanidin 3-O-
galactoside) and one PA (procyanidin A3) were
significantly up-regulated, and two anthocyanins (petu-
nidin 3, 5-diglucoside and delphinidin O-malonyl-
malonylhexoside) were significantly down-regulated in
tt19-7-OF compared with WT. Interestingly, a large
amount of petunidin 3, 5-diglucoside was detected in
WT but not in #19-7-OE. In contrast, procyanidin A3
was detected only in #£19-7-OE. These results confirmed
that PcGSTFI2 is responsible for anthocyanin and PA
accumulation. Interestingly, its affinity for anthocyanins
and PAs differed from that of AtGSTs in Arabidopsis. In
particular, our results showed that PcGSTF12 is respon-
sible for the accumulation of procyanidin A3 but not
petunidin 3, 5-diglucoside, opposite to the function of
AtGSTs in Arabidopsis. PcGSTFI12 is a newly identified
member of the phi GST family involved in anthocyanin
and PA accumulation.

Next, we analyzed RNA-seq data to identify which
genes were affected by PcGSTFI2 in the seedlings of
tt19-7-OF vs. tt19-7. In total, we found 28 strongly af-
fected genes, which encoded proteins involved in antho-
cyanin and PA biosynthesis, regulation, and transport
(Supplementary Table S10). These results showed that
PcGSTFI2 might not only be an anthocyanin and PA
transporter, but may also participate in many other steps
of anthocyanin and PA accumulation.
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independent biological replicates. Statistical significance: **P < 0.01

promoter activities as demonstrated by luciferase reporter assays. Empty-vector was used as a control. Values are means + SD of three

Upstream regulation of PcGST12

Correlation analyses showed that the transcript level of
PcGSTFI2 was significantly correlated with that of
PcMYB114 (Fig. 5d). Further, several MYB-binding sites
were found in the PcGSTFI2 promoter, indicating that
PcGSTFI12 might be directly bound by, and regulated by,
MYB transcription factors (Supplementary Table S11).
Several R2R3-MYB genes are known to bind to MBS
sites [27], and we found a MBS site within an 801-bp

region upstream of the start codon. Thus, this MBS site
was used in an EMSA assay (for primers, see Supple-
mentary Table S9). The biotinylated probe was able to
bind PcMYB114 protein, and the addition of a high
concentration of cold probe significantly reduced the
binding affinity of the biotinylated probe. To test
whether PcGSTFI2 could be regulated by PcMYB114,
we further carried out luciferase reporter assay (for
primers, see Supplementary Table S9). The relative LUC
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activity of the PcGSTF12 promoter was about 6-fold that
of the empty vector control. These results showed that
PcMYB114 could directly bind to the MBS site in the
PcGSTFI12 promoter (Fig. 5e) and positively regulate its
activity (Fig. 5f).

We also found many cis-acting elements involved in
auxin-, ethylene-, and gibberellin-signaling in the
PcGSTFI2 promoter. This indicated that PcGSTFI2
might be the common downstream target of R2R3-
MYBs, and auxin, ethylene, and gibberellin signals that
regulate the anthocyanin and PA pathways (Supplemen-
tary Table S11). Together, these results provide new
clues about PcGSTFI2-mediated anthocyanin and PA
accumulation in pear.

Discussion

We present the first genome-wide examination of antho-
cyanins, PAs, and the gene expression profiles of pear
using young fruits of cv. ‘CF and its red mutant ‘RCF’.
Through combined transcriptomic and metabolic ana-
lyses, we found a core set of 20 candidate genes related
to anthocyanin and PA accumulation in pear. These
findings increase our understanding of the molecular
mechanism of anthocyanin and PA accumulation in
pear, especially during the early stage of fruit
development.

The core set of candidate genes for pear anthocyanin
and PA accumulation includes six flavonoid structural
genes:  PcCHI  (PCP027877, PCP021141, and
PCP039844), PcCHS (PCP023048), PcF3H (PCP013732),
and PcANS (PCP027029). CHI, CHS, and F3H are
common to both the anthocyanin and PA biosynthetic
pathways [6]. ANS can catalyze the conversion of
(+)-catechin to cyanidin and a procyanidin [28]. Func-
tional analyses have confirmed the roles of PcCHI,
PcCHS, and PcF3H in anthocyanin accumulation [29].
The results of those studies and our study provide evi-
dence that the patterns of anthocyanin and PA accumu-
lation are conserved among different plants.

In plants, TFs play important roles in flavonoid regula-
tion. The R2R3-MYBs make up one of the largest TF
families [30], and most of them play important roles in
flavonoid accumulation [31]. PyMYBIO was the first
R2R3-MYB TF identified to be involved in anthocyanin
accumulation in pear [13]. Functional analyses have con-
firmed the roles of PyMYB10.1 and PyMYBI114 in the
regulation of anthocyanin accumulation in pear [14, 32],
and the roles of PbMYBI10b and PbMYBY in both antho-
cyanin and PA accumulation in pear [4]. In this study,
the core set of candidate genes for anthocyanin and PA
accumulation included four R2R3-MYB genes: PcMYB3,
PcMYB86, PcMYBI11 and PcMYB114. Their transcript
levels were strongly positively correlated with anthocya-
nins and PAs. Although MYBI114 was already known to
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function in anthocyanin accumulation in pear, it was
unknown which particular metabolites were affected.
Our results provide evidence that PcMYBI14 functions
in the accumulation of six anthocyanin metabolites:
pelargonidin  3-Glu, malvidin-3-galactoside chloride,
cyanidin 3-O-malonylhexoside, oenin, delphinidin and
peonidin O-hexoside (Supplementary Table S8). We also
detected positive correlations between PcMYBI14 and
procyanidin A, procyanidin B1l, and procyanidin B3
(Supplementary Table S8), indicating that PcMYB114
also functions in PA accumulation in pear. Except for
PcMYB114, the other MYB genes PcMYB3, PcMYBS6,
and PcMYBI111 are newly identified as candidates in-
volved in anthocyanin and PA accumulation in pear.
Interestingly, these R2R3-MYBs were correlated with
different anthocyanins and PAs, suggesting that they
have undergone sub-specialization to play different and
specific roles in anthocyanin and PA accumulation in
pear.

Other TFs are also involved in anthocyanin and PA
accumulation in pear. The HD family of TFs is unique
to plants, and its members are proposed to play key
roles in developmental processes such as root develop-
ment, plant cell differentiation, fruit ripening, and leaf
and flower senescence [33-35]. Members of the HD-Zip
I and HD-Zip IV TF subfamilies also play key roles in
anthocyanin  accumulation. ~ANTHOCYANINLESS2
(ANL2) was the first HD-Zip IV gene found to be
involved in the tissue-specific accumulation of anthocya-
nins. In Arabidopsis, ANL2 affects anthocyanin accumu-
lation in subepidermal tissue on the abaxial side of
rosette leaves and in epidermal tissue on the abaxial side
of the leaves [36]. Recently, two HD-Zip I genes, MdHBI
and RhHBI have been shown to influence anthocyanin
accumulation in apple and rose, respectively. Overex-
pression of MdHBI led to reduced anthocyanin accumu-
lation in apple flesh. MdHB1 was found to repress the
transcription of MdDFR and MAUFGT indirectly by
interacting with MdMYB10, MdbHLH3, and MdTTG1
[37]. Consistent with the results in apple, silencing of
RhHBI in rose led to higher anthocyanin levels in the
petals [38]. In this study, the core set of genes involved
in anthocyanin and PA accumulation in pear included
an HD TF gene, PcKNATI. KNATI is a member of the
Class I KNOX HD gene family and is thought to play a
role in meristem development and leaf morphogenesis
[39]. We found that PcKNATI was strongly positively
correlated with five anthocyanins and seven PAs, imply-
ing that its function differs from the known functions of
HD-Zip I and HD-Zip IV TFs in anthocyanin accumula-
tion. Our results suggest that the Class I KNOX HD
gene family might play important roles in anthocyanin
and PA accumulation; this expands our knowledge of
the function of the Class I KNOX HD gene family.
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In our study, a bZIP TF gene, PchZIP1, was positively
and closely correlated with six anthocyanins and five
PAs. The bZIP TFs harbor a highly conserved bZIP do-
main [40]. They are diverse transcriptional regulators,
playing crucial roles in plant development, physiological
processes, and biotic/abiotic stress responses [41]. Re-
cently, two bZIP TFs, MdHY5 and MdbZIP44, were
shown to promote anthocyanin accumulation in apple
[42, 43]. Our results provide further evidence that bZIP
TFs act as positive regulators in anthocyanin accumula-
tion. Thus, as well as functioning in anthocyanin accu-
mulation, bZIP TFs may also play important roles in PA
accumulation.

In this study, a WRKY TF gene, WRKY28, was closely
negatively correlated with one anthocyanin and four
PAs. WRKY41-1 in Brassica napus and WRKY75 in
Arabidopsis are known repressors of anthocyanin
biosynthesis [44, 45], while MdWRKY40 in apple is a
positive regulator of wounding-induced anthocyanin bio-
synthesis [46]. Our results are consistent with findings
in B. napus and Arabidopsis and opposite to those in
apple. It is possible that WRKYs have evolved different
functions in anthocyanin accumulation, like the R2R3-
MYB TFs. For example, some R2R3-MYB TFs are posi-
tive regulators of anthocyanin accumulation [13, 14],
while others are negative regulators [19]. Further studies
are required to elucidate the complex roles of WRKYs in
PA accumulation in fruit trees and other plants.

Auxin is known to suppress anthocyanin accumula-
tion, and has been shown to decrease the expression of
anthocyanin regulatory and structural genes in apple
and Arabidopsis [47, 48]. A recent study showed that the
auxin factor MdARF13 negatively regulates the antho-
cyanin pathway in apple through interacting with
MdMYBI10 and binding to the promoter of MdDFR. The
auxin/IAA protein MdIAA121 was shown to inhibit the
recruitment of MdARF13 to the MdDFR promoter and
weaken the inhibitory effect of MdAFR13 on anthocya-
nin accumulation [21]. Contrary to auxin, ethylene
enhances anthocyanin and PA accumulation in pear and
apple. In pear, the ethylene-responsive factor PyERF3
enhances anthocyanin accumulation via interacting with
PyMYB114 [14]. In apple, MAERF1B regulates anthocya-
nins and PAs through interacting with MdMYBI,
MdMYB9, and MdMYB11 [22]. In this study, an
ethylene-responsive gene, PcERF003, was positively cor-
related with six anthocyanins and seven PAs, and an
auxin-responsive gene, PcIAA13, was positively corre-
lated with two anthocyanins and four PAs. These results
are consistent with the previous findings that auxin re-
presses anthocyanin accumulation via IAA genes, and
ethylene enhances anthocyanin accumulation via ERF
genes. Phytohormones play important roles in young
fruit development. Young pear fruits contain high level
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of auxin, and low level of ethylene [49]. Further func-
tional analyses of PcERF003 and PcIAA13 may help to
elucidate the links between the effects of auxin and
ethylene on anthocyanin and/or PA accumulation in
young developing pear fruit.

Plant GSTs are encoded by a large gene family, and
are soluble and abundant in the cytosol [26, 50, 51].
They can be divided into eight subgroups, among which
the tau and phi classes play key roles in flavonoid trans-
port [52]. Bronze 2 (bz2) in maize was the first tau class
GST reported to be involved in anthocyanin accumula-
tion; bz2 produces yellow skin kernels because of
disabled anthocyanin transport into the vacuole [53].
Anthocyanin deposition is also affected by genes in the
phi class, such as AtGSTFI2 in Arabidopsis [54, 55],
FvRAP in strawberry [26], CsGSTFI in tea [52], and
VwGST4 in grapevine [56]. Interestingly, these phi-class
GSTs show extensive functional diversification. For
example, AtGSTF12 plays a key role in both anthocyanin
and PA accumulation in Arabidopsis [54], while
CsGSTFI in tea functions only in anthocyanin accumu-
lation [52]. Functional divergence of GSTs has arisen
through nonsynonymous mutations, especially at key
amino acid sites [51]. For example, a single amino acid
mutation (Arg39 to Trp39) was found to be responsible
for the high enzymatic activity of Populus euphratica
PeGSTU30 [51]. Li et al. [57] showed that one Trp to
Leu substitution at amino acid 205 in AtTT19 resulted
in an anthocyanin-deficient phenotype in Arabidopsis.
Recently, Luo et al. reported that a single nucleotide
polymorphism (C to T) in the second exon of FVRAP
dramatically decreased the anthocyanin level in the peti-
ole and fruit of strawberry [26]. In our study, a phi-class
GST gene, PcGSTFI2, was among the core genes for
anthocyanin and PA accumulation in pear. PcGSTFI2
was strongly associated with most of the studied metab-
olites in pear: seven anthocyanins and seven PAs. Similar
to AtGSTFI12, PcGSTFI2 was functionally characterized
as an anthocyanin and PA carrier. Interestingly, we de-
tected different affinities for anthocyanin and PA be-
tween PcGSTFI12 and AtGSTs in Arabidopsis. PcGSTF12
plays an opposite role to that of A¢GSTs in procyanidin
A3 and petunidin 3, 5-diglucoside accumulation. These
results suggest that phi-class GSTs have undergone
extensive functional diversification during evolution.
Furthermore, transformation with PcGSTFI2 affected
genes encoding proteins involved in anthocyanin and PA
biosynthesis, regulation, and transport. This functional
analysis of PcGSTF12 deepens our understanding of the
roles of phi-class GSTs in anthocyanin and PA accumu-
lation in pear and other plants.

We found that PcMYB114 can positively regulate
PcGSTFI2 activity by directly binding to the MBS motif
in its promoter. A recent previous study has shown that
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overexpression of PyMYBI114 in young pear fruit signifi-
cantly enhance anthocyanin accumulation by upregulat-
ing anthocyanin structural genes PyDFR, PyANS, and
PyUFGT [14]. However, whether MYBI114 functions in
PA accumulation or affects anthocyanin and PA trans-
portation are largely unknown. This result provides new
evidence that PcMYB114 functions both in anthocyanin
and PA transportation in pear via regulating PcGSTFI12
activity, which may further affect anthocyanin and PA
accumulation. Furthermore, we detected many cis-acting
elements involved in auxin, ethylene, and gibberellin sig-
naling in the promoter of PcGSTFI12. Thus, we propose
that PcGSTFI2 might be the common downstream tar-
get of auxin-, ethylene-, and gibberellin-mediated antho-
cyanin and PA accumulation pathways.

Conclusions

In this study, we identified 4065 DEGs and 19 differen-
tially expressed metabolites (12 anthocyanins and seven
PAs) between young fruits of the green pear ‘CF and its
red mutation RCF. Based on correlation analyses be-
tween DEGs and anthocyanins/PAs, we found 203 can-
didate genes for the accumulation of 10 anthocyanins
and seven PAs. We further identified a ‘core set’ of 20
candidate genes for pear anthocyanin and PA accumula-
tion. Of these, PcGSTF12 was functionally characterized
as an important anthocyanin and PA carrier in pear. We
also identified an important pear anthocyanin and PA
regulation node consisting of two core genes, PcGSTFI2
and PcMYBI114. These results provide novel insights into
pear anthocyanin and PA accumulation. The candidate
genes for pear anthocyanin and PA accumulation pre-
sented here represent a valuable data set to guide future
functional studies.

Methods

Plant materials

The cultivar ‘RCF’ is a typical red pear sport of cultivar
‘CF that was discovered in the USA. The fruit of ‘RCF’
is initially green, then changes quickly to red within 1
week after full bloom, and remains red until the fruit
ripens. The coloration pattern of ‘RCF’ differs from that
of most pear species, which color at the ripening stage.
Thus, ‘CF and ‘RCF’ are ideal materials to study the mo-
lecular mechanism of anthocyanin and PA accumulation
in young pear. The pear cultivars ‘CF’ and ‘RCF were
cultivated in the experimental orchard of Yantai Acad-
emy of Agricultural Science, Shandong province, Yantai,
China (37°5'N, 122°1’'W). The fruits of ‘CF’ and ‘RCF
were collected in 2017 from 6-year-old trees grafted
onto Pyrus betulaefolia rootstocks. The different fruit
skin color phenotypes of ‘CF’ and ‘RCF were visible at 5
DAFB. Thus, the regulation of anthocyanin and PA ac-
cumulation at this developmental stage of fruits is
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important for fruit coloration. We collected fruits of ‘CF’
and RCF at two early developmental stages (2 DAFB
and 5 DAFB) for further analyses. Briefly, fruits of ‘CF’
and ‘RCF with a similar green color were first sampled
on 19 April 2017; these samples were collected at 2
DAFB, and were named ‘CF1’ and ‘RCF1’, respectively.
Fruits with significant differences in color between ‘CF’
and ‘RCF were sampled on 22 April 2017; these samples
collected at 5 DAFB were named ‘CF2" and ‘RCF2), re-
spectively. In each experiment, skins from 100 fruits per
replicate were collected. Three independent biological
replicates were collected for analyses. The fruit skin
samples were immediately frozen in liquid nitrogen and
stored at -80°C until further metabolite, RNA-
sequencing (RNA-Seq), and qPCR analyses.

Metabolite extraction and separation

Metabolite extraction and separation were carried out as
described by Wang et al. [23]. Briefly, the freeze-dried
fruit skin was crushed into powder and then extracted
overnight at 4°C in 1.0 ml 70% aqueous methanol. Fol-
lowing centrifugation at 10, 000 g for 10 min, the ex-
tracts were filtered and analyzed by HPLC.

Anthocyanin and PA identification and quantification
Anthocyanin and PA metabolites were annotated by
comparisons against public databases including
KNAPSAcK, MassBank, MoToDB, METLIN and
HMDB, and were quantified using MRM as described
by Wang et al. [23].

Total RNA isolation and RNA-Seq analysis

Total RNA was isolated using Trizol reagent (Invitrogen,
Carlsbad, CA, USA) and its integrity was evaluated using
a 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). The mRNA was purified from high-quality
total RNAs using oligo (dT) magnetic beads and then
broken into short fragments with fragmentation buffer.
The ¢cDNA was synthesized using a cDNA Synthesis Kit
(TaKaRa, Dalian, China) and linked to sequencing
adapters at both ends. The cDNA libraries were se-
quenced using the Illumina sequencing system (HiSeq™
2000, Ilumina, San Diego, CA, USA). Clean reads were
obtained using the NGS QC Toolkit [58]. Differential
expression analysis was carried out using the DESeq R
package (2012). The threshold for significant differential
expression was P < 0.05, and |log 2 fold change| >1 was
used to identify the differentially expressed genes (DEGs)
between two different cDNA libraries. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses of DEGs were performed
using the R platform as described elsewhere [59].
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Integrated metabolome and transcriptome analyses
Pearson’s correlation coefficients were calculated
between the metabolome and transcriptome data. The
coefficients were calculated from log2 (fold change) of
each metabolite and log2 (fold change) of each tran-
script by the EXCEL program. Correlations with a co-
efficient of R*>0.8 were selected. Metabolome and
transcriptome relationships were visualized using
Cytoscape (version 2.8.2).

gRT-PCR validation

The total RNA samples used for RNA-Seq were also
used for cDNA synthesis using the PrimeScript™ RT
Reagent Kit (TaKaRa) according to the manufacturer’s
instructions. The qRT-PCR analyses were conducted as
described previously [13] using the primers shown in
Supplementary Table 1. PcActin was used as the refer-
ence gene. Three biological replicates were analyzed.

Phylogenetic analysis

Phylogenetic tree analysis of PcGSTF12 and its homo-
logs was carried out by MEGA 7 with bootstrap values
calculated from 1000 replicate analyses.

PcGSTF12 promoter analysis

The 2000-bp upstream sequence of PcGSTF12 was ana-
lyzed using tools at the PlantCARE (http://bioinformat
ics.psb.ugent.be/webtools/plantcare/html/) and PLACE
Signal Scan Search databases (https://www.dna.affrc.go.
jp/PLACE/). The functional motifs are listed in Supple-
mentary Table 10. A MYB-binding site (MBS) sequence
CAACTG was found at —801bp in the promoter of
PcGSTFI2 by PlantCARE. This MBS element is known
to be a binding sequence of R2R3-MYBs [27, 60]. There-
fore, we selected this MBS element sequence to further
analyze the interaction between PcMYB114 and the pro-
moter of PcGSTFI2 using electrophoretic mobility shift
assays (EMSA) as described below.

Electrophoretic mobility shift assay

The EMSA was performed using the LightShift
Chemiluminescent EMSA Kit (Thermo Scientific,
Waltham, MA, USA) as described by Jiang et al. [61].
The recombinant protein was purified using the Ni-
agarose His-Tagged Protein Purification Kit (CWhbiotech,
Beijing, China).

Luciferase reporter assay

Luciferase reporter assay was carried out as described by
Wang et al. [62]. The CDS of PcMYBI14 was recom-
bined into the pHBT-AvrRpm1 effector. The promoter
of PcGSTFI2 was inserted into the pFRK1-LUC-nos re-
porter. The activities of LUC and GUS were detected
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using a Multimode Plate Reader (Victor X4, PerkinEl-
mer, http://www.perkinelmer.com/).

Ectopic expression of PcGSTF12 in Arabidopsis

For gene transformation, the CDS of PcGSTFI2 was
recombined into the pRI101-AN vector and then trans-
formed into Agrobacterium tumefaciens GV310lusing
the floral-dip method [63]. The T1 transgenic plants
were selected on half-strength Murashige and Skoog
(MS) solid medium with kanamycin. Kanamycin-
resistant seedlings were grown in soil in a light incubator
under a 16-h light/ 8-h dark photoperiod at 24°C.
Seven-day-old T2 seedlings were used for RNA-seq ana-
lysis and for anthocyanin and PA identification and
quantification.
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