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Abstract

Background: Lysin motif (LysM)-containing proteins are involved in the recognition of fungal and bacterial
pathogens. However, few studies have reported on their roles in the defense responses of woody plants against
pathogens. A previous study reported that the apple MdCERKT gene was induced by chitin and Rhizoctonia solani,
and its protein can bind to chitin. However, its effect on defense responses has not been investigated.

Results: In this study, a new apple CERK gene, designated as MdCERK1-2, was identified. It encodes a protein that
shares high sequence identity with the previously reported MdCERK1 and AtCERK1. Its chitin binding ability and
subcellular location are similar to MdCERK1T and AtCERK1, suggesting that MdCERK1-2 may play a role in apple
immune defense responses as a pattern recognition receptor (PRR). MdCERKT-2 expression in apple was induced by
2 fungal pathogens, Botryosphaeria dothidea and Glomerella cingulate, but not by the bacterial pathogen, Erwinia
amylovora, indicating that MdCERKT-2 is involved in apple anti-fungal defense responses. Further functional analysis
by heterologous overexpression (OE) in Nicotiana benthamiana (Nb) demonstrated that MdCERKT-2 OE improved
Nb resistance to the pathogenic fungus, Alternaria alternata. H,O, accumulation and callose deposition increased
after A. alternata infection in MdCERKT1-2 OE plants compared to wild type (WT) and empty vector (EV)-transformed
plants. The induced expression of NbPAL4 by A. alternata significantly (p < 0.01, n=4) increased in MdCERK1-2 OF
plants. Other tested genes, including NbNPRT, NbPR1a, NbERF1, and NbLOX1, did not exhibit significant changes
after A alternata infection in OE plants compared to EV or WT plants. OE plants also accumulated more
polyphenols after A. alternata infection.
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Conclusions: Heterologous MdCERKT-2 OE affects multiple defense responses in Nb plants and increased their
resistance to fungal pathogens. This result also suggests that MdCERKT1-2 is involved in apple defense responses

against pathogenic fungi.

Keywords: Fungal pathogen, LysM-containing protein, Malus x domestica, Nicotiana benthamiana, Plant immunity

Background

Plants are constantly subjected to attack from various
pathogenic microorganisms. To fight against pathogen
infection, plants have developed sophisticated immune
systems that ward off pathogens and protect the plant from
infection. During pathogen infection, plants first detect
pathogen-associated molecular patterns (PAMPs) via pat-
tern recognition receptors (PRRs), and then initiate a series
of rapid PAMP-triggered immunity (PTI) responses to limit
the proliferation and spread of pathogens [1]. Thus, PRRs
are a pivotal component of innate plant immune systems.
To date, some plant PRRs have been identified [2], includ-
ing FLAGELLIN SENSING 2 (FLS2) [3], LYM1/3 [4],
ELONGATION FACTOR-TU RECEPTOR (EFR) [5],
PEP1 RECEPTOR 1 (PEPR1), PEPR2 [6-8], CHITIN
ELICITOR RECEPTOR KINASE1 (CERK1) [9-11], and
CHITIN ELICITOR BINDING PROTEIN (CEBiP) [12],
which perceive the flg22 bacterial flagellin epitope, bacterial
peptidoglycan, EF-Tu epitope elf18, plant elicitor peptides
(Peps) released during pathogen infection, and chitin, re-
spectively. Upon binding to corresponding ligands, these
PRRs initiate downstream defense responses, such as a
transient influx of calcium ions, ROS bursts, MAPKs activa-
tion, and the increased expression of pathogenesis-related
(PR) protein genes.

Lysin motif (LysM)-containing proteins are involved in
the recognition of fungal and bacterial pathogens as
PRRs. They were first identified from bacteria with the
ability to bind to peptidoglycan (PGN) [13]. OsCEBiP
and AtCERK1 are well-studied plant LysM-containing
proteins that recognize chitin, a representative PAMP of
pathogenic fungi that initiates downstream immune re-
sponses [14]. AtCERK1 contains a 3-LysM ectodomain
and intracellular Ser/Thr kinase region, and is an essen-
tial receptor for chitin elicitor signaling in Arabidopsis
thaliana [9]. Two AtCERKIs form a sandwich-type het-
erotetramer complex with a LysM-containing receptor-
like kinase (LYK), LYKS5, another LysM-containing pro-
tein with higher chitin binding affinity that is indispens-
able for chitin-induced AtCERK1 phosphorylation and
immune responses in Arabidopsis [15]). Rice CERK1
(OsCERK1) contains 2 LysMs, a transmembrane region,
and an intracellular Ser/Thr kinase region that is essen-
tial for the transduction of immune signals [16]. Unlike
AtCERK1, OsCERK1 does not directly bind to chitin. In-
stead, it recognizes chitin by forming a sandwich-like

heterotetramer complex receptor with OsCEBiP, another
LysM-containing protein with the ability to bind to chitin
that elicits downstream immune responses in rice [12, 17].
OsCEBIP lacks an intracellular kinase domain and de-
pends on OsCERK]1 to transmit signals to plant cells.

In addition to the aforementioned LysM proteins, many
other members of this family are involved in pathogen rec-
ognition. The Arabidopsis genome encodes 5 LYKs: LYK1/
CERK1 and LYK2 through 5 [11, 18]. LYK3 is involved in
chitin signaling as a negative regulator in the regulation of
Arabidopsis resistance to Botrytis cinerea and Pectobacter-
ium carotovorum infection. Its expression was strongly re-
pressed by elicitors (OGs and flg22) and fungal infection,
and induced by the hormone, abscisic acid (ABA) [19].
LYK4 binds to chitin or chitooctaose, and the binding was
partially repressed in a lyk4 mutant [20]. LYK5 recognizes
long-chain chitooligosaccharides and forms a complex with
CERKI1. This complex activates the CERK1 kinase domain
and induces downstream immune responses [21]. LysM-
containing glycosylphosphatidylinositol-anchored protein 2
(LYM2) is an OsCEBiP homologue in Arabidopsis, but the
lym2 mutant did not affect CERKI-mediated chitin
responses. Instead, LYM2 participated in the CERKI1-
independent pathway by mediating a reduction in molecu-
lar flux in the presence of chitin [22], as well as contributed
to disease resistance against A. brassicicola through the
perception of chitin [23]. Interestingly, LYK proteins in le-
gumes are essential receptors for the perception of lipochi-
tooligosaccharide nodulation factors (NFs) produced by
rhizobia and are essential for the establishment of nitrogen-
fixing symbiosis [24—29].

Functional analysis of LysM-containing proteins demon-
strated the importance of the LysM domain in fungal patho-
gen recognition. Although in-depth investigations have been
performed in rice and Arabidopsis, limited information has
been reported on LysM-containing proteins in apple or
other woody plants. Thus, it remains unclear whether apple
utilizes the same mechanism as Arabidopsis or rice to
recognize fungal pathogens and trigger downstream defense
responses. Recently, Zhou et al. [30] reported an apple
CERK1 like protein, MACERK1, which was induced by chi-
tin and Rhizoctonia solani. These findings provided evi-
dences that MACERK1 may also play a role in apple defense
responses against fungal pathogens. In this study, a gene en-
coding the LysM-domain containing protein was identified
in apple tissues infected with Botryosphaeria dothidea. The
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corresponding protein shared highly similarity with
MACERK1 (designated as MdCERKI-2). Results revealed
that MdACERKI-2 overexpression (OE) in Nicotiana
benthamiana (Nb) plants improved their resistance to fungal
pathogens.

Results

Characterization of a LysM-containing protein kinase from
Malus x domestica

A gene (GDR ID: MD17G1102100) encoding LysM-
containing protein kinase was found to be highly expressed
in shoot barks of apple by B. dothidea as revealed by tran-
scriptome approach. Its protein contains a long extracellu-
lar region, a transmembrane domain and an intracellular
Ser/Thr kinase domain, and was highly homologous to chi-
tin recognition proteins MdACERK1 [30] and AtCERK1 [9,
10]. Furthermore, the motif analysis revealed that the extra-
cellular region consists of a signal peptide consisting of 21
amino acids and 3 LysMs (Figs. 1a; S1). The domain com-
position of the newly identified protein was similar to
MdACERK1. To distinguish it from MdCERKI, the newly
identified gene was designated as MdCERKI-2. Homolo-
gous alignment revealed that the MdCERKI-2 protein
shared high sequence identity with MdCERK1 (82.9%),
OsCERK1 (57.6%), and AtCERK1 (57.1%) (Fig. S2). By
aligning MdCERK1-2 with well-studied LysM-containing
proteins, 7 residues that are crucial for NAG binding were
found in LysM2, which are similar to the other reported
LysM-containing proteins [14, 31] (Fig. 1b), suggesting that
MdACERK1-2 can bind to NAG. The phylogenetic analysis
revealed that MdCERK1-2 was closely related to MdCE
RK1, OsCERK1, AtCERK]1, and AtLYK3 (Fig. 1c). Accord-
ing to early reports, these proteins are all involved in the
defense against fungal pathogens [9, 19, 30], suggesting that
MdCERK1-2 may also be involved in the defense responses
against fungal pathogen infection.

MdCERK1-2 exhibited similar subcellular location and
chitin-binding activity as MACERK1 and AtCERK1
Subcellular location revealed that MACERK1-2 was located
at the plasma membrane. Fluorescence of the MACERK1-
2-GFP fusion protein was detected at the plasma mem-
brane (Fig. 2a). This result was confirmed by subsequent
immunobloting experiments using an anti-GFP antibody.
Abundant MACERK1-2-GFP proteins existed in the micro-
somal fraction. No detectable MACERK1-2-GFP was ob-
served in the soluble fraction (Fig. 2b). Binding assays using
recombinant proteins demonstrated that the putative ecto-
domain of MdCERK1-2 specifically bound to chitin, but
did not bind to PGN (Fig. 2¢). In contrast, under the same
conditions, obvious binding to PGN was observed in
AtLYM], a plasma membrane protein of Arabidopsis that
physically interacts with PGNs and mediates Arabidopsis
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sensitivity to PGNs in gram-negative and gram-positive
bacteria [4].

MdCERK1-2 expression increased during B. dothidea
infection

To examine the expression changes in response to B. dothi-
dea infection, the expressions of MdCERK1-2 and other 4
apple LYK genes were analyzed, including MdCERKI and 3
putative LYK genes, MdLYK3, MdLYK4, and MdLYKS
(Table S1). In apple shoot bark and fruits, two target tissues
of B. dothidea infection, only MdCERKI-2 was significantly
(p<0.01, n=4) upregulated after B. dothidea infection
compared to the mock-infected control (Fig. 3a, b). No sig-
nificant changes were observed in the expressions of other
LYK genes, including MdCERKI (Fig. 3a, c—f). Next,
whether MdCERKI1-2 could be induced by other apple fun-
gal and bacterial pathogens was examined. MdCERKI-2
expression also increased in the young leaves of apple
plantlets after inoculation with the apple fungal pathogen,
Glomerella cingulate (Fig. 3g). However, no significant ex-
pression changes of MdCERKI-2 were observed after Erwi-
nia amylovora infection, a bacterial pathogen (Fig. 3h).
These results suggest that MdCERKI-2 was involved in the
immune defense responses against fungal pathogens.

MdCERK1-2 OE improved the resistance of Nb plants to A.
alternata

To generate OE transgenic Nb plants, binary vectors car-
rying MdCERKI-2 and the 3 HA tags were introduced
into Nb using Agrobacterium-mediated transformation.
Transgenic lines were screened using hygromycin and
carbeniclllin. All of the obtained transgenic lines were
confirmed by PCR with genomic DNA as template
(Fig. 4a). The expression of MdCERKI-2 was confirmed
using immunobloting. The identified transgenic lines ex-
hibited high levels of MdCERKI-2 expression (Fig. 4b).
No visible difference in phenotype was observed between
transgenic and wild-type (WT) plants. Next, whether
MACERK1-2 OE altered the resistance of Nb plants to
pathogenic fungi was tested. MdCERKI-2 OE plants
were used for A. alternata inoculation. EV-transformed
Nb and WT plants were used as the controls. No obvi-
ous lesions were observed 5 days post-inoculation (dpi).
Visible lesions were observed at 8 dpi on almost all OE,
EV, and WT plants. However, there were significantly
(p<0.01, n=5) milder lesions on OE plants compared
to EV and WT plants. Only small lesions were observed
on OE plants, while more severe lesions were observed
on EV and WT plants (Fig. 4c, d). Fungal growth was
also evaluated by microscopic observation and relative
fungal mass was calculated. Hypha growth was observed
at 3 and 5 dpi, although no visible lesions were observed.
At 8 dpi, heavy hyphae growth was observed in WT and
EV plants, while the relative fungal mass of OE plants
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Fig. 1 Characterization of the MdCERK1-2 protein. a Motifs and domains of the MdCERK1-2 protein. Numbers indicate the position of amino
acids. SP, signal peptide; TM, transmembrane region. b Sequence alignment of LysM proteins. Consensus and similar amino acid residues for all
sequences are highlighted with black or gray background. R1-R7 indicate 7 crucial positions of NAG recognition. R4, R6 and R7 are hydrophobic
amino acid residues. ¢ Phylogenetic tree of LYK proteins from apple, rice and Arabidopsis. The tree was constructed in MEGA 5.0 using the
neighbor-joining (NJ) method. Bootstrap support values are indicated with numbers at the nodes. Proteins used in the phylogenetic tree are
summarized in Table S1
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was significantly (p < 0.01, n = 5) lower compared to WT
and EV plants (Fig. 5a, b).

ROS accumulation and callose deposition increased in
MdCERK1-2 OE plants

To further examine the effects of MdCERKI-2 on defense
responses, ROS accumulation and callose deposition were

evaluated using DAB and aniline blue staining, respectively.
Significant (p < 0.01; n = 5) increases in ROS accumulation
were detected in OE plants compared to EV plants at 72 h
post-inoculation (hpi) with A. alternata (Fig. 6a). Xylenol
orange assays were used to quantify ROS accumulation
and confirmed the enhanced ROS levels in OE plants (Fig.
6¢). No significant differences were observed among OE,
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Fig. 2 Subcellular localization and ligand binding of the MdCERK1-2 protein. a Subcellular localization of MdCERKT-2. The MdCERK1—-2-GFP fusion
gene was transiently expressed in Nb leaves using the A. tumefaciens-mediated method and observed with a confocal microscope (bottom). The
control expressing GFP was also observed (top). b Membrane proteins from Nb plants expressing MdCERK1-2-GFP were prepared and separated
with SDS-PAGE. The presence of MdCERK1-2-GFP in membrane proteins was determined by immunobloting with an anti-GFP antibody. S,
soluble protein; T, total protein; M, membrane protein; CBB, Coomassie brilliant blue staining. Anti-UGPase was used as internal reference of
cytoplasm protein. ¢ MdCERK1-2-ECD binds to chitin, but does not bind to PGN. Binding proteins were separated by SDS-PAGE and detected by
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EV, and WT plants under mock-infection conditions. Chi-
tin treatment also induced significantly (p <0.01; n=7)
higher H,O, generation in OE plants compared to WT
and EV plants (Fig. 6e). Callose deposition was visualized
by aniline blue staining and quantified by digital count
measurements. MdCERKI-2 OE significantly (p < 0.01; n =
9) increased callose deposition in OE plants compared to
EV and WT plants (Fig. 6b, d). These results suggest that
MACERKI-2 OE positively regulates ROS accumulation
and callose deposition in response to A. alternata infection.

MdCERK1-2 OE affects the expression of defense-related
genes

To determine whether MdCERKI-2 OE affects the ex-
pression of defense-related genes during pathogen infec-
tion, defense-related genes were quantified by qRT-PCR
at different time points after A. alternata inoculation
(Fig. 7), including the salicylic acid (SA)-related genes,
NbNPRI and NbPRIa [32, 33], jasmonic acid (JA)-respon-
sive gene, NPLOXI [32, 33], ethylene-responsive gene,
NDERFI [32], and NbPAL4, a gene involved in the biosyn-
thesis of polyphenol compounds [34, 35]. The basal ex-
pression of these genes did not show significant
differences among OE, EV, and WT plants (Fig. 7a). After
A. alternate infection, NbPAL4 exhibited significantly (p <

0.01, n = 4) higher expression in OE plants compared to
EV and WT plants (Fig. 7f). In contrast, NbNPRI,
NbPR1a, NPERF1, and NPLOX1 were not significantly dif-
ferent between OE and WT plants, although these genes
were induced by A. alternata infection.

MdCERK1-2 OE alters polyphenolic metabolism in Nb
plants

The differences in NbPAL4 gene expression between OE
and WT plants suggest that polyphenolic metabolism and
the SA signaling pathway may be influenced by
MACERKI-2 OE. Total phenolic contents and SA levels
were analyzed to determine the effects of MdCERKI-2
OE. After A. alternata infection, all of the tested plants ex-
hibited significantly enhanced polyphenol content levels
(p <0.05; n=4). Polyphenol contents in OE plants were
clearly higher than that in EV and WT plants (Fig. 8a). In
contrast, SA levels were not significantly different (Fig. 8b,
¢). MACERK1-2 OE did not alter basal SA levels (Fig. 8b).
Although the SA levels of all of the tested plants increased
after A. alternata infection, MdCERKI1-2 OE did not re-
sult in significant differences in SA levels between OE and
WT plants or between OE and EV plants in response to
A. alternata infection (Fig. 8c).
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Fig. 3 Expression of apple MdLYKs. a MdLYKs expression in shoot bark was induced by B. dothidea. Samples were collected 28 dpi when warts
were just visible. b—f MdLYKs expression in fruits induced by B. dothidea. g, h MdCERK1-2 expression in leaves inoculated with £. amylovora or G.
cingulata. INF: infected sample; CON: mock infected sample. Four replicates were used for each experiment and experiments were performed at
least 3 times. The data are presented as the mean = SD (n=4) and were subjected to a two-way ANOVA followed by Tukey's post-hoc test.
Significant differences were determined when p < 0.05. Asterisks indicate significant differences when compared to the control (** p < 0.01)

Discussion
Both AtCERK1 and OsCERKI are required for chitin
signaling and plant resistance to fungal pathogens [9, 10,
12, 17, 31, 36], but their recognition mechanisms for chi-
tin differ. It is important to determine whether the apple
CERK1 homologue plays an important role in fungal
pathogen defense. Data presented here indicate that the
apple MdCERKI-2 gene is also involved in the defense
against fungal pathogens. Specifically, MdCERKI-2 OE
improved the resistance of Nb plants to A. alternata and
affected their immune response. This work, combined
with the findings reported by Zhou et al. [30], confirmed
that apple CERK1 also functions as a PRR, recognizing
fungal pathogen and playing an important role in apple
plant defense against fungal pathogens.

The gene expression data indicate that MdCERKI-2
was induced by 2 fungal pathogens, B. dothidea and G.
cingulate, but not by the bacterial pathogen, E. amylovora,

suggesting that its expression changes were not specifically
in response to B. dothidea. Generally, PRRs recognize
conserved microbial molecules, but not certain specific
pathogens. The expression changes of MdCERKI-2 in re-
sponse to different pathogenic fungi may reflect a broad-
spectrum property of MACERK1-2 as a potential PRR.
MACERKI-2 expression was not induced by E. amylovora
in apple, but this was not enough to exclude its involve-
ment in the defense against bacterial pathogens.
MACERKI-2 may not function as a PRR in the defense
against bacterial pathogens just as AtCERK1 or OsCERK1.
The two proteins are required for bacteria recognition via
interacting with LYM1 and LYM3 in Arabidopsis, or
OsLYP4 and OsLYP6 in rice, which physically interact
with PGN [4, 37], a bacterial PAMP.

The enhanced expression of MACERKI-2 after patho-
genic fungi infection suggests that high MdCERKI-2
levels are required for it to function as PRR. It is known
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that chitin treatment enhances CERKI expression and
induces plant resistance to fungal and bacterial patho-
gens [1]. However, it has not yet been determined
whether chitin-induced resistance correlates with the
high levels of CERKI. If enhanced CERKI expression is
required for plant resistance, there are 2 possibilities re-
garding CERK1 function. One is that basal CERKI levels
are not enough for its PRR function, thereby enhanced
CERK1 levels are necessary. The other is that CERKI
may play additional roles that differ from that as a PRR.
In previous reports, transient CERK1 OE resulted in cell
death in the absence of chitin or pathogen infection [38,

39], suggesting that CERKI has a function that is inde-
pendent of chitin signaling or pathogen infection. In this
study, MdCERKI-2 OE improved Nb plant resistance to
A. alternata, indicating that high MdCERKI-2 levels are
important for its function.

Although MdCERKI-2 OE improved Nb plant resist-
ance to fungal pathogens, no significant effects on the
tested parameters were observed in the absence of chitin
treatment or pathogen infection, including SA levels,
phenol contents, gene expression, ROS accumulation,
and callose deposition, suggesting that the function of
MACERK1-2 in plant immune responses depends on
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Fig. 5 Pathogenic fungus growth on Nb leaves. a Microscopic observation of fungal hyphae. b Relative fungal mass as revealed by gRT-PCR. The
data were analyzed for statistical differences by a two-way ANOVA followed by Tukey's post-hoc test. Bars indicate the mean + SD (n=4).
Asterisks indicate significant differences when compared to the WT (** p < 0.01)
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chitin signaling or pathogen infection. Notably,
MACERKI-2 OE resulted in increased ROS accumula-
tion and callose deposition after A. alternata inocula-
tion. This may represent a non-specific enhancement of
defense responses mediated by MJACERKI-2 against
microorganism invasion. ROS accumulation and callose
deposition widely contribute to plant defense responses
against fungal infections and are affected by LysM
protein-medicated signaling [9, 38]. Enhanced ROS ac-
cumulation and callose deposition in OE plants indicate
that ROS accumulation contributed to the improved re-
sistance of Nb plants to fungal pathogens.

MACERKI-2 OE potentiated NbPAL4 expression in
response to A. alternata infection. Other tested genes,
including NbNPRI, NbPRIa, NbLOX1, and NbERF1I, did
not exhibit significant changes. These results suggest
that the enhancement of resistance in OE plants to fun-
gal pathogens compared to WT was related to poly-
phenolic metabolism, not to the SA, JA, or ethylene
pathways. Several previous reports regarding LysM-
containing protein-mediated chitin signaling found that
it was independent of the SA, JA, or ethylene signaling
pathways, but it was related to phytoalexin [11, 19]. The
data also showed significantly enhanced total phenolic

contents in OE plants after A. alternata infection, which
supports the influence of MdCERKI-2 on polyphenolic
metabolism.

Previous studies found that CERKI affects SA signal-
ing pathways. Mutations in the ectodomain of CERK1
promote the accumulation of SA and enhances the re-
sistance to biotrophic pathogens [40], while mutations in
the kinase domain of CERK1 did not affect SA-induced
defense responses [11]. SA regulates CERK1 levels and
potentiates chitin-induced responses [41]. However, the
results of this study found no significant differences in
the SA levels between OE and WT plants after A. alter-
nata infection, suggesting that the improvement of
MACERKI1-2-mediated resistance did not result from
the effects of MdCERKI1-2 OE on SA levels.

Conclusions

An apple LyM-containing protein gene, MdCERKI-2,
was identified in this study. MdCERKI-2 was involved
in the anti-fungal defense responses of apple as a PRR.
MACERKI-2 OE improved the resistance of Nb plants
to A. alternata infection. ROS accumulation, callose de-
position, and polyphenols contributed to improved
resistance.
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Methods

Plant materials

The ‘Fuji’ apple cultivar was obtained from the LAIXI breed-
ing farm of the fruit nursery stock located in Qingdao, China,
and confirmed by Hongyi Dai and Yugang Zhang. Two-year-
old ‘Fuji’ apple trees were used for gene cloning and expres-
sion analysis. Trees were grown in a greenhouse under natural
daylight conditions. Nb seeds were obtained from the Qingz-
hou Tobacco Research Institute of China National Tobacco
Company, and were confirmed by Qiming Chen. Transgenic
and WT Nb plants were cultured in a plant growth chamber
under a 16/8-h light/dark photoperiod at 26 °C/22 °C.

Pathogen inoculation

For gene expression analysis in apple, current-year shoots
were inoculated with B. dothidea as previously described
[42]. Before inoculation, shoots were cleaned with 75%
ethanol for surface sterilization. Mycelial strips were made
from well-grown B. dothidea PDA plates with blades and
wrapped onto the surface of shoots using polyethylene
film. After 3 weeks, polyethylene film and mycelial strips
were removed and the inoculated shoots were monitored

for ring rot symptoms every 2 days. When visible warts
had just formed, the barks of diseased shoots were col-
lected and used for gene expression analysis. The same
procedure was performed on other current-year shoots,
except for substituting PDA for mycelial strips; these
shoots were used as mock-inoculated controls.

For inoculation in Nb plants, the detached leaves from 7-
week-old plants were placed on 1% agar in petri dishes.
Mycelial plugs (5 mm diameter) were made from PDA
plates of actively growing A. alternata and cultured at 25 °C
for 1 week. Mycelial plugs were laid on detached Nb leaves
for inoculation and kept at 25 °C. The fungal biomass in in-
fected Nb leaves was determined at 3, 5, and 8 dpi by qRT-
PCR using specific primers for the AaACTIN gene of A.
alternata (Table S2), and normalized to the NbPACTIN gene
according to previously reported methods [43]. Trypan blue
staining was used to detect mycelial growth and cell death
according to previously described methods [44].

Gene cloning and expression analysis
To clone full-length coding regions (CDS) of MdCERK1-
2, primers were designed according to the sequences
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obtained from GDR and used for gene amplification. Total ~ Subcellular localization

RNA were isolated using an EASYspin plant RNA rapid
extraction kit (YP Biotech Co., Ltd., Beijing, China) and
c¢DNA was synthetized using a PrimeScript™ II 1st strand
c¢DNA synthesis kit (TaKaRa, Beijing, China) following the
manufacturer’s instructions. qRT-PCR was performed as
previously described [42]. The primers used in the gene

Full-length CDS of MdCERKI-2 was integrated into
pCAMBIA1300-221-GFP upstream of the GFP se-
quence to form a fusion protein with GFP. The resultant
construct was transformed into A. tumefaciens EHA105.
Transformed bacteria were cultured and resuspended in
buffer (10 mM MgCl,, 10 mM 2-(N-morpholine)-ethane-

cloning and expression analysis are provided in Table S2. sulfonic acid (MES)-NaOH, pH5.6, and 150puM
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Fig. 8 The effect of MdCERKI-2 expression on polyphenol content and SA accumulation. a Polyphenol contents in OE, EV, and WT plants after A.
alternata infection. b Basal SA levels in OE, EV, and WT plants. ¢ SA levels in OE, EV, and WT plants after A. alternata infection. The data were
analyzed for statistical differences by a two-way ANOVA followed by Tukey's post-hoc test. Bars represent the mean + SD (n = 4). Different letters
indicate statistically significant differences; p < 0.05 was regarded as being statistically significant
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acetosyringone) [38]. The bacterial concentration was
adjusted to a final OD value of 0.5 at 600 nm and infil-
trated into 4-week-old Nb leaves with a needleless syr-
inge. Three days after infiltration, the infiltrated area was
observed using a TCS SP5 confocal microscope (Leica
Microsystems,  Wetzlar, Germany) to localize
MdCERK1-2-GFP fusion proteins. To verify the mem-
brane localization of MdCERKI-2, microsomal and sol-
uble proteins were prepared from Nb leaves transiently
expressing MdCERK1-2-GFP following previously de-
scribed methods [10]. The presence of MdCERKI1-2-
GFP was determined by immunobloting with an anti-
GFP antibody (Abcam, Shanghai, China).

In vitro chitin and PGN binding assays

The MdCERK1-2 ectodomain was expressed and purified
following previously described methods [45] with minor
modifications. DNA fragments encoding the MdCERKI-2
ectodomain were amplified from cDNA of apple branch
bark and inserted into pET-28a (+) between Ncol and
Xhol. Recombinant DNA molecules were transformed
into E. coli BL21 (DE3) for protein expression. Recombin-
ant proteins were purified using a Ni-NTA column (GE
Healthcare, Shanghai, China) under denatured conditions
and refolded using the gradient dialysis method [45]. Pro-
tein concentrations were determined using the BCA
method [46]. The same procedure was performed with
AtLYM1-ECD, which were used as positive controls in
the PGN binding experiment.

For in vitro chitin binding assays, the recombinant pro-
tein buffer was changed to binding buffer (500 mM NaCl,
20 mM Tris-HCl, 1 mM EDTA, and 0.05% Triton X-100).
The proteins were adjusted to a final concentration of 1.5
mg/mL. Chitin magnetic beads (100 pL, NEB) were
washed 3 times with 1 mL binding buffer and mixed with
50 uL proteins (details outlined above) followed by incuba-
tion at 4°C for 1h. After centrifugation, magnetic beads
were washed 3 times with binding buffer. Then, bead-
binding proteins were eluted by boiling in 50 uL. SDS-
PAGE loading buffer and detected by running 20 uL on a
15% denaturing protein gel.

For the PGN binding assay, PGN (50 pg) was mixed
with purified proteins in 250 uL 100 mM PBS (pH 7.0)
and incubated at 4 °C for 10 min. After centrifugation at
12000xg for 10 min at 4°C. The resultant pellet was
washed 3 times with PBS (pH 7.0), dissolved in 100 pL
SDS sample buffer, and separated with SDS-PAGE
followed by immunoblot with anti-His antibodies
(Abcam, Shanghai, China).

Genetic transformation of Nb plants

The genetic transformation of Nb plants was performed
using the A. tumefaciens-mediated leaf disc method [42].
The encoding ¢cDNA of MACERKI-2 was integrated
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downstream of the 35S promoter of pCAMBIA1300—
221-HA. The resultant construct was transferred into
the A. tumefaciens strain, EHA105, which was subse-
quently used for genetic transformation. The genetic
transformation of Nb plants and verification of positive
plants were conducted as previously described [42].

Histochemistry and ROS measurements

H,0O, accumulation and cell death were visualized by
DAB and trypan blue staining, respectively, following
previously described methods [47]. Briefly, leaves were
incubated in a 3,3-diaminobenzidine (DAB) solution (1
mg/mL) overnight in the dark. Then, leaves were
destained with a mixture of 80% ethanol and placed in a
water bath at 65°C. HyO, quantitation was performed
based on xylenol orange assays [47]. For measurements
of H,O, generation after treatment with chitin (200 pg/
mL), Luminol-based assays were performed according to
previously described methods [48].

Microscopic observation and quantification of callose
deposition

Callose deposition was examined according to previously
described methods [49]. Briefly, Nb leaves inoculated
with A. alternata were destained in a mixture of distilled
water, glycerol, lactic acid, phenol saturated with water,
and absolute ethanol at a ratio of 1:1:1:1:8 followed by
staining with 0.01% aniline blue (w/v). Callose accumula-
tion was examined using UV epifluoresence microscopy
(350 nm/425 nm excitation/emission wavelengths, re-
spectively) and quantified with digital photographs using
Image ] software. Callose measurements were deter-
mined based on 9 photographs and analyzed for statis-
tical differences by a one-way ANOVA followed by
Tukey’s post-hoc test. A significance threshold of p <
0.05 was used to determine significant differences.

Measurement of total polyphenols and salicylic acid

Total polyphenolic contents were measured according to
previously described methods [50] with minor modifica-
tions. Fresh leaves (4 g) were collected and homogenized
in 8 mL methanol. After centrifugation, the supernatant
was used for total polyphenol measurements. Gallic acid
was used as a standard reference and the values of poly-
phenols were expressed as gallic acid equivalents in per
gram fresh weight of the leaves. SA levels were deter-
mined according previously described methods [42].
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Bold letters with gray shadow indicate signal peptides. Letters in boxes
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improve the alignment.
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