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A 2-Cys peroxiredoxin gene from Tamarix
hispida improved salt stress tolerance in
plants
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Abstract

Background: Peroxiredoxins (Prxs) are a large family of antioxidant enzymes that respond to biotic and abiotic
stress by decomposing reactive oxygen species (ROS). In this study, the stress tolerance function of the Th2CysPrx
gene was further analysed. It lays a foundation for further studies on the salt tolerance molecular mechanism of T.
hispida and improved salt tolerance via transgenic plants.

Results: In this study, the stress tolerance function of the Th2CysPrx gene was further analysed. The results of
transgenic tobacco showed higher seed germination rates, root lengths, and fresh weight under salt stress than
wild-type tobacco. Simultaneously, physiological indicators of transgenic tobacco and T. hispida showed that
Th2CysPrx improved the activities of antioxidant enzymes and enhanced ROS removal ability to decrease cellular
damage under salt stress. Moreover, Th2CysPrx improved the expression levels of four antioxidant genes (ThGSTZ1,
ThGPX, ThSOD and ThPOD).

Conclusions: Overall, these results suggested that Th2CysPrx enhanced the salt tolerance of the transgenic plants.
These findings lay a foundation for further studies on the salt tolerance molecular mechanism of T. hispida and
improved salt tolerance via transgenic plants.
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Background
Abiotic stresses, such as drought, salinity, and extreme
temperature, among others, negatively affect the growth
and yield of plants, resulting in very large economic
losses. Among the harmful environmental stresses, salt
stress in particular leads to slower plant growth and de-
clines in cultivated plant production [1]. In the long-
term evolutionary process, some plants, such as Atriplex
canescens [2], Halostachys caspica [3], Suaeda salsa [4],
and Salicornia brachiata [5], among others, have grad-
ually adapted to a salt stress environment and can grow
in dry and saline land.

Tamarix hispida is a typical woody halophyte that can
form natural forests in saline alkali soil with 1% salt con-
tent. In addition, it can also endure drought stress,
which makes it an ideal material to clone genes related
to drought and salt tolerance and to study the salt toler-
ance mechanism of woody halophytes [6]. Many previ-
ous studies have been conducted to examine the
mechanism of salt and drought tolerance and the func-
tion of stress resistance genes of T. hispida. For example,
TheIF1A, ThDREB, ThZFP1, ThGSTZ1 and ThPOD3 in
T. hispida increase salt and drought tolerance by regu-
lating superoxide dismutase (SOD) and peroxidase
(POD) activities to reduce reactive oxygen species (ROS)
accumulation [7–11]. These results all suggest that scav-
enging of ROS plays an important role in the response
of T. hispida to salt stress.
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POD, SOD, CAT (Catalase), GPX (Glutathione perox-
idase) and GST (Glutathione S-transferases) are import-
ant ROS-scavenging genes. Gao et al. [12] found that
ThGSTZ1 improved tolerance to abscisic acid ABA and
methyl viologen (MV) stress by augmenting the activities
and expression levels of ThGPX, ThSOD, and ThPOD
and the ROS-scavenging capacity. The NtSOD, NtAPX,
NtCAT, NtPOX, and NtGST genes play roles in eliminat-
ing ROS and increasing stress tolerance in plant under
stress. Fortunately, overexpressed wheat TaWRKY44 was
found to activate the above five genes [13]. In Betula
platyphylla, BplMYB46 could increase the ROS-
scavenging capacity and proline content to improve salt
and osmotic tolerance by affecting the expression of
genes, including POD, SOD and P5CS (Δ1-pyrroline-5-
carboxylate synthetase) [14]. Zhang et al. [15] found that
under NaCl stress, ALA in tomatoes increased the activ-
ity of ROS-scavenging antioxidant enzymes and the ex-
pression of the SOD, APX and POD genes encoding
these enzymes.
Peroxiredoxins (Prxs) are a family of non-haem peroxi-

dases that are widely present in animals, plants and micro-
organisms. The biological function of these peroxidases is
to regulate the balance of ROS and intracellular signal
transduction through hydrogen peroxide (H2O2), alkyl hy-
droperoxides, and peroxynitrite [16–19]. In plants, based
on the number and position of conserved Cys residues,
Prxs are grouped into four classes: 1CysPrx, 2CysPrx,
type-II Prx and PrxQ. The 1CysPrxs have only one con-
served Cys residue, and PrxQ contains two cysteine resi-
dues that are catalytically active and linked by
intramolecular disulphide bonds [20]. Both 2-Cys Prx and
type-II Prx have two conserved Cys residues, but the dif-
ference between them is that 2-Cys Prx is a stromal pro-
tein [21], and Prx-II has various isoforms [22].
Prxs operate in a particular way during plant growth,

development and stress tolerance. For example, Kim
et al. [23] found that 2CysPrxs could eliminate H2O2 by
participating in an alternative water-water cycle and pro-
tect photosynthetic structures against oxidative damage
under environmental restriction. Pea chloroplast
2CysPrx and mitochondrial Prx IIF affect the structure
and peroxidase activity of photosynthetic structures [24].
Kim et al. [25] found that 2CysPrx from Oryza sativa
could increase tolerance to ROS-induced oxidative stress
by improving cellular redox homeostasis. Overexpres-
sion of 2CysPrx in tall fescue plants increases resistance
to oxidative stress and antioxidant activity [26]. Prx also
detoxifies ROS and modulates signalling responses [27].
Interestingly, there is no direct evidence that the Prxs
gene of T. hispida is involved in ROS scavenging and
the abiotic stress response. In a previous study, Gao
et al. [28] cloned four Prxs genes from T. hispida. Real-
time quantitative PCR (qRT-PCR) analysis indicated that

these genes could respond to several abiotic stresses and
ABA application. However, Th2CysPrx displayed a
unique expression pattern under the studied stress con-
ditions. In the present study, the role of Th2CysPrx in
salt stress was further demonstrated, and elucidated the
molecular mechanism of this gene under salt stress. It
also provided potential application prospects for molecu-
lar breeding to improve salt tolerance.

Results
Overexpression of Th2CysPrx improves salt stress
tolerance in transgenic tobacco
To study the biological role of Th2CysPrx in the salt
stress response, the 14 resistant lines were obtained. The
qRT-PCR results showed that Th2CysPrx gene were
overexpressed in all 14 lines (Additional file 1: Figure
S1). Two representative T3 homozygous transgenic lines
(Line 7 and Line 11) were randomly selected for further
salt tolerance analysis. The germination and growth of
transgenic and wild-type (WT) tobacco were compared
during exposure to normal and 125mM NaCl stress
conditions. The results showed that, under normal con-
ditions, there was no obvious difference in the germin-
ation rates and seedling growth between transgenic and
WT plants (Fig. 1a-c). Under salt stress, however, the
germination rate and seedling growth of transgenic
plants was significantly better than those of WT plants.
Under NaCl stress, the germination rates of transgenic
lines were 89.7% (Line 7) and 84.5% (Line 11), while that
of WT plants was only 53.5% (Fig. 1d). The chlorophyll
content of the transgenic lines under NaCl treatment
was 1.54- and 1.68-fold greater, respectively, than that of
the WT plants (Fig. 1e). The average fresh weight of the
transgenic lines under NaCl treatment was 2.15- and
2.10-fold greater, respectively, than that of the WT
plants (Fig. 1g). The average root length of transgenic
lines under NaCl treatment was 1.99- and 1.87-fold
greater, respectively, than that of WT plants (Fig. 1h). It
was apparent that salt stress significantly inhibited the
growth of transgenic and WT plants. However, the
growth of transgenic plants was significantly superior to
that of WT plants. These results indicated that the ex-
pression of Th2CysPrx in tobacco could significantly in-
crease the salt tolerance of the plants.

The Th2CysPrx gene significantly improves ROS
scavenging and reduces cell damage in transgenic
tobacco
The H2O2 and O2

− concentration in the transgenic lines
and WT plants were examined by 3,3′-diaminobenzidine
(DAB) and nitro blue tetrazolium (NBT) staining, re-
spectively. The results showed that under normal condi-
tion, there was no significant variation in the ROS
generated by the three lines. In contrast, under salt
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stress, the WT plants exhibited deeper staining, suggest-
ing much greater ROS accumulation in the WT than the
transgenic lines under stress conditions (Fig. 2a). 2,7-
dichlorofluorescin diacetate (H2DCF-DA) staining of the
leaves of the transgenic and WT lines was also per-
formed after 1 and 2 h of salt stress, respectively. There
were no obvious differences in ROS levels in intact
guard cells under normal conditions. However, after salt
stress, the WT plants showed increased ROS accumula-
tion in guard cells compared with the transgenic lines

(Fig. 2b). The transgenic lines exhibited lower ROS con-
tent than the WT plants. These results indicated that
Th2CysPrx led to a significant reduction of ROS accu-
mulation in plant cells under salt stress.
Furthermore, SOD and POD activities in the trans-

genic and WT plant lines were measured under salt
stress. The results revealed no significant differences be-
tween two independent transgenic lines and WT plants
under normal conditions. In contrast, SOD and POD ac-
tivities were higher in the two transgenic lines than in

Fig. 1 Growth of Th2CysPrx transgenic lines and WT tobacco under NaCl stress. a The distribution chart of the WT, Line7 and 11 in the plates. b, c
Seed germination of Th2CysPrx-transformed lines and WT plants under normal conditions (1/2 MS) and salt (125 mM NaCl) stress for 10 d. d Seed
germination rates assay. e Chlorophyll contents assay. f The growth phenotype of Th2CysPrx transformed and WT plants. Analysis of fresh weight
(g) and root length (h). Control: under normal conditions. All experiments were repeated three times. Data are the mean ± SD of three
independent experiments. Asterisks (*, P < 0.05) indicate significant difference compared with WT plants
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the WT plants under NaCl stress. Specifically, the SOD
activities of the transgenic lines were 1.17- and 1.10-fold
higher than that of WT (Fig. 3a). And the POD activity
values in the transgenic lines were 1.40- and 1.46-fold
higher, respectively, than those in the WT plants (Fig. 3b).
Similarly, there were no obvious differences between

the transgenic and WT plant lines based on Evans blue
staining, malondialdehyde (MDA) contents and electro-
lyte leakage (EL) rates under normal conditions. Under
salt stress conditions, deeper Evans blue staining was ob-
served, and the MDA content and electrolyte leakage
were significantly increased. However, Evans blue stain-
ing was weaker and the MDA content and EL rate were
lower in the transgenic than in the WT plant lines.
Under salt stress, the EL of the transgenic lines was
71.85 and 60% that of the WT plants, respectively (Fig.
3c). The MDA contents of the transgenic lines were
81.56 and 73.76% that of the WT plants, respectively
(Fig. 3d).
Taken together, these results indicated that Th2CysPrx

in tobacco improved salt stress tolerance by increasing
ROS scavenging and preventing cell damage to maintain

better plant growth. The transgenic lines exhibited lower
ROS content and less damage than the WT plants, sug-
gesting that Th2CysPrx directly affected ROS scavenging
and cell protection during NaCl treatment.

Use of transient overexpression of Th2CysPrx in T. hispida
to further evaluate the results in transgenic tobacco
To confirm the results of heterologous expression in to-
bacco, Th2CysPrx was transiently transferred into T. his-
pida. qRT-PCR analysis showed that the expression of
the Th2CysPrx gene in 35S::Th2cys overexpression T.
hispida was 12.38-fold that of the control, indicating that
the transient overexpression line of T. hispida was suc-
cessfully obtained (Fig. 4a). Then, biochemical staining
and related physiological indexes were analysed and
compared between 35S::Th2cys and CK plants. The DAB
and NBT staining results showed no significant differ-
ence between 35S::Th2cys and CK plants prior to salt
stress. However, CK plants showed darker staining than
35S::Th2cys plants after salt stress, with darker staining
after 2 h than 1 h (Fig. 4b).

Fig. 2 Under 200 mM NaCl stress, histochemical staining analysis of ROS accumulation and cell damage of transgenic lines and WT plants in 2-
month-old. a Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) revealed the accumulation of O2

− and H2O2 in the leaves of transgenic
(Line7 and 11) and (WT) plants subjected to salt stress, Evans Blue staining analysis of cell death. b H2DCF-DA staining of guard cells. All
experiments were repeated three times
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Similarly, the SOD and POD activity levels also
showed no difference between 35S::Th2cys and CK
plants under normal conditions. Under salt stress, SOD
activity in CK plants was 80.69% of that in 35S::Th2cys
plants (Fig. 4c), and POD activity in CK plants was
70.51% of that in 35S::Th2cys plants (Fig. 4d). Under
normal conditions, there was no significant difference in
terms of MDA or electrolyte leakage content between
35S::Th2cys and CK plants. However, 35S::Th2cys plants
showed significantly lower MDA level and electrolyte
leakage than CK plants, and the MDA content and elec-
trolyte leakage in 35S::Th2cys plants was 74.85 and
67.70% of that in CK plants (Fig. 4e, f). Altogether, these
results showed that Th2CysPrx conferred salt tolerance
to the transgenic tobacco and T. hispida plants.
Additionally, the expression levels of four antioxidant

genes (ThGSTZ1, ThGPX, ThSOD and ThPOD) in tran-
siently transfected Th2CysPrx T. hispida were analysed
by qRT-PCR. The results showed that these genes
shared similar expression profiles with Th2CysPrx in
transiently transfected T. hispida seedlings, all of which
were upregulated after NaCl stress. The expression levels

of these genes were 1.22, 1.55, 1.50, and 1.86-fold that of
CK plants, respectively (Fig. 5). These results indicated
that Th2CysPrx overexpression affected ThGSTZ1,
ThGPX, ThSOD and ThPOD gene expression. Thus,
these results indicated that the expression of Th2CysPrx
altered the expression of other stress-related genes, sug-
gesting that salt stress tolerance regulation involves a
complex network.

Discussion
Under adversity, plants usually accumulate ROS, which
leads to damage to protein synthesis and stability to pro-
duce cellular macromolecules and membrane lipids and
the generation of oxidative stress [29]. The 2CysPrx
plays an important role in scavenging ROS and regulat-
ing signal transduction, acting as a molecular chaperone
and DNA damage response. In previous studies, 2CysPrx
served as a barrier for H2O2. Rapeseed 2CysPrx activates
chloroplast fructose-1,6-bisphosphatase (FBPase) and
participates in the Calvin cycle [30]. Kim et al. [31]
Showed that Arabidopsis 2CysPrx can protect citrate
synthase (CS) from heat-induced aggregation and

Fig. 3 Physiological index analysis of 2-month-old seedlings of 35S::Th2cys transgenic and WT plants under salt conditions. a Chlorophyll contents
assay. b SOD activity. c POD activity. d MDA content. e Electrolyte leakages. Normally watered plants were used as controls. CK: Tobacco plants
transformed with empty pROKII; 35::Th2Cys: Tobacco overexpressing Th2CysPrx; All experiments were repeated three times. Data are the mean ±
SD of three independent experiments. Asterisks (*, P < 0.05) indicate significant difference compared with WT plants
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function as a molecular chaperone. Banerjee et al. [32]
found that overexpression of cyanobacterium Anabaena
2CysPrx could decrease intracellular ROS levels under
abiotic stress to reduce cell damage. Overexpression of
2CysPrx from mungbean can efficiently eliminate cellu-
lar ROS to improve tolerance to MV stress in Arabidop-
sis [33]. However, in the process of preventing DNA
damage, some organisms use the ROS pathway, and
some plants protect the cells from oxidative damage
through the non-ROS pathway. For example,
2CysPrx-induced tobacco gene silencing largely af-
fects the regeneration of ascorbic acid and thus the
biosynthesis of abscisic acid (ABA) [17]. Above re-
searches showed the 2CysPrx has different functions,
most of which are research on glycogen plants, but
little exploration in woody halophytes. Therefore, we
need to explore whether Th2CysPrx prevents cell
damage through the ROS pathway in woody halo-
phyte T.hispida.

Vidigal et al. [17] demonstrated that 2CysPrx was the
key to H2O2 clearance and regulated ABA signalling
downstream of ROS genes. Many studies have shown
that ABA has important biological functions and is an
important signalling molecule under abiotic stresses
[34–36]. The expression of genes that participate in the
ABA signalling pathway can increase plant abiotic toler-
ance [37, 38]. In this study, compared with WT plants,
transgenic Th2CysPrx tobacco exhibited increased ger-
mination rates, root lengths and chlorophyll contents
under salt stress (Fig. 1). Overexpression of Th2CysPrx
resulted in better SOD and POD activities, and reduced
ROS accumulation. Additionally, the expression levels of
the ThGSTZ1, ThGPX, ThSOD and ThPOD genes were
markedly upregulated in transgenic T. hispida under salt
stress, which indicated that the Th2CysPrx gene could
improve salt tolerance by increasing antioxidant enzyme
and strengthening ROS scavenging activities, leading to
reduced ROS accumulation.

Fig. 4 Physiological index analysis of 1-month-old seedlings of CK, 35S::Th2cys under 150 mM NaCl stress. a The relative expression levels of
Th2CysPrx as measured by qRT-PCR. The data was processed using the 2-ΔΔCT method. b DAB and NBT staining. c SOD activity levels. d POD
activity levels. e MDA content. f Electrolyte leakages. CK: T. hispida plants transformed with empty pROKII; 35::Th2cys: T. hispida overexpressing
Th2CysPrx; All experiments were repeated three times. Data are the mean ± SD of three independent experiments
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We also found that the activities and expression levels
of SOD and POD in CK and transgenic T. hispida were
not consistent under normal condition. However, the
overall trend between the activities and expression levels
is consistent under NaCl stress. The results showed the
studied ThSOD and ThPOD gene may be key effective
gene among SOD and POD family genes responding to
NaCl stress (Figs. 2, 3, 4, 5).
It remains unclear whether the Th2CysPrx gene im-

proves plant ROS scavenging by activating the expres-
sion of ABA signalling pathway genes. So, in future
studies, we will further analyze the salt tolerance mech-
anism of the Th2CysPrx gene in T.hispida, while com-
paring the differences in abiotic stress in plants between
2CysPrx in tobacco and T.hispida.

Conclusion
Prxs have an important place in plant growth and devel-
opment, as well as in responses to stress. However, there
is no direct evidence to demonstrate that the Prxs gene
of T. hispida is involved in ROS scavenging and abiotic
stress responses. In the present study, a Th2CysPrx was

isolated from T. hispida, and transgenic tobacco and T.
hispida showed advantages with respect to morpho-
logical, physiological, and biochemical traits under salt
stress. Additionally, the expression levels of four antioxi-
dant genes (ThGSTZ1, ThGPX, ThSOD and ThPOD)
were significantly higher in overexpressed Th2CysPrx of
T. hispida than in the control. Altogether, the results in-
dicated that Th2CysPrx increased salt tolerance via in-
creasing the expression and activity of antioxidant
enzymes and improved ROS scavenging ability. Future
studies should assess whether Th2CysPrx participates in
the ABA signalling pathway.

Methods
Plant materials and growth conditions
Tobacco seeds (Longjiang 911) were obtained from the
Tobacco Science Research Institute of Heilongjiang
Province [39]. And kept in our laboratory. Tobacco
seeds stored at 4 °C for 3–5 days were sterilized with
70% (w:v) ethanol for 1 min followed by 3% sodium
hypochlorite for 5 min, rinsed eight times with sterile
water, and sown onto plates containing half-strength

Fig. 5 The relative expression levels of ThGSTZ1, ThGPX, ThSOD, ThPOD in WT and 35::Th2CysPrx exposed to NaCl stress. a The relative expression
levels of ThGSTZ1. b The relative expression levels of ThGPX. c The relative expression levels of ThSOD. d The relative expression levels of ThPOD.
CK: T. hispida plants transformed with empty pROKII; 35::Th2cys: T. hispida overexpressing Th2CysPrx; The error bars were calculated from three
independent replicates of the qRT-PCR
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Murashige and Skoog (1/2 MS) medium. They were
then placed in a cabinet with a controlled environment
(16 h light: 8 h dark) at 22 °C. One week later, the seed-
lings were transplanted to pots containing a mixture of
perlite and soil (1:3 v/v) and grown in a greenhouse (14
h light: 10 h dark) at 24 °C with 70% relative humidity.
T. hispida seeds (the Turpan Desert Botanical Garden,

Xinjiang, 293 China) was planted in a greenhouse in
Harbin (China). Seeds for propagation of plant material
were harvested from these T. hispida plants, and planted
on 1/2 MS medium and grown in a greenhouse (14 h
light: 10 h dark) at 24 °C with 70% relative humidity and
a photon flux density of 250 μE m− 2 s− 1.

Generation of transgenic plants
The ORF of Th2CysPrx was amplified and cloned into
pROKII vector (referred to as 35S::Th2cys). The primers
are shown in Table 1. The 35S::Th2cys was introduced
into Agrobacterium tumefaciens EHA105 by electropor-
ation, and the transgenic tobacco was further obtained by
the agrobacterium-mediated leaf disc transformation
method [40]. Fifteen lines were generated in the T0 gener-
ation. The two T3 homozygous transgenic lines (Line 7
and Line 11) were randomly selected for further analysis.
Concurrently, Th2CysPrx was also transiently overex-

pressed in T. hispida. Specifically, it was transiently
transformed into one-month-old T. hispida seedlings
with 35S::Th2cys to overexpress Th2CysPrx and with
empty pROKII plasmid (used as a control, CK) accord-
ing to Zheng et al. [41] with some modifications. In par-
ticular, single colonies of A. tumefaciens strain EHA105
harbouring 35S::Th2cys or empty pROKII were cultured
to an OD600 = 0.8, and the cells were harvested by centri-
fugation. The transformants used [1/2 MS + 3% (w/v) su-
crose + 150 μM acetosyringone + 0.01% (w/v) Tween 20]
were adjusted to an OD600 = 0.8. T. hispida was
immersed in transformation solution and incubated at
25 °C for 4 h. Subsequently, 2% sucrose was used to
quickly wash the seedlings once for 1 min, after which

they were planted vertically on 1/2 MS solid medium for
12, 24, 36 or 48 h. Total RNA was isolated from every
samples using the CTAB method [42], and 1mg of RNA
was reverse transcribed with the PrimeScript™ RT re-
agent Kit (TaKaRa, China). The resulting cDNA product
was diluted to 10x and used as a template for the qRT-
PCR analyses. Real-time RT-PCR was conducted using a
Bio-Rad (MJ) Opticon™2 System (Bio-Rad, Hercules,
USA) Actin (FJ618517), α-tubulin (FJ618518), and β-
tubulin (FJ618519) were used as internal controls to
normalize the amount of total RNA present in each re-
action. The primers used are listed in Table 1. The PCR
conditions were 94 °C for 30 s, 45 cycles of 94 °C for 12 s,
58 °C for 30 s, 72 °C for 40 s, and 80 °C for 1 s for plate
reading. A melting curve was generated for each sample
at the end of each run to assess the purity of the ampli-
fied products. To determine the expression of
Th2CysPrx and several antioxidant genes. The primers
are listed in Table 1. The reaction system and procedure
for qRT-PCR were performed according to Gao et al.
[28]. The 2-ΔΔCt method was used to calculate the rela-
tive gene expression [43].

Analysis of stress tolerance
The T3 generation seeds of Th2CysPrx transgenic to-
bacco were surface sterilized and sown on 1/2 MS agar
medium or 1/2 MS with 125 mM NaCl. Germination
was recorded after 10 d. In addition, 3-day-old seedlings
sown on 1/2 MS were transferred to 1/2 MS medium or
1/2 MS with 125 mM NaCl for 2 weeks to compare the
fresh weight and root length between transgenic and
wild type (WT) lines.

Physiological analysis
Seven-day-old tobacco seedlings sown on 1/2 MS were
transferred to a mixture of perlite and soil (1:3 v/v). After
6 weeks, the tobacco seedling roots were watered with the
solution of 200mM NaCl. Simultaneously, the seedlings
were watered with water as a control. After 7 d, the leaves
of stressed and control tobacco were harvested.
One-month-old seedlings of the transient transgenic

T. hispida seedlings (35S::Th2cys and CK) exposed to
150 mM NaCl for 12 h were harvested, and the physio-
logical index was measured, respectively. The SOD,
POD activities and MDA contents were measured ac-
cording to Wang et al. [44]. The EL was measured ac-
cording to Ben-Amor et al. [45]. The chlorophyll
contents were measured following the method of Lich-
tenthaler [46].

Detection of ROS and cell death
The transgenic and WT/control young leaves were col-
lected after 0, 1 or 2 h of NaCl treatment, and histo-
chemical staining analysis was carried out immediately.

Table 1 List of primers and their applications

Gene symbol Forward Primers (5′-3′)

pROKII-Th2CysPrx-F ATCG TCTAGAATGGCGTGCGCAGCCCCAACT

pROKII-Th2CysPrx-R AGCTGAGCTGTTAAATTGCAGCGAAGTACTC

Th2CysPrx-F TGAGATCACTGCTTTCAGT

Th2CysPrx-R TGATAACCAATCCTCTGAG

Actin-F AAACAATGGCTGATGCTG

Actin-R ACAATACCGTGCTCAATAGG

α-tubulin-F CACCCACCGTTGTTCCAG

α-tubulin-R ACCGTCGTCATCTTCACC

β-tubulin-F GGAAGCCATAGAAAGACC

β-tubulin-R CAACAAATGTGGGATGCT
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To detect superoxide accumulation, hydrogen peroxide
accumulation, and cell death, leaves were infiltrated with
DAB, NBT and Evans blue staining according to the
method described in detail by Zhang et al. [47] and Kim
et al. [48]. Evaluation of ROS production in intact guard
cells was performed by staining with H2DCF-DA
(Sigma-Aldrich) [49].

Statistical analysis
Each experiment was repeated at least three times inde-
pendently. Error bars represent standard deviations. Dif-
ferences were compared using Student’s t-test. P < 0.05
was considered significant, which is indicated by *.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12870-020-02562-6.

Additional file 1 Figure S1. The relative expression levels of Th2CysPrx
gene in the WT and transgenic tobacco as measured by qRT-PCR. The
data was processed using the 2-ΔΔCT method. WT: the wild type tobacco.
Line1–14: different transgenic tobacco lines; All experiments were re-
peated three times. The error bars represent the standard deviation.
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