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Comparative cellular, physiological and
transcriptome analyses reveal the potential
easy dehulling mechanism of rice-tartary
buckwheat (Fagopyrum Tararicum)
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Abstract

Background: Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and
high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing
industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular,
physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear.

Results: In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene
coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal
tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull
sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull
were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and
the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal
tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of
9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different
development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module
associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific
module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose
and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub
genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary
buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub
genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR).
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Conclusions: Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in
rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the
content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells,
and hull thickness and mechanical strength.

Keywords: Rice-tartary buckwheat, Easy dehulling, Hull development, Comparative transcriptome, WGCNA, Cell
wall, Cellulose, Hemicellulose, Molecular mechanism

Background
Tartary buckwheat (Fagopyrum tataricum Gaertn.), a
member of Polygonaceae family, is a pseudo-cereal crop
and mainly grows in mountainous areas of western
China and the Himalyas [1]. In recent years, tartary
buckwheat has attracted worldwide attention and gained
popularity in the food marketplace due to its abundant
nutrients, especially the higher content of bioactive fla-
vonoids which contribute to diverse human health bene-
fits [2–6]. Seed is the major exploitive part of tartary
buckwheat for humans [2], and has been widely used to
develop health products such as wine, tea, noodles,
cookies, etc. except for direct use. However, the seeds of
all normal tartary buckwheat cultivars are tightly sur-
rounded by tough hulls, which are difficult to remove
before seeds can be used or processed in foods. Al-
though many methods have been developed to solve tar-
tary buckwheat’s hard dehulling issue, these methods
still face many problems such as low dehulling rate
(≤35%), broken groats, and nutrient loss (including flavo-
noids) caused by cooking before dehulling [7–9]. These
situations have severely restricted the development of
tartary buckwheat food processing industry. Fortunately,
rice-tartary buckwheat, a very rare and easily dehulled
tartary buckwheat, has been found growing on a very
small scale in southern China and the Himalayan hills
[10]. Although the rice-tartary buckwheat has very small
seeds, low yield, and late maturity, its excellent dehulling
property can help in improving normal tartary buck-
wheat cultivars, which will significantly help in solving
the dehulling problem.
Generally, a full understanding of the cellular, physio-

logical, genetic, and molecular mechanisms of an excel-
lent agronomic trait is the crucial premise for utilizing
this trait to improve crops. To date, several studies have
been performed to investigate the genetic mechanisms
that are responsible for the easy dehulling of rice-tartary
buckwheat. It has been known that the easy dehulling of
rice-tartary buckwheat is a recessive trait that is con-
trolled by a single recessive gene though the use of F2
populations of a cross of rice-tartary buckwheat and dif-
ferent normal tartary buckwheat cultivars [11–13]. Cur-
rently, some candidate genes that controlled this easy
dehulling trait of rice-tartary buckwheat have been

identified by RNA sequencing, bulked segregant and
gene expression analyses [14–17]. Furthermore, some
phenotypic studies found that the hull ditch that located
between the two edges of rice-tartary buckwheat seeds is
thinner than that of normal tartary buckwheat, which
suggested that the thin hull of rice-tartary buckwheat
contributed to the easy dehulling, and further defined
the easy dehulling trait as the thin hull trait [12, 13, 18].
Recently, one physiological research found that the
amounts of hull cellulose and lignin (which are the
major chemical components of the cell wall) in normal
tartary buckwheat were significantly higher or lower
than in rice-tartary buckwheat and common buckwheat
(another cultivated buckwheat that is related-easily
dehulled) [19–21], respectively. However, there is no ob-
vious difference in the total amount of lignin and cellu-
lose between normal tartary buckwheat and rice-tartary
buckwheat [21], suggesting that the ratio of lignin to cel-
lulose in the hull might be a contributing factor in
dehulling degree. Considering the major chemical com-
ponents of the hull also contains hemicellulose besides
cellulose and lignin, it is need still to be explored
whether the hemicellulose content of the hull also effects
the dehull degree. In addition, although studies of the
physiological and genetic mechanisms involved in easy
dehulling of rice-tartary buckwheat have got much pro-
gressed, the cellular and molecular mechanism of easy
dehulling remains largely unknown, which limits the
knowledge of breeding new easy dehulling tartary buck-
wheat varieties.
In this study, we carried out comparative cell, physi-

ology, transcriptome, and coexpression network analyses
to insight into the cellular, physiological and molecular
mechanisms that make rice-tartary buckwheat easy to
dehull. Our results revealed the cellular and physio-
logical difference of hull between rice-tartary buckwheat
and normal tartary buckwheat, found the key period
during which hull differences between rice- and normal-
tartary buckwheat are determined, identified the key
gene regulatory network that contributed to dehulling
ease of tartary buckwheat, and found the molecular
mechanism responsible for the easy dehulling of rice-
tartary buckwheat. These results not only expanded our
understanding of the easy dehulling mechanism of rice-
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tartary buckwheat, but also provided valuable informa-
tion for further examining the function of candidate
genes governing dehulling in rice-tartary buckwheat and
improving the dehulling of normal tartary buckwheat
through gene manipulation.

Results
Phenotypic and physiological changes
Compared with normal tartary buckwheat cultivar “JQ”,
the matured hull of rice-tartary buckwheat “XMQ”
showed markedly reduced mechanical strength, which
was easily broken and shedding when rubbed by hand
(Fig. 1a). Scanning electron microscopy showed that
many flaws occurred on the “XMQ” hull that did not
exist on the “JQ” (Fig. 1b, c). These results suggested
that the lower mechanical strength of the “XMQ” hull
contributed to its easy dehulling, and the easy dehulling
trait was redefined as “brittle hull” trait. To further in-
vestigate whether the lower mechanical strength of the
“XMQ” hull was caused by the change of hull composi-
tions, we measured the hull cellulose, hemicellulose, and
lignin contents of “XMQ”, “JQ”, and other three normal
tartary buckwheat cultivars (“JJQ”, “PQ” and “CQ”). As
shown in Fig. 2, when compared with the four normal
tartary buckwheat cultivars, the hull cellulose content of
“XMQ” was significantly lower than all tested normal
tartary buckwheat cultivars, while the hull hemicellulose
and lignin contents of “XMQ” were only significantly

lower than among two normal tartary buckwheat culti-
vars. These results suggested that the reduced cellulose,
hemicellulose, and lignin contents might contribute to
the brittleness and easy dehulling of rice-tartary buck-
wheat, of which the reduced cellulose content might be
the major reason.

Dynamic change of cellulose and hemicellulose contents,
and hull thickness in “XMQ” and “JQ”
To investigate the accumulation of cellulose and hemi-
cellulose during hull development, the contents of cellu-
lose and hemicellulose in seed hulls of “XMQ” and “JQ”
were determined at four different stages (Fig. 3a). As
shown in Fig. 3b, c, the two cultivars displayed a similar
trend in the change of cellulose and hemicellulose con-
tents, which were sustained growth during hull develop-
ment. In addition, the significant difference in cellulose
and hemicellulose contents between the two cultivars
started to occur at 10 DAP. To further insight into
whether the hull ditch thickness changes in the two cul-
tivars during seed development, paraffin section analysis
was performed and the ditch thickness of the hull was
measured according to paraffin section results (Fig. 4).
The hull ditch thickness of “XMQ” showed significantly
decreased during seed development, while the hull ditch
thickness of “JQ” only decreased at 10 DAP compared
with 5 DAP and no obvious difference was observed
after 10 DAP (Fig. 4b). In addition, the hull ditch

XMQ

JQ

a b c
5 mm

5 mm

Fig. 1 Phenotypes of XMQ and JQ mature seed hulls. a Phenotypes of XMQ and JQ mature seed after manual dehulling by rubbing 10 times. b
Scanning electron micrographs of XMQ and JQ mature seed. c Scanning electron micrographs of XMQ and JQ mature seed hull
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Fig. 2 Cellulose, hemicellulose and lignin contents in the seed hull of different tartary buckwheat varieties. Values were the averages of three
independent biological replicates, and bars with different letters represented significant differences (P < 0.05)
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Fig. 3 Seed phenotypes (a), hull cellulose (b) and hemicellulose content (c) of XMQ and JQ. Asterisks indicated significant differences (** P < 0.01)
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thickness of “XMQ” was significantly lower than that of
“JQ” at 15 and 20 DAP, although its hull ditch thickness
was obviously higher than that of “JQ” at 5 and 10 DAP
(Fig. 4b). Transmission electron microscopy further re-
vealed the cell wall thickness of sclerenchyma cells of
“XMQ” hull ditch was significantly thinner than “JQ”
(Fig. 5). These results indicated that the cellulose con-
tent, hemicellulose content, and hull ditch thickness of
“XMQ” and “JQ” were dynamic and different changes,
and these hull samples could be used for further tran-
scriptome analyses.

Transcriptome analysis of hull development in tartary
buckwheat cultivars
To insight into the transcriptome dynamics during hull
development, RNA-Seq analyses of the hull of “XMQ”
and “JQ” hull were performed at four different develop-
ment stages (8 tissues, three independent biological

replicates for each tissue, 24 samples in total). A total of
521.39 and 517.72 million clean reads, with an average
of 43.43 and 43.09 million clean reads for each sample,
were generated for “XMQ” and “JQ”, respectively (Add-
itional file 1: Table S1). 85.84 to 92.74% of clean reads
were mapped to the reference genome for each sample,
of which 64.54–73.47% were uniquely mapped. A total
of 29,843 gene loci, including 28,465 known and 1378
novel gene loci, were generated from all mapped clean
reads of 24 samples via Cufflinks and Cuffmerge ana-
lyses. PCC between the biological replicates of different
tissues changed from 0.90 to 0.99 (except for one repli-
cate of J15 and J20 in “JQ” and one replicate of X15 in
“XMQ”, which were filtered for further analyses), indi-
cating the high reliability and reproducibility of the rep-
licates (Additional file 2: Figure S1).
The normalized expression level (FPKM) for each gene

was calculated, and genes with FPKM ≥0.1 were
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Fig. 4 Seed paraffin section micrographs (a) and hull ditch thickness (b) of XMQ and JQ. Bars with different letters represented significant
differences (P < 0.05) in the same variety at different development stages. Asterisks indicated significant differences (** P < 0.01) between two
varieties at the same development stage
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considered as expressed. A total of 27,955 genes, includ-
ing 26,589 known and 1366 novel genes, were expressed
in at least one sample. Among them, the number of
expressed genes in different tissues changed from 23,575
(X20) to 25,014 (X10) in “XMQ”, and 23,282 (J20) to 24,
266 (J5) in “JQ” (Additional file 2: Figure S2a). The
proportions of genes presenting very high (FPKM
≥100), high (50 ≤ FPKM < 100), moderate (10 ≤ FPKM
< 50), low (2 ≤ FPKM < 10), and very low (0.1 ≤ FPKM
< 2) expression were relatively similar in all tissues
except in X20 tissue (Additional file 2: Figure S2b).
In addition, the number of very-low-expression (about

42%) and moderate-expression genes (about 30%)
accounted for the two largest proportions in all tis-
sues (Additional file 2: Figure S2b). Taken together,
these analyses indicated that we obtained sufficient
coverage of the transcriptome of the development hull
in these two tartary buckwheat cultivars.

Transcriptome comparison of hull development in tartary
buckwheat cultivars revealed the critical stages for hull
development difference
To investigate the relationships between the hull devel-
opment transcriptomes from the “XMQ” and “JQ”, HCA
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Fig. 5 Anatomical features of sclerenchyma cells in the 15 DAP seed hull of JQ and XMQ. a and c the transmission electron micrographs of
sclerenchyma cell walls in JQ. b and d the transmission electron micrographs of sclerenchyma cell walls in XMQ. e the cell wall thickness of
sclerenchyma cells in JQ and XMQ. Asterisks indicated significant differences (** P < 0.01) between JQ and XMQ
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(Additional file 2: Figure S3a) and PCA (Additional file
2: Figure S3b) were performed based on the average
FPKM values for the 27,955 genes that were expressed
in at least one of the eight tissue samples. As results, a
higher correlation of the same development stage be-
tween the two cultivars was observed except at 20 DAP
(Figure S3a). PCA analysis showed X5 and J5 were
grouped together, while clear separations were observed
between X10 and J10, X15 and J15, and X20 and J20
(Additional file 2: Figure S3b), suggesting that a higher
degree of similarity in transcriptional programs between
these two cultivars at 5 DAP and obvious transcriptional
differences existed at 10, 15, and 20 DAP. In addition,
these analyses also indicated that 10 DAP might be the
critical stage to determine the hull difference formation
between the two cultivars at the molecular level.

Identification of genes that specifically/preferentially
expressed in each stage of hull development in both the
cultivars
The genes that are specifically/preferentially expressed
in each stage of hull development in both cultivars were
identified based on the SS algorithm with SS score ≥ 0.5.
A total of 6649 and 5918 specific/preferential genes were
identified in all four stages for “JQ” and “XMQ”, respect-
ively. Among these genes, 348 (5.2%) and 302 (5.1%)
specific/preferential genes were encoded for transcrip-
tion factors (TFs). The number of stage-specific/prefer-
ential genes ranged from 392 to 4613 for “JQ” and 267
to 3959 for “XMQ” (Fig. 6a). The 5 DAP and 10 DAP
had the largest and lowest of number stage-specific/pref-
erential genes, respectively, for the two cultivars (Fig.
6a). Furthermore, a high proportion of stage-specific/
preferential genes was common in both cultivars, and
cultivar-specific genes were also observed in all four
stages of the two cultivars (Fig. 6a). A heatmap of all
these stage-specific/preferentially expressed genes in the
two tartary buckwheat cultivars was shown in Fig. 6b.
These results indicated that each hull development stage
had its own independent and common developmental
programs for both cultivars and also accurately reflected
the accumulation of endogenous mRNAs in the hull de-
velopment of the two cultivars.
The gene ontology (GO) enrichment analyses were car-

ried out for the stage-specific/preferential genes of the two
cultivars at each stage. The results of biological process
enrichment showed that the 5 DAP of hull development
was marked by cell cycle and cell biosynthetic process
(Additional file 2: Figure S4), the 10 DAP was significantly
and specifically marked by cell wall and phenylpropanoid
metabolic process (Fig. 6c), the 15 DAP was majorly
marked by “sulfur metabolic” (Additional file 2: Figure
S5), and the 20 DAP major was involved in lipid meta-
bolic, response biotic and abiotic stress and transport

(Additional file 2: Figure S6). These results suggested that
these stage-specific/preferential genes performed stage-
specific functions during hull development of tartary
buckwheat and 10 DAP was the key stage in the determin-
ation cell wall biogenesis of the tartary buckwheat hull.

DGEs between the two tartary buckwheat cultivars
Genes that had significantly different expression between
“XMQ” and “JQ” were identified at each stage of hull de-
velopment. A total of 9250 (including 693 TF-encoding
genes) and 4187 (294 TF-encoding genes) genes showed
significantly higher and lower expression at different
stages of hull development in “XMQ” compared with
“JQ”, respectively (Fig. 7). Between the two cultivars, the
two largest number of DEGs occurred at 20 DAP (5884)
and 10 DAP (3916) (Fig. 7), while the fewest occurred at
15 DAP. In addition, some members of most TF families
shown significantly different expression in “XMQ”, and
the number of different TF families showed an obvious
difference, which implied they had diverse functions
during hull development (Additional file 2: Figure S7).
To further investigate the biological functions of these

DEGs between “XMQ” and “JQ”, GO enrichment ana-
lyses were performed. A total of 159, 250, 92 and 161
biological processes were significantly enriched (P < 0.05)
at 5 DAP, 10 DAP, 15 DAP, and 20 DAP, respectively
(Additional file 1: Table S2). Among them, some bio-
logical processes were specially/commonly overrepre-
sented at different stages of hull development
(Additional file 1: Table S2). Notably, GO terms such as
the plant-type primary cell wall biogenesis (GO:
0009833), cellulose metabolic process (GO:0030243),
cellulose biosynthetic process (GO:0030244), and cellu-
lose catabolic process (GO:0030245) were uniquely
enriched at 5 DAP, whereas the hemicellulose metabolic
process (GO:0010410) and cell wall modification (GO:
0042545) were specially enriched at 10 DAP (Additional
file 1: Table S2). In addition, cell wall biogenesis (GO:
0042546) and fruit dehiscence (GO:0010047) were sig-
nificantly enriched at 5 DAP and 10 DAP (Additional
file 1: Table S2). These results indicate that 5 DAP and
10 DAP were the key stages that determined the differ-
ence in the hull between the two tartary buckwheat
cultivars.

Identification and valuation of the key genes involved in
the hull difference between the two tartary buckwheat
bultivars by gene coexpression analysis
To investigate the gene regulatory network (GRN) dur-
ing hull development and identify the key genes involved
in the hull difference between “XMQ” and “JQ”, 9549
genes that were differentially expressed in at least one
hull development stage between the two cultivars were
used to carry out WGCNA. A total of 18 modules
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(consisting of 34–3317 genes) were identified and la-
beled with different colors (Fig. 8a). The correlation ana-
lyses of these modules with the cellulose and
hemicellulose contents revealed that the MEbrown mod-
ule presented higher correlation with cellulose content
(r = 0.8, p = 0.02) (Additional file 2: Figure S8). In this
module, genes had specific high expression in the “JQ”
hull at 20 DAP. No gene in this module was found to be
involved in cellulose and cell wall biosynthesis based on
homologous annotation in the Arabidopsis TAIR data-
base, which might be caused by the visible hull differ-
ence between the two cultivars having formed at 20
DAP. Considering that (1) easy dehulling is a recessive

trait, (2) hard dehulling is the corresponding dominant
trait, and (3) 10 DAP was identified as the key stage for
hull difference formation between the two cultivars, we
assumed that the module with genes that presented spe-
cific high expression in the “JQ” at 10 DAP was the key
module involved in the different hull formation of the
two cultivars. As a result, the MEred module was found
to meet these standards, which consisted of 533 genes
(Fig. 8b). Based on a homologous annotation in the Ara-
bidopsis TAIR database, 28 TFs were identified in this
module, which represented 17 TF families. All 28 TFs
were further identified as hub TFs due to the highly con-
nected nodes in this module. These hub TFs included
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homologs of A. thaliana TFs with known functions of
regulating SCW biosynthesis, such as the first-layer
NAC regulators (NST1, NST2, and NST3/SND1), the
second-layer regulator (MYB46/MYB83), and the third-
layer regulators (MYB54, MYB103, C3H14, and C3H15)

(Additional file 1: Table S3). The homologs of XND1
and VNI2, two NAC TFs that regulate xylem vessel for-
mation, were also identified in these hub TFs (Fig. 9,
Additional file 1: Table S4). In addition, several other
hub TFs were found to be homologous with A. thaliana
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TFs, which were involved in ethylene signaling (EIN3,
ERF71, and RAV), gibberellin biosynthesis (ATH1), jas-
monic acid signaling (WRKY50), and multiple hormonal
responses (MIF2). Notably, 6, 12, 1, and 5 SCW biosyn-
thesis enzyme genes were also identified in this module
(Fig. 9, Additional file 1: Table S3), which were homo-
logs of known downstream targets of A. thaliana SCW
biosynthesis TFs (NAC and MYB) and catalyzed cellu-
lose biosynthesis, hemicellulose biosynthesis, pectin bio-
synthesis, and lignin biosynthesis, respectively. Among
these enzyme genes, four cellulose biosynthesis genes
(CESA4, CESA7, CESA8, and XTH22) and eight hemicel-
lulose biosynthesis genes (IRX8, IRX9, IRX14-L, GXM1,
GUX5, TBL3, TBL31 and TBL33) were also identified as
hub genes in this module (Fig. 9). By comparison, no
pectin and lignin biosynthesis enzyme genes were identi-
fied as hub genes in this module (Fig. 9).
The expression of most identified hub TF genes

and enzyme genes of SCW biosynthesis was signifi-
cantly higher in “JQ” than in “XMQ” at 5 DAP or 10
DAP or both 5 DAP and 10 DAP (Additional file 1:
Table S4, Additional file 1: Table S5), which accords
with the above GO enrichment results and suggested

again that the early development stages of the hull
were the key in determining the hull difference be-
tween the two tartary buckwheat cultivars. The ex-
pression of 17 identified SCW-related genes, including
7 regulatory genes and 10 enzyme genes, were further
verified to be highly similar (r ≥ 0.78) to those ob-
served in RNA-seq data by RT-qPCR analyses
(Fig. 10). This indicated the reliability of the tran-
scriptomic data and the identified genes that caused
the hull difference between the two tartary buckwheat
cultivars. To further verify that the different expres-
sion of these identified SCW biosynthesis genes in
the early hull development stages was the reason for
the hull difference formation between rice- tartary
buckwheat and normal tartary buckwheat, the expres-
sion of the first-layer regulators (NST1, NST2, and
SND1/NST3) of SCW biosynthesis was tested in the
hull of the other three normal tartary buckwheat cul-
tivars. As shown in Fig. 11, all three genes showed
the highest expression in normal tartary buckwheat
cultivars at 10 DAP, and the significantly different ex-
pression (fold change > 2) between “XMQ” and nor-
mal tartary buckwheat cultivars occurred both at both
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MYB83

MYB54MYB103 MYB103 C3H15 C3H14

CESA4

UXS2

GATL2

XND1/NAC
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Fig. 9 Co-expression network of genes from MEred module. The yellow, pink, and red nodes represented the identified first-, second-, and third-layer
regulators of SCW biosynthesis, respectively. Green nodes represented the identified structural genes of SCW biosynthesis. The peacock blue nodes
represented the other identified hub TFs. The blue nodes represented other genes. The bigger nodes indicated the hub genes, which had highly
connected nodes in this module
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5 DAP and 10 DAP. This suggested that the different
expression of these SCW biosynthesis genes at the
early hull development stages was the primary reason
the hull difference between the rice-tartary buckwheat
and normal tartary buckwheat.

“In silico” promoter analysis of hub TFs and enzyme
genes involved in SCW biosynthesis revealed the
presence of binding sites of SCW-related TFs
The SCW-related TF binding cis-elements SNBE (NAC
binding) [22] and SMRE (MYB biding) [23] were investi-
gated in the promoter sequences of nine SCW-related
TFs (NST1, NST2, SND1/SNT3, MYB54, MYB46/
MYB83, MYB103 (2), C3H14, and C3H15), four cellulose
biosynthesis-related enzyme genes (CESA4, CESA7,
CESA8, and XTH22), eight hemicellulose biosynthesis-
related enzyme genes (IRX8, IRX9, IRX14-L, GXM1,
GUX5, TBL3, TBL31, and TBL33) and other 19 identi-
fied hub TFs. As results, the SNBE and SMRE cis-
elements presented in the promoter sequences of almost
all SCW-related TFs and enzyme genes (Table 1). In
addition, a high number of SNBE cis-elements were also
found in the promoter sequences of the other 19 hub
TFs, while there no or very few SMRE cis-elements dis-
played in these hub TFs (Table 1). Due to ethylene re-
sponse EIN3 TF was found in hub TFs and it had been
demonstrated playing crucial regulatory role in many de-
velopmental processes [24], so we further investigated
the EIN3 binding cis-element in promoter sequences of

the above genes. As shown in Table 1, the EIN3 binding
cis-element appeared in the promoter sequences of 33
out of the 40 genes, in which the highest number of
EIN3 binding cis-elements were found in the first-layer
NAC regulators of SCW biosynthesis (NST1, NST2, and
NST3/SND1) (15, 15, and 9) and the xylem vessel forma-
tion regulator XND1 (11), suggesting that the EIN3
might be the direct up-stream regulator of the first-layer
NAC regulators of SCW biosynthesis.

Discussion
Tartary buckwheat, a highly nutritious medicinal and ed-
ible crop, has attracted worldwide attention and gained
popularity in the food marketplace. However, the difficult
dehulling of normal tartary buckwheat cultivars has se-
verely limited the development of its food processing in-
dustry. Fortunately, rice-tartary buckwheat, a very rare
and easily dehulled tartary buckwheat, was found in na-
ture [10]. Several recent studies have characterized the
genetic and partly physiological mechanisms of the easy
dehulling of rice- tartary buckwheat [11–13, 18, 21].
Nevertheless, to date, the detailed physiological, cellular,
and especially molecular, mechanisms involved in the easy
dehulling of rice-tartary buckwheat remains largely un-
known. In this study, we performed comparative cell,
physiology, and transcriptome analyses to gain insight into
the easy dehulling mechanism of rice-tartary buckwheat
and identified the key gene regulatory network that is re-
sponsible the easy dehulling of rice-tartary buckwheat.
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A manual dehulling analysis found that the hull of
rice-tartary buckwheat “XMQ” was brittler than that of
normal tartary buckwheat cultivar “JQ”. In many re-
ported brittle culm mutants from Arabidopsis thaliana,
rice, sorghum and maize, it had been demonstrated that
the brittleness is caused by reduced cellulose, and/or
hemicellulose, and/or lignin contents [23, 25, 26]. In our
study, we found that the cellulose content of “XMQ”
was significantly lower than in all determined normal
tartary buckwheat cultivars, which was consistent with
the previous report [21]. Similarly, obviously lower
hemicellulose and lignin contents were also observed in
“XMQ” when compared with some normal tartary buck-
wheat cultivars. These results suggested that the reduced
cellulose, hemicellulose and lignin contents of the

“XMQ” hull led to its hull brittleness and made it easy
to dehull, and the reduced cellulose content might be
the major reason. In previous reports, the cellulose con-
tent of both rice-tartary buckwheat and normal tartary
buckwheat cultivar was found to sustain growth during
hull development [21]. In this study, we obtained a simi-
lar result concerning the cellulose and hemicellulose
contents in “XMQ” and “JQ”. In addition, the significant
difference in cellulose and hemicellulose contents be-
tween the two cultivars began at 10 DAP and continued
to 20 DAP. These indicated that the cellulose and hemi-
cellulose contents of tartary buckwheat hull dynamically
change during hull development and that the early hull
development stage was the key period during which the
difference between rice-tartary buckwheat and normal
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tartary buckwheat hulls was formed. Recently, several
studies found that the hull ditch of rice-tartary buck-
wheat was thinner than normal tartary buckwheat,
which suggested that the thin hull ditch of rice-tartary
buckwheat contributed to the easy dehulling property
[12, 13, 18]. In our study, we also observed that the hull
ditch of “XMQ” was significantly thinner than “JQ” at
late stages of hull development (15 and 20 DAP). In
addition, we also found that the cell wall thickness of
sclerenchyma cells of “XMQ” hull ditch was also obvi-
ously thinner than “JQ”. Notably, in brittle culm mutants
of Arabidopsis thaliana, rice, sorghum and maize, the
reduced cellulose, hemicellulose, and lignin contents
lead to thinner SCWs than those in the wild type [23,
25, 26]. Therefore, our these findings indicated that the
lower hull cellulose and hemicellulose contents also con-
tributed to the thinner hull ditch of rice-tartary buck-
wheat through reduced the cell wall thickness of the hull
sclerenchyma cells.
Consistent with the physiological observations, our

transcriptome data also showed that the early hull devel-
opment stages were the key period in determining the
hull difference between rice-tartary buckwheat and nor-
mal tartary buckwheat. In A. thaliana and some other
plants, many regulatory genes (major NAC and MYB
TFs) and structural genes of SCW biosynthesis have
been functional identified, and the gene regulation net-
work of SCW biosynthesis has also been established
[26–31]. In our study, we identified a module with genes
showing specific high expression in “JQ” at 10 DAP by
using WGCNA for all identified EDGs between “XMQ”
and “JQ” hulls at four development stages. In this mod-
ule, 9 identified hub TFs were found to be the homologs
of A. thaliana SCW biosynthesis regulation genes, which
included the homologs of the first-layer (NST1, NST2,
and SND1) [32–34], the second-layer (MYB46/MYB83)
[35, 36] and the third-layer regulators (MYB54,
MYB103, C3H14, and C3H15) [37, 38]. Furthermore, 24
homologs of the A. thaliana SCW biosynthesis struc-
tural genes, which catalyzed cellulose, hemicellulose,
pectin, and lignin biosynthesis, were also identified in
this module [26, 31], and 12 of them were also defined
as hub genes. Based on the RNA-seq data, the expres-
sion of these identified SCW biosynthesis regulatory and
structural genes were significantly higher (fold change >
2) in “JQ” than that in “XMQ” at 5 DAP or 10 DAP or
both 5 DAP and 10 DAP, which was further verified by
qRT-PCR. In addition, the expression of the first-layer
regulators (NST1, NST2, and SND1) was also obviously
higher in the other three normal tartary buckwheat cul-
tivars in the early hull development stages. In Arabidop-
sis and other plants, the mutation of the SCW
biosynthesis regulatory or structural genes would lead to
a severe reduction of cellulose, hemicellulose, or lignin

Table 1 The number of cell wall-related (SNBE and SMRE) and
EIN3 binding cis-elements presented in the promoter sequences
of the identified hub genes in MEred module

Gene ID Annotation SNBE SMRE EIN3 motif

FtPinG0000381200.01 NST1 3 1 15

FtPinG0002596000.01 SND1/NST3 2 3 15

FtPinG0007471500.01 NST2 2 2 9

FtPinG0007716800.01 MYB46/83 9 1 1

FtPinG0008420900.01 MYB103 1 2 2

FtPinG0005092500.01 MYB103 4 2 1

FtPinG0004122100.01 MYB52/54 8 9 nd

FtPinG0004517800.01 C3H14 1 3 2

FtPinG0008083100.01 C3H15 7 3 nd

FtPinG0000375900.01 CESA4 2 5 4

FtPinG0003961800.01 CESA7 3 3 4

FtPinG0002305900.01 CESA8 1 4 4

FtPinG0006414500.01 XTH22 1 3 2

FtPinG0003892200.01 IRX9 nd 3 1

FtPinG0006419200.01 IRX14-L 1 3 6

FtPinG0002882400.01 GXM1 3 2 nd

FtPinG0005387700.01 IRX8 3 6 2

FtPinG0008408600.01 GUX5 2 nd 2

FtPinG0007617500.01 TBL3 1 2 2

FtPinG0000963000.01 TBL31 1 2 1

FtPinG0002445000.01 TBL33 nd 3 5

FtPinG0007202700.01 B3 TF 1 1 2

FtPinG0001825500.01 bZIP TF 4 2 3

FtPinG0009370700.01 bZIP TF 2 2 2

FtPinG0001521000.01 DBB TF 9 2 nd

FtPinG0005157600.01 Dof TF 9 0 3

FtPinG0006457000.01 EIN3 7 0 1

FtPinG0000926400.01 ERF 2 1 2

FtPinG0005918800.01 G2-like 3 1 nd

FtPinG0009119800.01 GeBP 2 0 nd

FtPinG0001034500.01 LBD 4 1 2

FtPinG0003417600.01 MYB 6 2 2

FtPinG0004292100.01 XND1 6 2 11

FtPinG0005490300.01 VIN2 5 0 2

FtPinG0006575700.01 Nin-like 2 1 3

FtPinG0007073300.01 RAV 9 0 2

FtPinG0002155700.01 TALE 7 2 9

FtPinG0008730100.01 TALE 7 1 4

FtPinG0007227700.01 WRKY 8 1 7

FtPinG0005108600.01 ZF-HD 5 2 nd
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contents and the thin of SCW, and finally caused a col-
lapsed vessel and brittle phenotype [26–38]. Therefore,
combining the above-mentioned cellular and physio-
logical data as well as these transcriptome data, our re-
sults suggested that the lower expression of SCW
biosynthesis regulatory and structural genes in the early
development stages of rice-tartary buckwheat hull was
the reason for the reduction of cellulose and hemicellu-
lose contents, which further led to the thin hull ditch,
the thin cell wall of sclerenchyma cell, the brittle hull of
rice-tartary buckwheat, and finally contributes to its easy
dehulling.
In Arabidopsis, the first-layer NAC and the second-

layer MYB regulators of SCW biosynthesis can be bound
to the SNBE and SMRE sequences in the promoter se-
quences of its down-stream target genes and directly ac-
tivate the expression of target genes [22, 23]. In our
study, we found that higher number of SNBE sequence
existed in the second-layer regulator (MYB46/MYB83)
and some other hub TFs, while no or fewer number of
SNBE sequence in the third-layer regulators and struc-
tural genes. In contrast, higher number of SMRE se-
quence were found in the third-layer regulators and
structural genes. In Arabidopsis, the MYB46 and MYB83
have been demonstrated as the direct targets of the first-
layer NAC regulators [35, 36], and the third-layer regula-
tors are the direct targets of the second-layer MYB regu-
lators [23]. Therefore, our results indicated that a
conserved gene regulatory network for SCW biosyn-
thesis exists in tartary buckwheat hull. In addition, other
identified hub TFs, which had not shown functional
characterization involved in SCW biosynthesis in previ-
ous studies, might also participate in the regulation of
SCW biosynthesis by acting as the direct targets of the
first-layer NAC regulators. Notably, the homologs of
EIN3 was identified as hub TF in the SCW biosynthesis
module and more EIN3 binding motifs (15, 15, and 9)
[24] were found in the promoter sequences of the first-
layer NAC regulators, which implied that the EIN3
might be the direct up-stream regulatory gene of the
first-layer NAC regulators in SCW biosynthesis.

Conclusions
In the present study, we performed an integrated ana-
lysis of the comparative cellular, physiological, transcrip-
tome, and gene coexpression network to investigate the
reason that rice-tartary buckwheat is easy to dehull. Our
results suggest that the lower expression of SCW biosyn-
thesis regulatory and structural genes in rice-tartary
buckwheat hull in the early development stages contrib-
ute to its easy dehulling by reducing the content of cell
wall chemical components (cellulose and hemicellulose).
On this basis, it further led to the thinner cell wall in
hull sclerenchyma cells, thinner hull, and lower hull

mechanical strength of rice-tartary buckwheat. A sche-
matic that attempted to illustrate the easy dehulling
mechanism of rice-tartary buckwheat was drawn based
on our results (Fig. 12). These findings helped us better
understand the cell, physiology and molecular mecha-
nisms of the underlying easy dehulling formation in
rice-tartary buckwheat seeds. Additionally, our data also
provided valuable molecular information for the future
hull improvement of normal tartary buckwheat cultivar
through gene manipulations such as gene expression
interference and gene editing.

Methods
Plant material and sampling
Five tartary buckwheat cultivars original from our own lab,
including the easily dehulled rice-tartary buckwheat
(“XMQ”) and four examples of difficult-to-dehulled normal
tartary buckwheat (“JQ”, “JJQ”, “PQ” and “CQ”), were used
in this study. They were grown in the experimental field of
the Research Center of Buckwheat Industry Technology,
Guizhou Normal University (Lat. 26°49′ N, 106°58′ E, Alt.
1245m), China, in spring 2019. Flowers were tagged when
they were fully open (finished pollination). For “XMQ” and
“JQ”, more than 15,000 flowers were tagged for each culti-
var. For the other three cultivars, about 2000 flowers were
tagged for each cultivar. Seeds of all five cultivars were col-
lected at 5, 10, 15 and 20 DAP with three biological repli-
cates, respectively. In addition, the fully mature seeds (not
tagged) of all five cultivars were also harvested. For tran-
scriptome analysis, the seed hulls of “XMQ” and “JQ” at
four differential development stages were stripped on dry
ice, immediately frozen in liquid nitrogen and stored at −
80 °C. For paraffin section analysis, the seed samples were
immediately soaked in 10% formalin to fix tissues after col-
lection. For transmission electron microscopy analysis, the
seed samples were immediately soaked in electron micro-
scope fixative after collection. For physiological analysis,
seeds were dried at 60 °C to constant weight, and then the
hulls were collected.

Measurement of cellulose, hemicellulose, and lignin
The dried hulls of mature seeds were used to determine
the amounts of cellulose, hemicellulose, and lignin in the
five different cultivars. In addition, dynamic accumula-
tion of cellulose and hemicellulose during hull develop-
ment was investigated using “XMQ” and “JQ” seeds at
four different development stages. The measurement of
cellulose, hemicellulose and lignin was performed based
on the Van Soest method [39].

Scanning electron microscopy, paraffin section, and
transmission electron microscopy analyses
Mature “XMQ” and “JQ” seeds were observed by scan-
ning electron microscopy, which was carried out as
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previously described [40]. For paraffin section analysis,
“XMQ” and “JQ” seeds of four different development
stages were used, and the treatment was performed as
previously described [40]. The hull ditch thickness of
“XMQ” and “JQ” were measured using CaseViewer
software based on the paraffin section result. For each
sample, 30 points were selected to measure the hull
ditch thickness. For transmission electron microscopy
analysis, the 15 DAP seeds of “XMQ” and “JQ” were
used, and hull ditch was observed by Servicebio Co.,
Ltd. (Wuhan, China). The cell wall thickness of “XMQ”
and “JQ” sclerenchyma cell was measured by using
ImageJ software. For each cultivar, 10 cells were se-
lected and 10 points (uniformly distributed on cell)
were measured for each cell.

RNA sequencing, read mapping and DEGs analyses
For RNA-seq, total RNA extraction and library con-
struction for each sample were carried out as de-
scribed in previously published research [2]. A total
of 24 libraries (eight samples with three biological
replicates) were sequenced using the BGISEQ-500 sys-
tem by Huada Gene Technology Co., Ltd. (Shenzhen,
China) to generate raw reads. Then the clean reads
were obtained by removing the adaptor sequences
and low-quality reads using the Trimmomatic (v0.36)
[41]. The clean reads were mapped on the tartary
buckwheat genome (http://www.mbkbase.org/Pinku1/)
using HISAT2 (v2.1.0) with default parameters [1,
42]. The mapped clean reads were further matched to
the reference gene sequence of tartary buckwheat by
Bowtie2 (v2.2.5) [43], and then RSEM software was
used to calculate the gene expression value (FPKM,
fragments per kilobase of transcript length per million
mapped reads) [44]. Correlation between the bio-
logical replicates was determined using the Pearson
correlation coefficient (PCC). Hierarchical clustering
analysis (HCA) and principal component analysis
(PCA) were performed as previously described [45].
The significant DEGs between the samples were iden-
tified using the DESeq package based on the thresh-
old of |log2(fold change)| ≥1 and a FDR (false
discovery rate) value of < 0.05 [2]. The stage-specific/
preferential genes in both cultivars were identified via
the stage specificity (SS) scoring algorithm as de-
scribed previously [45, 46]. We set a SS threshold of
0.5 for detecting stage-specific/preferential genes in
both cultivars.

GO enrichment and gene coexpression network analyses
GO enrichment analysis of stage-specific/preferential
genes and DEGs were performed according to the de-
scription in Garg et al. [45]. GO enrichment networks
were visualized using Cytoscape 2.8.2. For gene coex-
pression network analysis, WGCNA was carried out
based on the Langfelder and Horvath method [47].

Identification of key modules and genes for the hull
difference formation
The key module of the hull difference formation was
identified based on comprehensive consideration of the
following: (1) the feature of easy dehulling trait (reces-
sive trait), (2) physiological analysis, and (3) PCA ana-
lysis of all expression genes. All genes in the key
modules were subjected to NR annotation and homology
query in the TAIR database of Arabidopsis thaliana to
identify genes involved in the hull difference formation.
The gene regulatory network of the identified key mod-
ule was visualized using Cytoscape 2.8.2.
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Fig. 12 Speculative schematic illustration of the possible easy
dehulling mechanism of rice-tartary buckwheat
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RT-qPCR analysis and correlation verified
Seventeen identified key genes for the hull difference for-
mation were selected to confirm the expression in “XMQ”
and “JQ” by qRT-PCR. In addition, the expression of three
hub TFs from the 17 selected key genes, which were the
first-layer regulators of SCW biosynthesis, were also tested
in the hulls of other three normal tartary buckwheat culti-
vars. qRT-PCR analysis was performed as described by Li
et al. [48]. The tartary buckwheat actin7 gene was used as
the internal control. The primers used in this study are
listed in Additional file 1: Table S6.

Statistical analysis
Data was statistically analyzed by one-way ANOVA
followed by Tukey’s test or Student’s t-test using SPSS
18.0 software. A P-value of < 0.05 was identified as a sta-
tistically significant difference.
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1186/s12870-020-02715-7.
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