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Abstract

Background: Flower development directly affects fruit production in tomato. Despite the framework mediated by
ABC genes have been established in Arabidopsis, the spatiotemporal precision of floral development in tomato has
not been well examined.

Results: Here, we analyzed a novel tomato stamenless like flower (slf) mutant in which the development of stamens
and carpels is disturbed, with carpelloid structure formed in the third whorl and ectopic formation of floral and
shoot apical meristem in the fourth whorl. Using bulked segregant analysis (BSA), we assigned the causal mutation
to the gene Solanum lycopersicum GT11 (SIGT11) that encodes a transcription factor belonging to Trihelix gene
family. SIGTT11 is expressed in the early stages of the flower and the expression becomes more specific to the
primordium position corresponding to stamens and carpels in later stages of the floral development. Further RNAi
silencing of SIGT11 verifies the defective phenotypes of the s/f mutant. The carpelloid stamen in s/f mutant indicates
that SIGT11 is required for B-function activity in the third whorl. The failed termination of floral meristem and the
occurrence of floral reversion in slf indicate that part of the C-function requires SIGT11 activity in the fourth whorl.
Furthermore, we find that at higher temperature, the defects of s/f mutant are substantially enhanced, with petals
transformed into sepals, all stamens disappeared, and the frequency of ectopic shoot/floral meristem in fourth
whorl increased, indicating that SIGT11 functions in the development of the three inner floral whorls. Consistent
with the observed phenotypes, it was found that B, C and an E-type MADS-box genes were in part down regulated
in sif mutants.

Conclusions: Together with the spatiotemporal expression pattern, we suggest that SIGTT7 functions in floral organ
patterning and maintenance of floral determinacy in tomato.
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Background

Flowers of angiosperms are the reproductive organs
playing an important role in reproduction. A typical
eudicot flower, such as Arabidopsis and tomato, consists
of four different organs arranged in four whorls at the
tip of floral shoot. Based on genetics studies on model
plants including Arabidopsis [1-3], Antirrhinum majus
[1] and Petunia hybrid [4], an elegant model involving
ABCDE class genes, has been proposed to explain the
organ patterning in flower. In Arabidopsis, A class genes
APETALAI (API) and APETALA2 (AP2) are involved in
the development of sepals and petals. B class genes
APETALA3 (AP3) and PISTILLATA (PI) can form pro-
tein complexes with C class gene AGAMOUS (AG) and
E class genes SEPALLATAs (SEPs) to promote stamens
development. The carpels formation is regulated by both
C class genes AGs and E class genes SEPs. The interfer-
ence of ABCDE genes leads to confusion in the identity
of floral organs [3, 5]. Compared with Arabidopsis, to-
mato genome has more homologous ABCDE genes. To-
mato possesses four B class homologous genes, two DEF
lineage genes-Tomato APETALA3 (TAP3) and Tomato
MADS-box 6 (TM6), two GLO genes-Solanum lycopersi-
cum GLOBOSA (TPIB, SIGLOI) and Tomato PISTILLA
TA (TPIL, SIGLO2) [6, 7]. In tomato, there are two C
class homologous genes (TOMATO AGAMOUS 1
(TAG1) and TOMATO AGAMOUS-LIKE 1 (TAGLI)) (8,
9] and six E class homologous genes (Tomato MADS-
box 5 (TMS5), TM29, JOINTLESS-2 (J2), ENHANCER-of-
JOINTLESS2 (EJ2), RIPENING INHIBITOR (RIN) and
Solyc04g005320) [10]. Although the ABC genes clearly
have similar functions between Arabidopsis and tomato,
they may have separate functions independent of each
other.

The development of stamens and carpels has drawn
particular attention, as the regulation of these two floral
parts is important for crop breeding. In Arabidopsis, mu-
tations in the B-class genes APETALA3 (AP3) or PISTIL
LATA (PI) promote the conversions of petals into sepals
and stamens into carpels [1]. Similarly, the tomato sta-
menless mutant was identified to have mutations in B
class gene TAP3 [11, 12]. In the mutant, stamens are
completely transformed into carpels which are fused
with the carpels in the fourth whorl to form a unique
gynoecium, and petals are partially transformed into se-
pals [11, 12]. The silencing of another B class gene TM6
also produced similar phenotypes [6, 13]. Mutants of the
B-class genes DEFICIENS (def) and GLOBOSA (glo) trig-
gered the same homeotic transformations in Antirrhi-
num [14]. The rice stamenless 1(slI) mutant exhibits
homeotic conversions of lodicules and stamens to palea/
lemma like organs and carpels, which resembles the mu-
tant of B class gene SPW1I [15]. Another type of home-
otic transformation has also been reported in these
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species. In Arabidopsis, the mutant of the C-class gene AG
showed that the stamens and carpels were transformed into
petals and sepals [1]. These phenotypes are very similar to
the fagl mutant in tomato [8] and agamous-like flower
(aglf) mutant in Medicago truncatula [16].

The initiation and termination of floral meristem are
precisely controlled to ensure the successful develop-
ment of flowers, in which a set of transcription factors
are spatiotemporally coordinated [17]. In Arabidopsis,
the activity of floral meristem (FM) is maintained
through the WUSCHEL-CLAVATA (WUS-CLV) signal-
ing pathway, which plays a key role in maintaining un-
differentiated cell populations in the meristem [18, 19].
In addition, the ag -2 mutant in Arabidopsis produce
flowers without stamens and carpels and form indeter-
minate flowers with reiterating sepals and petals, sug-
gesting AG is very important for floral meristem
determinacy [20]. The LEAFY (LFY) gene together with
WUSCHEL (WUS) activates AGAMOUS (AG) at floral
stage 3 [21, 22]. While in later stages of the floral devel-
opment (starting from stage 6), induction of KNUCKLES
(KNU) by AG is crucial for the timely termination of FM
[23]. In addition, high AG level indirectly regulates WUS
activity to ensure the proper termination of meristematic
activity in the FM, in which a set of regulators including
trithorax group protein ULTRAPETALA1 (ULT1), bZIP
transcription factor PERIANTHIA (PAN), and other fac-
tors such as REBELOTE (RBL) and SQUINT (SQN) are
involved [24-28]. The tetramerization of SEPALLATA3
(SEP3) and AG is essential for AG function that acti-
vates CRABS CLAW (CRC) and KNU during floral de-
terminacy. In addition, these regulatory networks also
interplay with plant hormones during the floral develop-
ment. It was found that AUXIN RESPONSE FACTOR 3
(ARF3) is transcriptionally regulated by AG and APET
ALA2 (AP2) in developing flowers, which represses cyto-
kinin activity to inhibit WUS expression [29]. The mech-
anisms regulating floral development seem to be
conserved among species. It has been found that KNU
interacts with MINI ZINC FINGER (MIF) to regulate
WUS expression and this mechanism is conservative be-
tween Arabidopsis and tomato [30].

Floral reversion is an unusual process in which the
committed floral development is reverted back to vege-
tative growth, resulting in outgrowth of leaves or inflor-
escence structures from the first flower [31]. This
phenomenon is usually related to varied environmental
conditions, such as temperature and photoperiod [31].
For example, the floral reversion was observed in [fy-6
and ag-1 mutants of Arabidopsis grown in short-day
conditions [32]. Floral reversion was also observed in
natural allopolyploid Arabidopsis suecica, in which ab-
normal expression of floral genes, including AGL24,
APELATAI (AP1), SHORT VEGETATIVE STAGE (SVP)
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and SUPPRESSOR OF CONSTANS1 (SOCI) were de-
tected [33, 34]. Unlike in Arabidopsis, LEAFY (LFY),
TERMINAL FLOWERI (TFLI) and AG in Impatiens bal-
samina seemed not to be involved in terminal flowering
and floral determinacy [35]. In Petunia hybrida, co-
suppression of FLORAL BINDING PROTEIN1 (FBP2), a
homolog of Arabidopsis SEPALLATA-like gene, led to
new inflorescences growing from axils of carpels [36]. In
tomato, the down-regulated of TM29, a homolog of Ara-
bidopsis SEPALLATA gene, also resulted in ectopic leafy
stems and flowers formed in fruits [37].

In this study, we identified a tomato recessive mutant
with the mutation in the gene Solyc03g006900 which is
named Solanum lycopersicumm GT1 (SIGT1I) based on
the previous nomenclature and encodes a transcription
factor belonging to Trihelix gene family [38]. Recently, a
mutant of SIGT11 ortholog in Medicago truncatula has
been reported to control the C-function gene expression
and it was named AGAMOUS-LIKE FLOWER (AGLF)
[16]. In aglf mutant, the stamens and carpels in the inner
whorl are replaced by petals and sepals respectively, re-
sembling the floral phenotype of ag-I mutant in Arabi-
dopsis [16, 20, 39]. We found that the loss-function of
SIGT11 resulted in sepaloid petal at high temperature in
the second whorl, carplloid stamen in the third whorl,
and ectopic formation of stem-, leaf- and flower-like
structures in the fourth whorl. Together with the result
that B, C and an E-type MADS-box genes were down-
regulated in slf mutants, we concluded that SIGT1I has
important functions in the development of the three
inner floral whorls. Furthermore, spatiotemporal expres-
sion analysis showed that SIGT11 was expressed
throughout the flower in the early stages and its expres-
sion became more specific to the primordium position
of stamens and carpels in later stages of the floral devel-
opment. Together our results suggest that SIGT11 func-
tions in floral organ patterning and maintenance of
floral determinacy in tomato.

Results

Identification of the sIf mutant

In order to study the mechanism regulating floral organ
identity in tomato, we screened tomato EMS-mutant li-
brary [40] and identified a mutant (TOMJPG2637-1)
with identity defects in stamens and pistils, while the
identity and number of sepals and petals were un-
changed compared with wild type (WT) (Fig. la-c, e, g).
In the mutant, stamens showed severely carpelloid in the
third whorl (Fig. 1a). From the longitudinal sections, we
verified that the pistil-like structures were formed in the
third whorl (Fig. 1a, b). Only a few flowers (~ 22.95%)
have stamen-like structure remaining in the third whorl
of the mutant based on the transverse sections of flowers
(Fig. 1b, d). The carpelloid stamens of the mutant
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developed into irregular fruits with more locules and the
vestigial stamen structures were later formed radial
cracks on the fruit surface (Fig. 1c). As this phenotype is
similar to previously reported stamenless mutant [11,
12], we thus named the mutant stamenless like flower
(s£).

Besides, our histological analyses showed that new
shoot/floral meristems instead of carpel primordium
formed in the fourth whorl of the mutant (Fig. 1. g). The
ectopic shoot/floral meristem in the slf mutant produced
ectopic aberrant foliage and flowers in the fourth whorl,
indicating that the normal floral determinacy was lost
(Fig. 1. g). As a result, the carpelloid stamen in slf mu-
tant developed into the parthenocarpic fruit without
seeds (Fig. 1c, d, Fig. Slc, d). Interestingly, in the carpal-
like structure, the ovule development seemed normal in
slf mutant. Therefore, we attempted to use WT pollen
grains for the cross-pollination in s/f mutant, and only
small amount of seeds were obtained. This result may be
due to the abnormal pistil-like structures that hindered
the pollen-ovule process (Fig. Sle, g). All these results
indicated that the slf mutant was almost sterile.

SIGT11 gene encodes a regulator involved in floral organ
identity
To identify the causal gene in slf mutant, we first con-
ducted a genetic analysis by crossing the mutant to the
WT. In the F2 segregated population, we found 92 pro-
genies resembling the WT and 28 progenies with sif phe-
notypes, which were close to the 3:1 Mendelian
segregation rule, indicating that the phenotypes in slf were
caused by a recessive mutation at a single locus. Through
bulked segregant analysis sequencing (BSA-Seq), we
identified a signal peak on chromosome 3 (Fig. 2a).
Further SNP analysis assigned the causal mutation to
the gene Solyc03g006900 which encodes a nucleus-
localized Trihelix transcription factor named SIGT11
previously [38], containing a putative GT1 DNA-
binding domain and a PKc kinase domain (Fig. S3).
The A to T substitution at the 2195 bp position iden-
tified forms the termination codon TAG and mRNA
level of the SIGTI1 gene in the mutant was signifi-
cantly decreased (Fig. 2b, f). Further sequencing ana-
lyses verified that the base substitution occurred in all
28 F2 progenies with s/f phenotypes (Fig. 2c). Subcel-
lular localization in tobacco leaves showed that
SIGT11-GFP was located in the nucleus, consistent
with the presence of DNA-binding domain (Fig. 2d).
To further verify the SIGT11 function, we transformed
WT tomato with an RNA interference (RNAi) plasmid
targeting the C-terminus of the SIGT11. The phenotypes
of 5 independent transgenic RNAi lines were consistent
with the s/f mutant. qRT-PCR verified the significant re-
duced expression of SIGT11 in RNAI lines (Fig. 2f). The
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Fig. 1 The s/f mutant shows deficiencies in floral organ identity. a The floral phenotypes of WT and s/f. b Transverse and longitudinal sections
(stained with toluidine blue) of WT and sif flowers at developmental stage 18. Red and black numbers indicate the number of stamens and

locules, respectively; red asterisks indicate the conversion of the stamens into pistils in the third whorl. ¢ The fruit of WT and s/f. Green triangles
indicate rough radial lines caused by the formation of vestigial stamen-like structures. d Percentage of the flowers with 0-6 stamens in WT and
slIf. @ Quantification of sepals, petals, stamens and carpels in WT and s/f. The vestigial stamen-like structure in s/fis counted as the stamen; the
carpelloid stamen in sif is counted as the carpel. The data represent means +SD (n =296). f A schematic diagram of the floral organs in WT and
slf. The WT flower consists of four whorls: sepal (green), petal (orange), stamen (yellow and blue solid line), and carpel (purple). The sif flower
consists of sepals (green) in the 1st whorl, petals (orange) in the 2nd whorl, carpelloid stamens (purple) with or without stunted stamens (yellow
and blue dotted line) in the 3rd whorl, and ectopic shoot/floral meristem in the 4th whorl (red circular). g Ectopic shoot/floral meristems emerge

flower; el: ectopic leaf; ec: ectopic carpel. Scale bars: (a, b, g) 1 mm

in the flower, and ectopic shoots produce flowers and leaf-like structures in the fruit, longitudinal sections of the s/f flowers show ectopic
meristem stained with toluidine blue at the floral developmental stage 14. es/fm: ectopic shoot/floral meristem; es: ectopic stem; ef: ectopic

observed phenotypes including carpelloid stamens in the
third whorl and new meristem formation from the
fourth whorl in RNAI lines (#1 and #6) indicated that
SIGT11 was the gene causing the developmental defects
of stamens and carpels in sif (Fig. 2e). In addition, ab-
normal fruits were also found in transgenic lines #1 and
#6, indicating that SIGT1I plays an important role in
regulating the floral identity and floral meristem termin-
ation (Fig. 2g).

Phylogenetic analysis showed that all the SIGT11 hom-
ologous genes in solanaceae were grouped into the same
cluster, while Arabidopsis homologous gene At5g51800
belonged to a less related cluster (Fig. S2). Consistent
with this phylogenetic distance, At5¢g51800 mutation
does not cause the similar floral phenotype, indicating
the function of this gene is not completely conserved
among different species. The comparative analysis of the
amino acid sequence of SIGT11 in solanaceae showed
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Fig. 2 Fine-mapping and functional verification of candidate gene SIGT11. a The location of SIGT11 on chromosome 3. Red triangle indicates a
signal peak on chromosome 3. b, ¢ A to T substitution in the position 2195 bp forms a termination codon TAG. d Nuclear localization of the
SIGT11-GFP fusion protein in tobacco mesophyll cells. @ Phenotypes of SIGTT1 RNAI transgenic lines (# 1, # 2 and # 6) and WT. f gRT-PCR analysis
of the SIGTT1 expression in WT, slf, and SIGTT1 RNAi lines # 1, # 2, and # 6. SIACTIN was used as the internal control. Error bars represent the SD
from three biological replicates. g The fruits of WT and SIGTT7 RNAI lines # 1 and # 6 show the radial cracks and ectopic stems. #1: SIGTT1-RNAI-1;

that the N-terminal GT1 domain and the C-terminal
PKc kinase domain are highly conserved (Fig. S3).

Spatial and temporal expression pattern of SIGT11 in
tomato

To examine the expression pattern of SIGT11, we per-
formed qRT-PCR in different tomato tissues including
roots, hypocotyls, cotyledons, stems, leaves, flowers and
fruits. The expression of SIGT11 was highly enriched in
the flowers (Fig. 3a). Then RNA was extracted from dif-
ferent parts of flowers at anthesis for qRT-PCR and we
found that SIGT1I was predominantly expressed in sta-
mens, indicating that SIGT11 could be important for sta-
men development (Fig. 3b). Furthermore, we analyzed
the temporal expression trend of SIGT11 during the
floral development. qRT-PCR showed that SIGT1I ex-
pression was time-specific, with high expression levels
from 6days to 2days before flowering (at stagel2-18)
(Fig. 30).

Furthermore, we constructed a GUS reporter driven
by SIGT11 promoter and transformed it into WT to-
mato (Fig. 3d). GUS staining showed that SIGT11 was
expressed throughout the early stages of flowers and the
expression became more specific to the stamen and
carpel in later stages (Fig. 3e). The expression pattern of
SIGTI11 in inner two whorls of flower implies that it is
probably involved in the regulation of tomato stamen
and carpel development.

Stamen defects occur at the early stage

To investigate how SIGT11 affects stamens and carpels
at different floral developmental stages [41], we used
scanning electron microscopy (SEM) to visualize the
floral development in WT, sif and SIGT11 RNAi line 6
(Fig. 4a-0). The early stages (before the stage 3 when
sepal primordia and petal primordia were initiated) of
floral development in slf and SIGT11 RNAi line 6 ap-
peared to be similar to that of the WT (Fig. 4a-f). At
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Fig. 3 Spatiotemporal expression pattern of SIGTT1. a gRT-PCR analysis of SIGTT1 in different tissues. b gqRT-PCR analysis of SIGTT1 in different
floral organs. ¢ qRT-PCR analysis of SIGTT1 at different developmental stages of flower. SIACTIN was used as the internal control. Error bars
represent the SD from three biological replicates. d The diagram of the GUS reporter driven by SIGT11 promoter. @ GUS activity was detected
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stage 5, the differences between WT and slf or SIGT11  respectively (Fig. 4g). In contrast, the third and fourth
RNAi line 6 became more prominent. In the WT, six  floral organ primordia in the s/f and SIGT11 RNAI line 6
stamen primordia and one carpel primordium with four  were initiated in disorder (Fig. 4h, j). The defective floral
locules were initiated in the third and fourth whorl organ identity became more severe in slf and SIGT11
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sif WT

#6

Fig. 4 SEM micrographs of floral organs at early developmental stages in WT, sif and SIGTTTRNAI line 6. SEM images of the floral meristem in WT
(a,d, g, jand m), sif (b, e h, k and n) and SIGT11-RNAI-6 (¢, f, i, | and o). Green stars indicate sepal primordia; yellow stars indicate petal
primordia; red stars indicate stamen primordia; pink stars indicate carpel primordia; bule stars indicate carpelloid stamens; red lines circle the
abnormal carpel primordial with ectopic meristems; Scale bars: 100 um; st: stage

RNAI line 6 at stages 6 and 9 (Fig. 4j, m). In the mutant,
most stamens were transformed into carpel-like struc-
tures, and some ectopic meristems were produced in the
central area of the flower (Fig. 4k, |, n and o). Combined
with the spatiotemporal expression, we concluded that
SIGT11 plays an essential role in the early development
of floral organs.

Expression of floral development genes in sIf mutant
Since the defects of stamens and carpels occurred at the
early stages, we compared the expression of BCE genes
that were previously reported to affect stamen and
carpel identity in the floral buds at stage 1-6 between
WT and sif [41]. Consistent with the phenotypes, the
BCE genes showed the distinct expression pattern be-
tween WT and slf mutant. Class B genes TAP3, TPI and
TPIB, class C genes TAGI, TAGLI and class E gene
TM?29, were all significantly down-regulated in s/f. How-
ever, the expression level of the B-class gene TM6 and E
class gene TMS5 were not significantly affected in sif dur-
ing the floral development (Fig. 5a).

We next analyzed the expression levels of some regula-
tors involved in floral meristem identity and floral meri-
stem termination. Since the ectopic floral meristem was
repeatedly emerged in the later stages of floral develop-
ment (Fig. 1g), we chose a set of essential genes for floral
development including SIWUS, SIKNU, SICLV3, SICLV1I,
SICLV2, FALSIFLORA (FA), SIULTI-like and SIRBL-like
for transcriptional analysis at the later floral stage (stage
20). FA and SIWUS were up-regulated in slf, while SIKNU,
SICLV3, SICLVI and SIULTI1-like appeared to be down-

regulated in sif flowers (Fig. 5b, c). These results were con-
sistent with the floral meristem termination defects in sif
mutant.

High temperature inhibits the expression of SIGT11 and
T™M29

During the cultivation in the greenhouse where the
temperature in summer was higher than the standard,
we found that the phenotypes of slf became more se-
vere, with stamens hardly visible and the defective
flowers with ectopic floral meristem dramatically in-
creased. As the temperature was reported previously
to play a role in the floral development [42], we
tested whether the SIGTI1 function is also affected
by temperature. To that end, we germinated the WT
and s/f mutant seeds at 25°C for 4 weeks, and grew
them in a heated incubator (37°C daytime/ 28°C at
night) for 20days. The flowers produced by the sif
mutant grown at the higher temperature had more
carpelloid structures and no stamen-like structures in
the third whorl was visible (Fig. 6d). In addition, the
petals seemed to partially acquire sepals identity by
forming greenish petals with sepal structure (Fig. 6f).
Furthermore, we found shoot/floral meristems were
produced at the center of the mature flowers (Fig. 6d).
Despite the carpelloid stamens and ectopic shoot/
floral meristems were also produced in sif flowers at
lower temperature (25°C daytime/22°C night), their
occurrence frequency became significantly higher at
higher temperature.
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Fig. 5 Transcriptional analysis of genes regulating the floral development in WT and s/f. gRT-PCR analysis of floral organ identity genes TAP3, TPIB,
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genes FALSIFLORA, SIULTI1-like and SIRBL-like (c) in WT and sif flowers. SIACTIN was used as the internal control

To further dissect the influence of the higher temperature
on SIGT11, we performed qRT-PCR to analyze potential
transcriptional change. The floral buds at early stages of
WT and s/f mutant grown at higher temperature were col-
lected for RNA extraction and qRT-PCR. Our results
showed that SIGT11 expression was inhibited by the higher
temperature (Fig. 6g). We then examined the expression
levels of BCE genes at 3h, 7h and 24h after the high

temperature treatment. Our results showed that E class
gene TM29 was further significantly down-regulated by
high temperature in sif mutant (Fig. 6h, i). Yeast-one-hybrid
assay failed to detect the direct binding of SIGT11 to the
TM?29 promoter region. All results (Fig. 5, Fig. 6 g-i) indi-
cate that SIGT11 indirectly activates TM29 transcription,
and the high temperature further represses the transcrip-
tion of SIGT11 and TM29 both in WT and slf.
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Discussion

The classic ABC model was previously established in the
model plants Arabidopsis and Antirrhinum majus [1]. In
A-class mutants, flowers have carpels-stamens-stamens-
carpels (from the outermost to the innermost whorl),
while B-class mutants have sepals-sepals-carpels-carpels
flowers and C-class mutants have sepals-petals-petals-se-
pals flowers. E-class mutants have the flower with all or-
gans resembling sepals [1, 43]. In tomato, the functions
of B/C/E class genes seem to be more complicated than
those in Arabidopsis and Antirrhinum. There are four
homologous class B genes in tomato: TAP3, TM6, TPI
and TPIB. Despite similar phenotypes were observed
when TAP3 and TPIB were mutated, mutations in TM6
or TPI only resulted in the transformation of stamens
into carpels without affecting petals and carpels [6, 7, 13,
44, 45]. Two tomato C class genes TAG1 and TAGL1
have redundant and divergent functions in the floral de-
velopment [9]. The transgenic plants expressing TAG1
antisense RNA showed homeotic conversion of third
whorl stamens into petaloid organs and the emergence

of indeterminate floral meristems in the fourth whorl
[8]. However, TAGL1 mainly specifies stamens and car-
pels development in flowers and controls fruit develop-
ment and ripening [46]. E class gene TM29 expression
was down-regulated by the co-suppression produced ab-
errant flowers with morphogenetic alterations in the or-
gans of the inner three whorls. In these three whorls,
petals and stamens were partially conversed to a sepal-
loid structure, and ectopic shoots with leaves and sec-
ondary flowers emerged from the fruit [37]. In this
study, we identified the recessive mutant of SIGT11 gene
whose phenotypes resemble some previously character-
ized mutants with dysfunctional B/C/E class genes. The
carpelloid stamen in s/f mutants indicates that SIGT11 is
required for the function of B type genes in the third
whorl. The failed termination of floral meristem and the
occurrence of floral reversion in slf indicate that the
function of C type genes partially requires SIGT11 activ-
ity in the fourth whorl. Furthermore, we found that the
defects in sif were substantially enhanced at higher
temperature, with petals transformed into sepals, and
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the frequency of ectopic shoot/floral meristem in fourth
whorl increased. This suggests that SIGT11 is critical in
the development of the three inner floral whorls.

SIGT11 is expressed extensively in the early stage of
floral development, but its expression gradually became
concentrated in the stamens and the vascular bundles of
the ovary. We speculate that SIGT1I plays the roles in
the initiation of each whorl of floral organs, especially
the initiation of stamens. It has been reported that the
expression of BCE genes which affects stamens develop-
ment overlaps with SIGT11 expression domain. Class B
genes including TAP3, TM6 and TPI were all previously
shown to have expression in the stamen position [6, 7].
The C gene TAGI is also mainly expressed in the sta-
mens and carpels during the floral development in to-
mato [8]. Compared with the class B and C genes, the
expression of TM29 at early stage was more extensive,
including vascular bundles. But during the later stage of
the floral development, TM29 expression is mainly con-
centrated in stamens and carpels, which overlaps with
the expression domain of SIGT11 [37]. In addition, the
SIGT11 gene is also expresses in vascular bundles, which
could be the origin of the abnormal stem. Compared
with the WT, the expression of TAP3, TPI, TPIB and
TM29 in slf was all down-regulated, suggesting SIGT11
could regulate the BCE gene expression to promote the
stamens development. Therefore, SIGT11 could be one
of regulators in addition to the ABC model genes that
regulate floral organ development.

Floral development is strictly controlled by complex
regulatory networks to ensure the successful reproduction
of plants. Under natural conditions, the transition from
vegetative to reproductive growth is irreversible so the
correct tissue patterning can be achieved during the floral
development [31]. sif mutant has a reversion of floral de-
velopment to vegetative organs, indicating that meristem
termination in flowers becomes defective. As evidenced by
a number of previously characterized mutants including
TAP3, TPIB and TM6, this reversion phenotype is not ne-
cessarily associated with the defects of fused stamens and
carpels though [6, 7]. In Arabidopsis, the carpels of a weak
allele ag-4 are partially transformed into sepals while the
stamens and carpels of a strong allele ag-6 are completely
transformed into petals and sepals [5, 20, 47]. Despite new
flowers are formed in the whorl four of ag-2 flowers, no
leaves can be seen, indicating that this defect only repre-
sents the aberrant termination of flower meristem [1]. But
grown in short day, ag-I mutants displayed the reversion
of floral meristem back to vegetative development in Ara-
bidopsis. Similar phenotype was also reported in Arabi-
dopsis mutant [fy-6 [32]. The direct homologous gene of
AG in tomato is TAGI. In line with the conserved func-
tion of AG, tagl showed homeotic conversion of the third
whorl stamens into petaloid organs and the replacement
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of fourth whorl carpels with indeterminate floral meri-
stems, which are similar to ag-2 [8]. Transgenic plants ex-
pressing TM29 antisense RNA produced ectopic shoots
with partially developed leaves and secondary flowers in
the fruit [37]. Here we identified that the inhibition of
flower meristem was terminated, and the floral develop-
ment was reversed into vegetative organs in s/f mutants,
indicating that SIGT11 activity is required for the function
of these previously reported genes.

In Arabidopsis, stem cell maintenance is lost at the
stage 6 of floral development, which makes the flower
determinate [48]. In WT flowers, WUS mRNA is un-
detectable at this stage but in ag mutants, WUS is con-
tinuously expressed in the FM, resulting in the disrupted
FM termination [48]. In slf, SIWUS was not repressed in
the later stages of tomato floral development. The direct
or indirect repressors of WUS, such as SIKNU, TAGI,
SICLVs, SIULTI, were all down- regulated in slf. How-
ever, the floral meristem identity gene FA was up-
regulated in sif, which was consistent with the defect of
floral meristem termination in sif.

Interestingly, AGLF, the homologous gene of SIGT11
in Medicago truncatula, seemed to function only as the
C type gene [16]. Despite the similar expression pattern
of AGLF and SIGT1I1 in the inner two whorls, the differ-
ent developmental defects of stamens and carpels in re-
spective mutants indicate that this gene likely has the
different functions in Medicago and tomato. The knock-
out mutant of the SIGT1I1 homologous gene in Arabi-
dopsis (At5g51800) showed no defectives in floral organ
identity [16, 39], indicating that SIGTI1 function may
have evolutionarily diverged in different species.

In summary, we found that the loss-function of
SIGT11 resulted in sepaloid petal at high temperatures
in the second whorl, carplloid stamen in the third whorl,
and ectopic formation of stem-, leaf- and flower-like
structures in the fourth whorl. These phenotypes indi-
cate that SIGT11 has complex functions that are similar
to B/C/E-class genes in floral organ specification. Spatio-
temporal expression analysis showed that SIGTI11 was
expressed throughout the early stages of the floral devel-
opment, and SIGT11 expression became more specific to
the primordium of stamens and carpels in later stages.
Together, our results suggest that SIGT1I functions in
floral organ patterning and maintenance of floral deter-
minacy in tomato.

Conclusions

The results obtained through this study indicate that the
disruption of a novel tomato Trihelix gene SIGT11 re-
sults in the loss of floral organ identity and the reversion
of the flower to vegetative development during the floral
development. Together with the spatiotemporal expres-
sion pattern of SIGT11, our results suggest that SIGT11
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is essential for the reproductive organ development, but
the function of SIGT11 homologous genes is evolution-
arily diverged in Arabidopsis and Medicago. The pre-
sented study provides new insight into the function of
Trihelix gene SIGT11 in the floral development.

Methods

Plant material and growth conditions

All plants used in this study were in tomato (Solanum
lycopersicum L.) accession Micro-Tom background. Seeds
of stamenless like flower (slf) mutant (TOMJPG2637-1)
were obtained from the Tomato Mutants Archive (http://
tomatoma.nbrp.jp/). Since the slf mutant is partial sterility,
seeds from heterozygous plants were used for generating
homozygous individuals.

Seeds were pre-germinated on moistened filter paper
at 28 °C in complete darkness. Plants were grown under
long-day conditions (16-h light/8-h dark) in a green-
house with a relative humidity of 60%. Daytime and
nighttime temperatures were 26 °C and 22 °C, respect-
ively. All plants received regular watering and fertilizer
treatments.

Phenotype characterization

For analyzing the defects of floral organs, we counted
the floral organ number of at least 20 flowers on each
examined tomato plant. For analyzing the number of
stamen in each flower, we collected flowers at anthesis
for the quantification. For analyzing the ectopic floral
meristem, we removed sepals and petals of examined
flowers before anthesis. Immediately after the dissection,
morphology of ectopic floral meristem was imaged using
Nikon SMZ18 stereomicroscope.

Histological analysis

To determine morphological and developmental charac-
teristics, fresh floral organs were dissected and examined
by Nikon SMZ18 stereomicroscope. The toluidine blue
staining was performed as previously described [49].
Briefly the flower buds from the six-week-old WT and
slf plants were harvested and treated in FAA (3.7% for-
maldehyde, 5% acetic acid, 50% ethanol) under vacuum
conditions for 30 min. These samples were dehydrated
in a graded ethanol and tertbutanol series, and then em-
bedded in a paraffin solution containing 50% tertbutanol
for 4 h. The infiltrated samples were placed in pure par-
affin (Sigma-Aldrich) for over-night.

Sections (10 um thick) were cut with a Leica RM2255
microtome, and the paraffin was further removed by the
dewaxing agent. The tissue parts were washed in pure
water carefully, and then stained for 1min in 0.25%
toluidine blue-O (Sigma-Aldrich, U.S.A). All micro-
graphs were photographed with a Nikon SMZ18
stereomicroscope.
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Scanning electron microscopy

Scanning electron microscopy (SEM) analysis of the
flowers at the early stage were conducted as following:
the sepals and petals were carefully separated from fresh
floral organs under stereomicroscope; these samples
were observed using a TM3030 PLUS scanning elec-
tronic microscopy under a quanta 250 FEG scanning
electron microscope at an accelerating voltage of 5 kV.

Subcellular localization

The 35Spro:SIGT11-GFP and the corresponding empty
vector pHellsgate 8 (35Spro:GFP) were transformed into
agrobacterium GV3101 and injected into Nicotiana
benthamiana leaves. The plants with infiltrated leaves
were incubated at 25°C in dark for 24 h and then ex-
posed to light for 12 h before GFP signals were observed
by confocal microscopy (LSM 880, Germany Carl Zeiss).
The primers were listed in the S1 Table.

Bulked segregant analysis (BSA)

Bulked segregant analysis was performed according to
Chang et al. [50]. The sif homozygous plants were used
as female parent and crossed to the WT. The F1 plants
were then selfed to generate F2 mapping population. For
BSA-seq, we extracted genomic DNA from 28 s/f mutant
individuals and 30 WT individuals in the F, mapping
population using CTAB method [51]. All DNA quality
and concentration were checked before being mixed to
construct two bulks (s/f bulk and WT bulk). The sif bulk
and WT bulk were sequenced to a depth of 28x and 30x
coverage of the tomato genome by HiseqXten-PE150
(Novogene). Trimmed sequences are mapped onto the
tomato reference genome (Heinz 1706 cultivar) and mu-
tation variants are filtered. Analysis of the allelic variant
frequencies in the pools led to the identification of the
causal mutation with 100% frequency in the sif bulk.
The genes with the expected allelic frequency of 1 were
further examined and we conducted transgenic verifica-
tion for the identified candidate gene. The candidate
genes were cloned and sequenced to verify the muta-
tions. The primers were listed in the S1 Table.

SIGT11 RNAi gene constructs

To generate the SIGT11 RNA interference transgenic
plants, we selected a 253 bp-sequence near the 3" end of
the PKc kinase-like domain by Sol Genomics Network
vigs tool (https://vigs.solgenomics.net/). The amplified
c¢DNA was cloned into entry vector PDONR221, then
further recombined into the binary vector pK7GWIWG2
(II). The binary plasmids were transformed into agrobac-
terium C58 strain for generating SIGT11 RNAi trans-
genic lines.
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Plant genetic transformation

Agrobacterium-mediated transformations of tomato
were performed according to Brooks et al. [52]. In brief,
cotyledon segments from 6- to 8-d old seedlings were
precultured for 1d followed by the inoculation with
agrobacterium strain C58 containing the RNAi con-
struct. After 2d cocultivation, the cotyledon segments
were transferred to a selective regeneration medium
containing kanamycin. Subcultures were performed
every 15 days until these seedlings produced three true
leaves. These seedlings were transferred to a selective
rooting medium containing kanamycin. Only well-
rooted plants were transferred to the greenhouse.

Phylogenetic and sequence analyses

Sequences of SIGT11 family members in tomato and
other species were obtained from the NCBI database
(https://blast.ncbinlm.nih.gov/Blast.cgi), and aligned
using the ClustalW function in MEGA5. Phylogenetic
trees for proteins with 1000 bootstrap replicates were
constructed using the maximum likelihood method in
MEGAS.

Imaging, microscopy and GUS staining

To produce the pSIGT11:GUS construct, 3kb of gen-
omic sequence comprising the SIGT11 upstream region,
was cloned into PGWB432 binary vector by the infusion
cloning method. Whole floral primordium and flowers
at different stages were stained with GUS solution in
37°C for 10 h after the fixation in cold 90% acetone for
20 min. These samples were dehydrated in a solution
(ethanol: acetic acid glacial, in proportions 4:1 by vol-
ume) for about 6 h [53]. The samples were then cleared
and washed briefly by different concentration ethanol
(40% ethanol for 15 min, 20% ethanol for 15 min, 10%
ethanol for 15 min). The dehydrated samples were em-
bedded in 5% agar and sectioned by Vibrating slicer
(Leica, Germany). The expression pattern of SIGT11 was
observed by a Nikon SMZ18 stereomicroscope [54].

Quantitative real-time PCR analysis

For quantitative real time PCR (qRT-PCR), four-week-
olds tomato plants with similar growth conditions were
used for tissue collection including roots, hypocotyls,
cotyledons, stems, leaves, flowers, fruits, different floral
organs and the flowers at different developmental stages
[41]. Total RNA was isolated using the Eastep Super
Total RNA Extraction Kit (Promega, Shanghai). Subse-
quently, HIScript II 1st Strand c¢cDNA Synthesis Kit
(+gDNA wiper, Vazyme) was used to synthesize the first
strand ¢cDNA. ChamQ Universal SYBR qPCR Master
Mix kit (Vazyme) was used to perform qRT-PCR reac-
tions in a 7300 Real-Time PCR System (CFX Connect,
BIO-RAD). An actin gene was used as the constitutive
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control. The relative gene expressions were calculated
using the 2™~ 24" method [50]. All analyses were per-
formed in three biological replicates and two technical
replicates. All primer sequences for qRT-PCR can be
found in Table S1.

Yeast-one-hybrid assay

Yeast-one-hybrid assay was performed using the Match-
maker EYG48 Yeast-one-hybrid system (Clontech) as
described by the manual. The coding sequence of
SIGT11 for effector protein was cloned into the PJG4-5
vector, and the promoter sequence of B/C/E class genes
were cloned into the reporter vector Placzy. Both vectors
were transformed into the EYG48 yeast strain. Diploid
yeast cells were grown and selected on dropout medium
without uracil and tryptophan. To assay protein-
promoter interactions, clones were grown on two-
dropout medium without uracil and tryptophan, but
with x-gal, for 2 d at 30 °C. The empty vectors were used
as control. All primer sequences used for cloning can be
found in Table S1.

Yeast-two-hybrid assay

Protein interaction assays in yeast were performed using
the Matchmaker Gold Yeast Two-Hybrid System (Clon-
tech) according to the manual. The SIGT11 coding se-
quence for bait protein was cloned into the pGBKT7
vector and BCE class genes for prey proteins were
cloned into the pGADT?7 vector. The vectors were then
transformed into the Y2HGold yeast strain. Diploid yeast
cells were selected and grown on dropout medium with-
out leucine and tryptophan. To assay protein-protein in-
teractions, clones were grown on quadruple-dropout
medium without leucine, tryptophan, histidine and aden-
ine for 3 d at 30°C. All primer sequences used for clon-
ing can be found in Table S1.
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