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Abstract

Background: Modern agriculture strives to sustainably manage fertilizer for both economic and environmental
reasons. The monitoring of any nutritional (phosphorus, nitrogen, potassium) deficiency in growing plants is a
challenge for precision farming technology. A study was carried out on three species of popular crops, celery
(Apium graveolens L., cv. Neon), sugar beet (Beta vulgaris L., cv. Tapir) and strawberry (Fragaria × ananassa
Duchesne, cv. Honeoye), fertilized with four different doses of phosphorus (P) to deliver data for non-invasive
detection of P content.

Results: Data obtained via biochemical analysis of the chlorophyll and carotenoid contents in plant material
showed that the strongest effect of P availability for plants was in the diverse total chlorophyll content in sugar
beet and celery compared to that in strawberry, in which P affects a variety of carotenoid contents in leaves. The
measurements performed using hyperspectral imaging, obtained in several different stages of plant development,
were applied in a supervised classification experiment. A machine learning algorithm (Backpropagation Neural
Network, Random Forest, Naive Bayes and Support Vector Machine) was developed to classify plants from four
variants of P fertilization. The lowest prediction accuracy was obtained for the earliest measured stage of plant
development. Statistical analyses showed correlations between leaf biochemical constituents, phosphorus
fertilization and the mass of the leaf/roots of the plants.

Conclusions: Obtained results demonstrate that hyperspectral imaging combined with artificial intelligence
methods has potential for non-invasive detection of non-homogenous phosphorus fertilization on crop levels.
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Background
Phosphorus (P) is an essential macronutrient that greatly
influences root development, plant growth and crop
productivity [1]. Moreover, P has a significant function
in various metabolic processes in plants, such as protein
formation, photosynthesis, cell division, respiration,
energy storage and nutrient movement within the plant,
and is an integral constituent of nucleic acids,

phospholipids, and coenzymes activating amino acid
production [2]. P has been found to be one of the most
important minerals for celery (Aqium graveolens)
growth, quality and yield. It was responsible for increas-
ing the total above-ground mass, marketable trimmed
yield and yield of larger grade sizes [3]. Phosphorus also
plays an important role in sugar beet development
because it is essential for root yield and sugar assimila-
tion [4, 5].
Inappropriate P fertilizer management is dangerous for

both plants and the environment and generates
additional costs. Fertilizers are commonly applied
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according to farmer experience, which can easily lead to
over- or misapplication, resulting in soil quality degrad-
ation, reduction in crop yields, contamination of the
environment, deterioration of water quality, eutrophica-
tion, and loss of biodiversity [6]. Therefore, adequate
phosphorus fertilization plays a key role in precision
agriculture. Currently, information about P status in
plants is obtained by visual inspection or chemical ana-
lyses, which are costly, time consuming and laborious.
Moreover, these methods are destructive, precluding
their usage for the continuous monitoring of P content
and thus P resources in the field during plant growth.
As a result, alternative and efficient methods of P con-
tent monitoring are needed in plants.
It is well known that phosphorus deficiency in plants

disturbs the production of chlorophyll, causing leaf chlor-
osis [7, 8]. Prolonged P deficiency may further result in
the accumulation of anthocyanins, consequently leading
to purple discolouration on the leaf surface [9, 10]. The
above-mentioned changes alter the spectral reflectance
characteristics of leaves or canopies and enable the appli-
cation of spectral reflectance methods, such as leaf colour
charts and chlorophyll metres, for the nondestructive esti-
mation of phosphorus status [11, 12]; however, most of
these methods focus on individual leaves. Hyperspectral
imaging, which combines spectroscopy with imaging
methods, allows collection of canopy images and delivers
representative reflectance data that are useful for the
determination of plant phosphorus status in the field. In
recent years, this technique has been effectively employed
for various crops to estimate biophysical parameters, such
as leaf area index [13, 14], leaf and fruit pigment content
[15–21], biomass [22] as well as detection of diseases and
fungal infections [23–26]. Several studies have been
reported on the spectral changes related to leaf water con-
tent [27, 28], chlorophyll content [29, 30] and macronutri-
ent content, e.g., nitrogen [31, 32] and potassium [33].
The objective of the automatic detection of nutri-

tional deficiencies is to identify the visual symptoms
that characterize such deficiencies. Most previous stud-
ies have focused on estimating the contents of bio-
chemical constituents in leaves as the response to
phosphorus deficiency of a single plant species, such as
citrus leaves [34, 35], rice [36], wheat [37], and oilseed
rape [6, 38]. Christensen et al. [39] indicated that P
content could be predicted with 74% accuracy based on
the spectral canopy reflectance. Similarly, high accuracy
(correlation coefficient of 0.710) has been obtained for
the determination of P content in oilseed rape leaves
using eight wavelengths selected from the visible and
near infrared (VIS-NIR) spectrum [6]. Mahajan et al.
[40] proposed the two-band (combination of 1080 nm
and 1460 nm wavelengths) vegetation index for the pre-
diction of P content in wheat. Most of these studies

have focused on the direct prediction of P content
based on reflectance indices combining a few spectral
bands or on indirect detection by predicting the con-
tent of a related substance (e.g., chlorophyll content).
Until now, few investigations have been dedicated to
analysing the temporal dynamics of leaf morphology
and colour under different P treatments covering lon-
ger periods of plant growth and development and mul-
tiple bands of visible/infrared spectrum [41, 42].
It is evident from previous studies that the monitoring

of P status in different crops using hyperspectral systems
is possible; however, more attention should be paid to
properly characterize plant spectral response to varied P
fertilization, including the key stages of growth. More-
over, to our knowledge, there is still insufficient effort
dedicated to the classification of nutritional anomalies in
root vegetables (such as wild celery - Apium graveolens
L.). These limitations have become the prerequisites for
undertaking research to develop robust and more spe-
cific algorithms for predicting P status in plants (includ-
ing root vegetables) at different development stages and
fertilization doses.
The aim of the present study was to develop a discrim-

ination model for monitoring the dynamics of plant
phosphorus (P) status across the different developmental
stages of wild celery, strawberry and sugar beet crops
under different P fertilizations using hyperspectral
reflectance measurements. The three species selected for
this study are very popular in temperate climatic zones
due to the economic importance (sugar beet is the main
source of sugar in many countries), as well as their
nutritional value and taste (celery and strawberry).

Results and discussion
Reference data of chlorophyll and macronutrient content
Different P treatments caused major variations in pig-
ment content in all the studied plants. Figure 1 illus-
trates the contents of Chlorophyll a, Chlorophyll b, Total
chlorophyll and Carotenoids in sugar beet, celery and
strawberry plants in response to different P fertilizations.
The results show that, in the case of sugar beet and
strawberry plants, exceeding the recommended dose of
phosphorus in the nutrient solution (yellow bars in Fig. 1
depicting a 33% increase of P) caused a decrease in the
chlorophyll content, which refers to all the measured
kinds of chlorophyll (Chlorophyll a, Chlorophyll b and
Total chlorophyll). The same trend was observed in cel-
ery plants, but to a smaller extent. For the three studied
species, the maximum chlorophyll concentrations were
recorded for various P doses: for sugar beet, the dose
was under 33% of the recommended dose, for celery,
under 67% of the recommended dose and, for straw-
berry, under the recommended dose. These differences
speak to the varying impacts of P on the chlorophyll

Siedliska et al. BMC Plant Biology           (2021) 21:28 Page 2 of 17



activity of various species. The deficiency or excessive
application of P into the growing pots caused very high
decreases in chlorophyll and carotenoid concentrations
only in strawberry leaves compared to the control group
(those with the recommended dose), which can be
related to leaf chlorosis. This result indicates a high sen-
sitivity of strawberry plants to imbalanced phosphorus

dosing, in agreement with observations of Trejo-Téllez
and Gómez-Merino [43], who noticed a considerable
decrease of chlorophyll content in P-deficient strawberry
leaves, which became uniformly yellow under P stress.
Additionally, Estrada-Ortiz et al. [44] confirmed a strong
relationship between P content in strawberry plants and
the accumulation chlorophylls in its leaves. Moreover,

Fig. 1 Measured content of Chlorophyll a, Chlorophyll b, total Chlorophyll and Carotenoids in sugar beet (a), celery (b) and strawberry (c) plants
under different P applications. Bars followed by the same letter do not differ statistically by Tukey’s test at p=0.05
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these authors indicated that excess P application causes
a decrease in the contents of photosynthetic pigments
and also influences serious soil and environmental deg-
radation. Figure 1 shows that the concentrations of
chlorophyll a in the studied species were much higher
than the concentrations of chlorophyll b. This result is
not in agreement with Costa et al. [45], who observed
that Chlorophyll b concentrations were higher than
Chlorophyll a in 2 cultivars of strawberry under varied
lightening conditions. However, it was previously indi-
cated that the relationship between chlorophyll a and b
depends on many factors, including source of light,
shading, ambient conditions of plant growth [46–48]
and the specific role of these two pigments in plant
physico-chemistry. Chlorophyll a is responsible for
the collection of photons and plays an essential role
in photosynthesis, while chlorophyll b additionally
participates in the transference of light radioactive
energy [49, 50].
In celery leaves, the chlorophyll concentration (for all

3 types of chlorophyll) at the lowest P treatment (P-33)
was much lower than in other P treatments, indicating
that such low P supply has a stress effect on celery. For
celery leaves, the highest values of chlorophyll concen-
tration occurred for the variant P-67, not P-100, which
speaks to the overestimation of the recommended P
dose in the fertilizer in this case. The same was noticed
for the carotenoid content in celery leaves (the highest
value was noticed for the P-67 variant). It was also ob-
served in celery plants that the highest dose of P in
fertilizer (P-133 variant) did not lead to such high
decreases in chlorophyll a, b or total concentrations, as
was the case for the lowest fertilizer dose (variant P-33),
which suggests that celery is more sensitive to the scar-
city of P than to its excess.
The total N, P, K, Mg and Ca contents, measured by

reference methods at 49, 51 and 45 DAT for celery,
sugar beet and strawberry plants, are shown in Fig. 2.
Generally, considerable and statistically significant differ-
ences in macronutrient contents were observed between
various P treatments in the studied species. However,
neither foliar P concentrations in the sugar beet and cel-
ery plants nor Mg concentrations in celery and straw-
berry were significantly affected by P treatment. It was
difficult to find strict tendency in macronutrient content
changes in the leaves of the three studied species with
changing P fertilization. For example, in sugar beet and
celery, the lowest dose of P in fertilizer (P-33) led to the
highest values of N, which could be due to specific inter-
actions between nutrient elements in the substrate, as
explained in research conducted by Y. Li et al. [3]. Simi-
larly, the lowest dose of P in fertilizer (P-33) was
reflected in the highest concentrations of K for each of
the species. The highest contents of Ca were observed in

celery leaves; however, increasing trends with rising P
concentrations in the treatments were not confirmed in
sugar beet or strawberry. These results confirm the com-
plicated relationships between the contents of macronu-
trients in leaves and P treatments in the soil, which was
also suggested in other sources [3, 51, 52].

Correlation between leaf biochemical constituents,
phosphorus fertilization and mass of the leaf/roots of the
plants
Pearson correlation coefficients (PCC) between the leaf
macronutrients (N, P, K, Ca, Mg), total chlorophyll
(Chltot), carotenoids (Car), phosphorus fertilization level
(Psuppl), mass of the leaf (mleaf) and mass of root (mroot)
for the studied species are presented in Fig. 3 as correl-
ation matrices. The leaf pigments and nutritional ele-
ments were evaluated through laboratory analysis at the
end of the experiment. All plants showed a negative cor-
relation between the level of P supply and the concentra-
tion of nitrogen (N) and potassium (K) macronutrients.
The results obtained for celery showed a strong positive
correlation (PCC=0.77) between the applied dosed of
phosphorus fertilizer and the calcium content in plant
leaves, whereas the other plants indicated a negative cor-
relation (PCC=-0.81 for sugar beet and PCC=-0.69 for
strawberry). Earlier reports also indicated a strong phos-
phorus fertilization effect on other macronutrient accu-
mulation in plants [53, 54].
A negative and highly significant correlation was

observed between the level of P supplementation and
chlorophyll concentration in sugar beet, while the
other plants showed non-significant correlations. The
applied fertilization had no strong effect on the con-
centrations of carotenoids in plant leaves. Phosphorus
fertilization was positively correlated with the concen-
tration of this element in plant leaves, especially cel-
ery (PCC=0.70) and strawberry plants (PCC=0.70).
Sugar beet showed a smaller correlation between the
level of P supplementation and P content in plant
leaves. This dependence is consistent with some ob-
servations in previous studies indicating that P
fertilization increases the phosphate content of sugar
beet roots [55]. Most of the plant nutritional elements
were highly correlated with each other. Numerous
significant correlations existed between nutrients in
sugar beet, especially between K and Ca (PCC=0.88)
and N and Mg (PCC=0.82). The strong correlations
between chlorophyll content and carotenoids were ob-
served for celery (PCC=0.85) and strawberry (PCC=
0.95) plants. This is because chlorophylls and caroten-
oids are co-varying in nature (as a components of
photosynthetic antenna complexes) and statistically
dependent, as observed in previous studies [16, 56].
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Negative correlations between P supplementation in soil
and mass of the plant roots suggest that P deficiency pro-
motes a reduction in the mass and length of roots in root
vegetables and causes the reduction in yield. In the case of
strawberry, this correlation was positive. The concentra-
tion of chlorophylls and carotenoids in the above-ground

parts of the tested plants significantly affected the mass of
their roots. Sugar beet had a positive correlation between
the carotenoid content and root mass (PCC = 0.6),
whereas a strong negative correlation was observed
between the concentration of chlorophyll and carotenoid
content in leaves and root mass for celery plants.

Fig. 2 Effect of phosphorus treatment on N, P, K, Ca and Mg in leaf samples determined by traditional methods. Bars followed by the same letter
are not significantly different according to Tukey’s test (p< 0.05)
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Spectral features of plants
Figure 4 represents the general scheme of the proced-
ure to obtain spectral characteristics from the leaf
surfaces of the three studied plants. The average
reflectance spectra of ROIs, covering the spectral
range of 400–2500 nm for leaf samples of the three
studied species of plants with different P treatments
and for five development stages, are shown in Fig. 5.
The spectral curves of the leaves of the three studied
species exhibited similar shapes, although differences
are visible between the spectra belonging to specific
variants. In the visible spectral region, a characteristic
peak was observed at 550 nm with some differences
between variants, especially in sugar beet and straw-
berry. This peak is characteristic of chlorophyll
absorption. In the region of rapid change in the
reflectance of vegetation in the near infrared range of
650–750 nm of the electromagnetic spectrum (so
called red edge), high increases of reflectance occur,
which enabled us to distinguish differences between
some variants of the experiments. The highest differ-
entiation between the spectral curves of the plants
belonging to specific variants was observed in the
range of 750–1300 nm, in which reflectance patterns

are strongly connected with the internal cellular
structure of plants [57]. Unfortunately, in this range,
there was a break (discontinuity) in the registered
reflected radiation, which is connected to low sensi-
tivity of the two spectral cameras used in the part of
this range. Because of this, the raw spectra of the
leaves in this range were not good at distinguishing
between variants. Another part of the spectrum that
seems to be appropriate for distinguishing differences
between variants is absorption at approximately 1400
and 1950 nm, which are highly related to the absorp-
tion by water. The results presented in Fig. 5 indicate
quantitative relationships between the amount of
reflected light and P treatment at the succeeding
growing stages. In plants of all three species, the
highest changes in reflectance values were observed in
the SWIR region (2200–2400 nm). It suggests that the
SWIR region is useful for distinguishing levels of P
fertilization. Wavelengths in the SWIR region are
mainly associated with light absorption by proteins,
nitrogen, cellulose, starch and sugar. It is known that
P plays an important role in protein synthesis, which
may explain these differences, as suggested by Knox
et al. [58].

Fig. 3 Correlations between carotenoids (Car), chlorophyll (Chltot), magnesium (Mg), calcium (Ca), potassium (K), phosphorus (P), nitrogen (N)
content in leaf, leaf mass (mleaf), root mass (mroot) and phosphorus supplementation (Psuppl)
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Effective wavelength selection
To reduce the high dimensionality of the extracted spec-
tral data and to make the classification models more
robust, the most appropriate wavelengths that give the
highest discrimination among different levels of P-
treatment were selected based on 2nd derivative trans-
formation of raw spectra. The 2nd derivative averaged
spectra are shown in Fig. 6. Based on the second deriva-
tive transformation of the original spectra and by apply-
ing the CFS algorithm with greedy stepwise selection
method, 10, 7 and 4 wavelengths were selected for classi-
fication according to the P treatment of sugar beet,
celery and strawberry plants, respectively (Table 1). The
wavelengths used to distinguish between levels of P
fertilization were localized in the blue spectral band
(400–480 nm), NIR (760–900 nm) and SWIR (1000–
2500 nm) regions of the spectrum. In all studied plants,
the level of P supply did not significantly affect the
reflectance in the green (500–560 nm) region. In the
case of strawberry plants, the wavelengths from the red
region (715 and 723 nm) and SWIR region (2301 and
2332 nm) had particular importance for the separation
of the levels of P treatment. The wavelengths in the red

and far-red regions of the electromagnetic spectrum
(723, 754, 715 and 723 nm) in plants are mainly associ-
ated with the absorption of Chlorophyll a. It was shown
that varied P rates cause changes in the concentration of
Chlorophyll a in plant leaves (Fig. 1).
The previous study performed by Osborne et al. [9]

also indicated that NIR (730 nm and 930 nm) and blue
(440 and 445 nm) regions of the spectrum are useful for
the prediction of P concentrations in corn canopy. Dif-
ferences in the selected wavelengths among the three
studied species might be due to differences in plant
structure or changes in the chemical concentration.

Results of discrimination analysis
The prediction accuracies of the models created to dis-
tinguish between plants grown under different levels of
P treatment at different development stages obtained for
the three studied plant species are presented in Table 2.
It results from the analysis of the supervised classifica-
tion algorithms that very similar and relatively high pre-
diction accuracies in the majority of cases (ranging from
40 to 100% for validation sets) were obtained for all four
methods of machine learning model creation methods

Fig. 4 General scheme of the procedure to generate spectral characteristics from hyperspectral images of the three studied plants
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(i.e., backpropagation neural network, random forest,
naive Bayes and support vector machines). In all cases,
despite very limited numbers of wavelengths selected for
the classification (from 4 to 10), the prediction accur-
acies for training sets were very high in all variants of
the experiment. This confirms a good performance of
the CFS wavelength selection algorithm and is in agree-
ment with other studies on plant material classification
with the use of this algorithm [26, 59]. The performance

of the validation sets was considerably lower than that of
the training sets, but the accuracy at distinguishing be-
tween various levels of P treatment were equal or higher
than 80% in 11 variants among 15 variants of species/
stages of plant development. This result is very good al-
though difficult to compare with other studies that used
different experimental setups and limited numbers of P
treatment variants [38, 42]. The lowest percentages of
correctly classified instances were obtained for the first

Fig. 5 Average reflectance spectra of sugar beet (a), celery (b) and strawberry plants (c) grown under different phosphorus (P) fertilization rates
obtained for third development stage. Each line correspond to the spectral characteristics averaged for four plants from each variants of
the experiment
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Fig. 6 Second derivative transformed spectra of sugar beet (a), celery (b) and strawberry plants (c) grown under different phosphorus (P)
fertilization rates obtained for third development stage

Table 1 Wavelengths selected based on the second derivative transformed spectra and CFS algorithm with greedy-stepwise
selection methods

Plant species Number of selected wavelengths Selected wavelengths [nm]

Sugar beet 10 422, 569, 723, 850, 1250, 2227, 2276, 2314, 2345, 2351

Celery 7 414, 419, 429, 564, 754, 1395, 2264

Strawberry 4 715, 723, 2301, 2332

Siedliska et al. BMC Plant Biology           (2021) 21:28 Page 9 of 17



stage of plant development; however, with progress in
the development of plants, this accuracy was higher.
This result comes from the fact that, in the first period
of plant development, the changes in leaf spectral prop-
erties are considerably minimal between various P treat-
ments and misclassification, especially with one level or
higher of P fertilization. Although all four methods of
supervised classification model creation were highly ef-
fective, the highest overall classification performance
was obtained for RF models. The validation results indi-
cated that this model correctly classified more than 70%
of all instances in the case of strawberry plants and more
than 80% (except the second term) for celery across five
development stages. The average accuracy of RF classifi-
cation for sugar beet was lower compared to other
plants (65%). This result might be explained by the spe-
cific nutrient requirements of the sugar beet [55, 60] and
its lower sensitivity of imbalanced P-fertilization than
strawberry and celery plants.
To assess the performance of the analysed models

for specific P levels in five developmental stages, con-
fusion matrices were created, which enabled us to
identify misclassification percentages for analysed vari-
ants of the experiment. The summary of this analysis
is presented in Table 3 for RF models, which gave

the best overall results in the performed experiments.
The grey cells in this table represent variants with
100% accuracy (all cases classified correctly), yellow
cells show misclassified variants in which misclassifi-
cation refers to one level up or down with respect to
the analysed P fertilization level (e.g., P-33 level clas-
sified as P-67 level), and red cells indicate misclassifi-
cation higher than one P fertilization level (e.g.,
variant P-133 classified as P-33). The confusion matri-
ces for all models divided to 5 growth stages are pre-
sented in Table S1 in Supplement 1. For each
developmental stage, the percentages of misclassified
cases are given, and it is possible to see how mis-
classification occurred (second column in this table
indicates the analysed variants, and separate rows
show with which variants they were misclassified and
what percent of misclassification occurred). From this
table, 100% accuracy was achieved (all cases classified
correctly) for 26 variants of the experiment (P level
vs development stage), misclassification was one level
up or down with respect to the analysed P
fertilization level in 27 variants, and misclassification
was higher than one P fertilization level in only 13
variants. In the majority of misclassified variants (26),
improperly classified cases reached only 20%, there

Table 2 Model performance on selected wavelengths for classification of the level of P treatment at five developmental stages
obtained for the three studied species of plants

Plant species Sugar beet Celery Strawberry

Model BNN LIBSVM LOG RF BNN LIBSVM LOG RF BNN LIBSVM LOG RF

I Training set % 98 84 91 100 98 91 100 100 86 79 68 100

RMSE 0.12 0.28 0.18 0.15 0.12 0.21 0 0.12 0.19 0.32 0.31 0.1

Validation set % 55 45 50 65 75 60 80 80 80 60 55 70

RMSE 0.44 0.52 0.49 0.35 0.3 0.45 0.32 0.32 0.29 0.45 0.39 0.29

II Training set % 98 89 100 100 98 93 95 100 97 97 100 100

RMSE 0.11 0.24 0 0.11 0.12 0.18 0.17 0.13 0.09 0.11 0 0.05

Validation set % 70 70 65 70 55 60 50 55 80 90 80 95

RMSE 0.37 0.39 0.42 0.29 0.39 0.45 0.48 0.34 0.26 0.22 0.31 0.16

III Training set % 95 86 100 100 100 91 100 100 98 77 82 100

RMSE 0.13 0.26 0 0.12 0.06 0.22 0.01 0.11 0.15 0.34 0.22 0.09

Validation set % 65 60 40 75 80 95 55 80 100 85 80 95

RMSE 0.23 0.45 0.55 0.33 0.29 0.16 0.47 0.28 0.17 0.27 0.24 0.15

IV Training set % 100 93 100 100 100 97 100 100 100 100 100 100

RMSE 0.07 0.19 0 0.11 0.05 0.11 0 0 0.02 0 0 0.01

Validation set % 55 85 55 90 80 75 65 85 100 100 95 100

RMSE 0.38 0.27 0.47 0.27 0.27 0.35 0.41 0.27 0.03 0 0.14 0.05

V Training set % 87 86 100 100 100 95 100 100 91 86 100 100

RMSE 0.21 0.26 0 0.13 0.03 0.15 0 0 0.2 0.26 0 0.11

Validation set % 60 45 65 70 95 95 90 95 65 50 80 80

RMSE 0.37 0.52 0.41 0.35 0.15 0.16 0.22 0.16 0.34 0.5 0.32 0.3
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were only 9 variants with misclassified cases of 40%,
3 variants with misclassified cases of 60% and 1 vari-
ant with misclassified cases of 80%. Table 3 also
shows that there were only 6 variants for which two
different levels of P treatment were assigned for a
given level, five of which occurred for the first and
second plant developmental stages. In Fig. 7, the
numbers of misclassified cases in the validation data-
set for random forest (RF) models of P content in
plant treatment for 5 stages of plant growth and 3
studied species are presented, and these are based on
the confusion matrices presented in Table S1 in Sup-
plement 1. This figure shows that the highest number
of misclassified cases for sugar beet and strawberry
occurred during the first stage of plant growth,
whereas this occurred during the second stage of
plant growth for celery. This confirms that, in the

early stages of plant growth, spectral properties of the
affected plant leaves do not always distinguish differ-
ences in P content. Despite this, the overall classifica-
tion performance of the chosen models (and
especially RF models) was very good.

Conclusions
There is high potential of hyperspectral screening for
controlling adequate phosphorous nutrition of culti-
vated plants, which is vital for creating proper condi-
tions of their production and responses to
environmental factors. The experiment conducted on
sugar beet, celery and strawberry indicated that it is
possible for these species to distinguish, with high ac-
curacy, the differences in phosphorous nutrition using
machine learning modelling on the basis of second
derivatives of the reflectance spectra in the spectral

Table 3 Summary of confusion matrices created for the random forest (RF) models of the phosphorous content in treatments for
the three studied species (sugar beet, celery and strawberry) at five stages of plant growth

m.a means “misclassified as” - name of a variant to which a given variant was assigned during the classification
% - percent of misclassified cases belonging to a given variant
The grey cells - all cases classified correctly; yellow cells - one level up or down misclassified variants with respect to the analysed P fertilization level; red cells -
misclassification higher than one P fertilization level
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region of 450–2500 nm. Moreover, it elaborated that
procedures provide a chance to distinguish different
levels of phosphorus fertilization at different develop-
mental stages of plants. Phosphorus deficiency can be
accurately classified at an early plant developmental
stage, especially for celery and strawberry; however,
the classification accuracy increases during plant
growth.
The results have several practical implications. First,

they can be applied to the fast and non-destructive ana-
lysis of phosphorous availability for the examined three
species as an element of precision farming. In particular,
the detection of insufficiencies in P content is possible
with multispectral scanners installed on tractor plat-
forms supported with GPS systems, through implement-
ing selected spectral bands into available sensors, and
through direct use of the elaborated procedures of data
analysis and supervised classification. The method en-
ables us to pin-point areas in the cultivated fields or
even individual plants requiring attention. In this con-
text, it is especially important that elaborated models
concern different stages of plant growth, which is an
additional advantage of such screening. The second pos-
sible application of the study is its implementation to
unmanned aerial vehicles that are capable of distant ana-
lysis of large areas at a time. However, some additional
technical aspects should be considered in such systems,
such as irregular lightening of the analysed scene, the
occurrence of strong vibrations, and controlling flight
trajectories.
The authors are aware that further studies are

needed to explore the impact of soil type on accumu-
lated phosphorous in plants, interactions between
phosphorous status in plants frequently undergoing
abiotic and biotic stresses and their representation in

reflectance spectra and chemometric analysis. Such
additional studies will strengthen the performance of
the elaborated method in detecting phosphorous sta-
tus in plants.

Methods
Plant material
The same number of plants of three species was used
for the experiment: 64 celery (Apium graveolens L., cv.
Neon), 64 sugar beet (Beta vulgaris L., cv. Tapir) and 64
strawberry (Fragaria × ananassa Duchesne, cv. Hon-
eoye). The seeds of celery (produced by SEMO) and
sugar beet (produced by SESVanderHave) were pur-
chased commercially, while the strawberry seedlings
with qualification certificate were obtained from Li-
censed Strawberry Nursey (Niewczas Krystyna & Józef,
Wielowicz 31, 89–412 Sośno, Poland). On March 2018,
seeds of celery (Apium graveolens L., cv. Neon) and
sugar beet (Beta vulgaris L., cv. Tapir) were sown in
plastic pots containing peat. After germination, seedlings
of similar sizes were transplanted to pots (one seedling
per pot) containing sand. The seedlings of strawberry
plants were directly placed in pots with sand. The plants
were grown in the greenhouse under natural sunlight
supplemented white LED light at light intensity of
320 μmol m− 2 s− 1 using a photoperiod of day/night set
to 12/12 h, with temperature ranging from 20 °C to 22 °C
during the months of March–June and September and
from 24 °C to 26 °C during the months of July–August.

Treatments
In this experiment, the plants from each species were
divided equally into four groups of 16 plants each and
were subjected to four different phosphorus rates, which
were applied to the pots to stimulate different nutrient

Fig. 7 Numbers of misclassified cases in a validation dataset for random forest (RF) models of P content in plant treatment for 5 stages of plant
growth and 3 studied species
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levels in plant leaves to test the hyperspectral imaging
system. P fertilizer in the form of superphosphate (P2O5)
was applied to the pots directly before seedling in vari-
ous quantities to obtain different fertilization schemes
named P-33%, P-67%, P-100%, and P-133%. In the vari-
ant P-100%, which was the control group for the whole
experiment, the dose recommended in the literature for
these types of varieties was used [61–63], namely 1.2 g P
per pot (40 mg/kg of the soil). Other variants were
treated with 1/3, 2/3, and 4/3 of this value. After initial
differentiation, each plant was irrigated with 100 ml of
the treatment solution every two days for 60 days. The
nutrient solution contained 33.3 mg/l of N, 13.3 mg/l of
P and 50mg/l of K applied as NH4NO3, Ca(H2PO4)2
and KNO3, respectively. The concentrations of micronu-
trients were B 0.28, Fe 2.4, Mn 1.0, Zn 0.35, and Mo
0.05 mg/l, which were applied as a commercial fertilizer
Micro Plus (produced by Intermag, Olkusz, Poland).
After 60 days, a constant level of the soil water content
was maintained in pots corresponding to the field cap-
acity of water. To do so, the field capacity of water for
the used soil was determined for selected soil samples
under the soil water potential of 15,596 J·m− 3 (pF equal
to 2.2) in the Richard’s chambers (Soilmoisture Equip-
ment Corp., Santa Barbara, CA, USA). At that stage, the
plants were watered using tap water, and the appropriate
soil water content was controlled using a weighting
method.

Hyperspectral imaging system
Spectral data were recorded by a laboratory hyper-
spectral imaging system, which was composed of two
hyperspectral cameras manufactured by SPECIM
(Spectral Imaging Ltd., Oulu, Finland) to cover the
ranges of visible and near-infrared (VNIR) and short-
wavelength infrared (SWIR), a belt conveyor (Reall,
Lublin, Poland) with belt speed regulated for each
camera separately (to conduct line scanning of the
plant leaves) and the illumination system Brilum

(Piaseczno, Poland) model LAVADO416 with 4 light-
ing modules (each of them had 4x20W halogen lamps
made by Philips, the Netherlands). The following im-
aging spectrographs were used inside the hyperspec-
tral cameras: ImSpector V10E (400–1000 nm) and
N25E 2/3″ imaging spectrometer (1000–2500 nm).
The constant distance of 20 cm between the lenses of
the cameras and the plant surfaces were maintained
for each scan. The angle between the halogen lamps
frames and the conveyor belt surface was 45°.

Image acquisition and correction
The three-dimensional hyperspectral data, composed of
960 images of the plants (4 nutrient treatment × 5 devel-
opment stages × 16 replications × 3 species of plants),
were collected before chemometric analysis, and super-
vised classification were performed. Plants were scanned
with the hyperspectral camera when staying in pots with-
out uprooting. Data collection was performed five times
during the experiment under differing stages of plant de-
velopment, numbered as 1, 2, 3, 4 and 5. They represented
7, 14, 21, 35 and 49 days after transplanting (DAT) for cel-
ery plants; 7, 21, 31, 41 and 51 DAT for sugar beet plants;
and 7, 14, 21, 35 and 45 DAT for strawberry plants. De-
scription of development stages achieved by each plant
species along with the code assigned on BBCH scale is
provided in Table 4. For three studied species they cov-
ered the broad period from the unfolding of the second
leaf till the appearance of the first fruit.
Hyperspectral images were recorded at a wavelength

range of 400–1000 nm with a spectral resolution of 2.8
nm using a VNIR camera and in the range of 1000–2500
nm with a spectral resolution of 10 nm using a SWIR
camera. During image acquisition, the plant samples were
placed on the mobile platform using the scanning speed
of 6 mm/s and 8mm/s, and the camera exposure time was
set to 2.3 and 7.6ms for the VNIR and SWIR cameras, re-
spectively. The hyperspectral images obtained during the
measurements were recorded using data acquisition

Table 4 The description of measurement dates based on BBCH (Biologische Bundesanstalt, Bundessortenamnt and Chemische
Industrie) development stages [64, 65]

Measurement
term

Plant species

Sugar beet Celery Strawberry

BBCH
Code

Description BBCH
Code

Description BBCH
Code

Description

I 12 2nd true leaf unfolded 12 2nd true leaf unfolded 12 2nd true leaf unfolded

II 15 5th true leaf unfolded 14 4th true leaf unfolded 14 4th true leaf unfolded

III 19 9 or more true leaves
unfolded

19 9 or more true leaves unfolded 58 Early balloon stage: first flowers with petals
forming a hollow ball

IV 32 Leaves cover 20% of
ground

42 20% of the expected root
diameter reached

65 Full flowering: 50% of flowers open

V 35 Leaves cover 50% of
ground

45 50% of the expected root
diameter reached

85 First fruits have cultivar-specific colour
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software SpectralDAQ ver. 2.1, which is specially dedi-
cated to SPECIM cameras. For each series of measure-
ments, white and dark calibrations were performed
according to the procedure described in Baranowski et al.
[24] to obtain the reflectance from the raw data.

Hyperspectral image pretreatment
The corrected images were used to extract spectral in-
formation, select effective wavelengths, and elaborate the
method of identification of P content in plants. First, the
regions of interest (ROIs), including leaf surfaces, were
pinpointed via ENVI software (ENVI5.4, Research Sys-
tem Inc., Boulder, CO, USA). Next, segmentation was
implemented to segregate the ROIs. The segmentation
was performed according to the procedure described by
Baranowski et al. [59]. After image segmentation, reflect-
ance values of all the pixels in each separate ROI were
averaged to generate one mean value for each band.
That way, the mean values of reflectance from 434 bands
produced the representative reflectance spectrum of
each sample. This procedure is referenced in the
manuscript as the averaging of the reflectance spec-
tra. Before the classification analysis, the extracted
spectra were preprocessed using the second deriva-
tive, calculated with the Savitzky-Golay (SG) method
(second-order polynomial and 11 smoothing points).
The derivative processing suppresses the background
signal as well as reduces image artefacts caused by
non-uniform illumination [66]. Moreover, this pre-
processing method increases the spectral resolution,
has an input in the baseline correction, and enables

an increased resolution of overlapping peaks [32].
Spectra obtained with the use of this preprocessing
method are referenced in the manuscript as second
derivative transformed spectra. The Unscrambler X
ver. 10.1 (CAMO Software, Oslo, Norway) was used
to pre-treat the spectral data.

Effective wavelength selection
Hyperspectral image data contain large amounts of in-
formation, with redundancy and multi-collinearity be-
tween adjacent wavelengths, causing complex problems
with their processing and application. To solve these
problems, it is necessary to extract a number of essential
wavelengths carrying the most relevant information be-
fore further analysis and implementation. To reduce the
high dimensionality of the spectral data, the Correlation-
Based Feature Selection (CFS) algorithm was applied to
the SG transformed data. This algorithm uses heuristics
that assign high scores to feature subsets that are highly
correlated with the class and highly uncorrelated with
each other [67]. In this research, a greedy-stepwise (GS)
search strategy was applied in the CFS algorithm to se-
lect attributes through the space of subsets.

Classification algorithms
Supervised classification experiments were performed on
the hyperspectral data of the plant leaves. Different
machine-learning algorithms, i.e., Backpropagation Neural
Network (BNN), Random Forest (RF), Naive Bayes (NB)
and Support Vector Machine (SVM), were used to classify
plants under different phosphorus fertilizations at

Table 5 Chosen features of the classifiers used in the study

Name of WEKA
classifier’s library

Algorithm description Acronym Used parameters

Multilayer Perceptron Neural networks with backpropagation used for tuning the weights of a neural net
based on the error rate (i.e. loss).

BNN AutoBuild: true;
Learning rate: 0.3;
Momentum: 0.1;
Training time: 500
Hidden layers = 25

LibSVM This library enables users to deal with One-class SVM, Regressing SVM, and nu-SVM.
Many useful statistics are allowed including confusion matrix, precision estimation,
ROC score.

LIBSVM SVM Type: nu-SVC;
Kernel Type: radial basis
function;
Nu: 0.g;
gamma: 0.1;
degree: 3
Normalize: true;
Probability Estimates:
true

Logistic Used for building and using a multinomial logistic regression model with a ridge
estimator.

LOG Debug: false;
MaxIts: −1;
Ridge: 1.0E-6

Random Forests This classifier enables to create forest of random trees. It induces each constituent
decision tree from a bootstrap sample of the training data

RF Debug: false;
MaxDepth: 0;
Num of Features: 0;
Num of Trees: 10;
Seed: 1
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different developmental stages. Extensive work has been
performed to optimize the parameters of individual
models using trial and error. The parameters of the elabo-
rated models are described in Table 5. For the classifica-
tion experiment, samples were randomly selected for the
test set and the validation set at the ratio 75:25. The train-
ing data set was used to build the classification model,
while the test data set was used to check the model’s cap-
ability to properly classify new samples. The experiment
of learning and testing was repeated 10 times with the
random data selection (cross-validation method). All clas-
sification algorithms were implemented from a compre-
hensive software called the Waikato Environment for
Knowledge Analysis, or WEKA [68]. Initially, the majority
of available classifiers in these categories were tested on
representative groups of training and test data. The four
with the best prediction accuracies were chosen for
comparison.

Reference analysis
At the end of the experiment, fresh leaves from each plant
were clipped from the canopy with a pair of scissors, put
in plastic bags, frozen in a cooler and brought to the la-
boratory for measurements of leaf pigments and nutri-
tional element content. To determine the chlorophyll
content, fresh leaves (approximately 0.6 g) were ground in
80% acetone solution. Then, the leaf chlorophyll concen-
tration was measured using a UV-VIS spectrophotometer
(UV-5600, Metash, China) according to the method de-
scribed by Lichtenthaler [69]. The rest of the plant sam-
ples were oven-dried (105 °C for 0.5 h followed by 80 °C
until the constant weight was attained) and then ground
into fine powder for mineral content analysis. The total P
content was quantified spectrophotometrically using the
vanado-molybdate phosphoric acid yellow colour method
[70]. Total N content was determined by the micro Kjel-
dahls’ method. Total K concentration in the leaf was ana-
lysed using the flame-photometric method. The calcium
content (Ca) and magnesium (Mg) content were deter-
mined using an atomic absorption spectrometer (Spektr
AA 800, Varian, CA, USA).

Statistical analyses
To test the effects of P fertilizer treatments on leaf
photosynthetic pigments and nutritional elements, one-
way analysis of variance (ANOVA) was followed by
Tukey’s honest significant difference (HSD). P< 0.05 was
considered statistically significant. Pearson’s correlation
coefficient (R) was also used to test the relationship be-
tween leaf biochemical constituents, P fertilization and
parts of the plants. All these statistical analyses were
conducted using STATISTICA v13.4 (TIBCO Software
Inc., Palo Alto, California, United States).
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