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Abstract

Background: Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which
grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG)
proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress
responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum
are unknown.

Results: In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive
analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to
evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model
plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely
related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes
(I=VIl and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG
members mainly in Arabidopsis, Class | (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class |l
(Ash-like) for H3K36me, Class Il (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like)
for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both
histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed
wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed
the expressions of DcASHR3, DcSUVR3, DCATXR4, DCATXR5b, and DcSDGA49 are closely associated with drought-recovery
treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVRT4a are significantly influenced by low temperature, and
even 61% DcSDG genes are in response to heat shock.

Conclusions: This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their
functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress
responses. These results provide constructive clues for further functional investigation and epigenetic mechanism
dissection of SET-containing proteins in orchids.
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Background

Spatiotemporal expression patterns of a set of genes as-
sociated with developmental and environmental stimuli
are largely regulated by epigenetic modifications, which
mainly consist of DNA methylation, non-coding RNAs,
chromatin remodeling and histone modifications [1].
Histone modifications may occur post-translationally on
various residues in histone tails and core regions. These
modifications mainly include methylation, acylation,
phosphorylation, ubiquitination, citrullination, hydroxyl-
ation, O-GlcNAcylation and ADP-ribosylation [2, 3],
which constitute different combinations, that is, “histone
code”, and act in chromatin-templated processes [4, 5].
Among these covalent modifications, histone methyla-
tion displays complicated features as it not only occurs
on distinct residues (lysine and arginine) and positions,
but also involves different numbers (1~3) of methyl
groups [6]. Histone lysine modification is catalyzed by
histone lysine methyltransferases (HKMTases) / SET
DOMAIN GROUP (SDG) proteins which commonly
possess an evolutionarily conserved SET domain as cata-
lytic module [7], except for H3K79 methyltransferase
DOT1, which lacks a SET domain [8]. SDG-catalyzed
histone methylation at specific lysine residues can cause
similar or opposite effects on gene expression, such as
those of H3K4 and H3K36 associated with gene activa-
tion, whereas those of H3K9, H3K27, H4K20 associated
with gene repression [9].

Based on the sequence homology and phylogenetic re-
construction, plant SDG proteins can be categorized into
seven distinct classes: class I, E(z) homologs (H3K27me
writer); class II, ASH1 homologs (H3K36me writer);
class III, Trx homologs and related proteins (H3K4me
writer); class IV, proteins with a SET domain and a PHD
domain; class V, Su (var) homologs and relatives
(H3K9me writer); class VI, proteins with an interrupted
SET domain (S-ET); class VII, Ribulose-1,5-bisphosphate
carboxylase/oxygenase  (Rubisco)  methyltransferase
(RBCMT) and other SET related proteins for targeting
non-histone proteins [10, 11]. SDG genes have been dis-
covered in bacteria, viruses, and eukaryotes [12, 13]. The
presence of SDG genes in bacteria was initially consid-
ered a consequence of horizontal gene transfer from
eukaryotic hosts [14, 15]. However, investigation on
more released genomes of prokaryotic organisms includ-
ing not only pathogens and symbionts, but also free-
living bacteria and archaea suggests that SDG genes have
undergone independent evolution in prokaryotes, and
this event is unrelated to the evolution of eukaryotic
SDGs, on the other hand, an ancient horizontal gene
transfer occurred between bacteria and archaea [13, 16].

SDG family has currently been systematically identified
and classified in the genomes of Arabidopsis (49 mem-
bers) [10, 17], Brassica rapa (49) [11], Vitis vinifera (33)

Page 2 of 19

[18], Populus trichocarpa (59) [19], Zea mays (43) [20],
Oryza sativa (43) [21], Solanum lycopersicum (52) [22],
Citrus sinensis (47) [23], Gossypium raimondii (52) [24],
C4 panicoid model Setaria italica (53) [25], and Litchi
chinensis (48) [26]. However, the SDG family in orchid
species, which constitute an extremely evolutionary
branch, remains elusive.

SDG proteins and related histone methylation marks
are widely involved in diverse growth and developmental
processes, such as seed dormancy, repression of
vegetative-to-embryonic reversion, shoot branching, root
system architecture, chloroplast development, flowering
time, vernalization, floral organ development, ovule and
anther development, embryo and endosperm develop-
ment, plant senescence, carotenoid biosynthesis, and
thigmomorphogenesis [27-32]. They are also implicated
in the response to biotic and abiotic stresses. SDGS is
required for plant defense against necrotrophic fungal
pathogens by regulating a subset of genes within jasmo-
nic acid (JA) and/or ethylene signaling pathway [27] and
for basal and R protein-mediated resistance to bacterial
pathogens in Arabidopsis [33]. Loss-of-function mutant
sdg8 results in enhanced susceptibility to the fungal and
bacterial pathogens. ARABIDOPSIS TRITHORAX-LIKE
PROTEIN1 (ATX1) as H3K4me3 writer orchestrates ex-
pression of defense response genes in antagonistic sali-
cylic acid (SA)/JA signaling pathways by directly
activating the expression of the SA/JA signaling medi-
ator WRKY70 gene through establishing H3K4me3
marks on its nucleosomes [34]. In addition, ATX1 is in-
volved in drought stress response, and its disruption re-
sults in decreased tolerance to dehydration stress in atx!
plants [35]. ATX1 modulates dehydration stress signal-
ing in both abscisic acid (ABA)-dependent and -inde-
pendent pathways. During ABA-dependent pathway,
dehydration stress induces ATX1 binding to NCED3
locus, which encodes the rate-limiting enzyme in ABA
biosynthesis. Subsequently the deposition of H3K4me3
mark and recruitment of RNA polymerase II are in-
creased, leading to enhanced NCED3 expression and
ABA production [36]. Dehydration stress causes dy-
namic and specific changes in global histone
H3K4mel/2/3 patterns in Arabidopsis, especially
H3K4me3 marks with broad distribution profiles on the
nucleosomes of stress-induced genes [37]. Similarly,
drought stress triggers massive changes in H3K4me3
enrichments on numerous loci (respectively including
3927/910 genes with increased/decreased depositions)
in rice seedlings, showing positive correlation with their
transcript changes in response to drought stress [38].
However, when Arabidopsis exposed to cold tempera-
tures, H3K27me3 deposition gradually decreases in the
chromatins of two cold-responsive genes, CORI5A and
ATGOLS3 [39].
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Dendrobium catenatum (also known as Dendrobium
officinale) belongs to the Orchidaceae family, is a rare
and precious Chinese medicinal herb. The stem of D.
catenatum is the major medicinal part used for relieving
upset stomach, promoting body fluid production, and
nourishing Yin and antipyresis in traditional remedy and
health care [40]. Furthermore, the plant stem contains
bioactive extracts with anticancer, hepatoprotective, hy-
polipidemic, antifatigue, antioxidant, anticonstipation,
hypoglycemic, gastric ulcer-protective, and antihyperten-
sive effects, and immunoenhancement, as confirmed by
modern pharmacology [41]. However, given its long-
time extensive demand and over-exploitation, D. catena-
tum suffers from near extinction, and was once defined
as an endangered medicinal plant in China [42]. In the
past 20 years, D. catenatum has been successfully culti-
vated and became an important economic crop for
health care. Unfortunately, environmental stresses, such
as drought, cold, and high temperature, extremely re-
strict its growth, resulting in heavy yield loss [43].
Hence, it is necessary to screen and identify the candi-
date genes conferring resistance to differential environ-
mental stresses in D. catenatum molecular breeding.

To obtain a detailed understanding on the SDG family
in medicinal orchid plants, we identified SDG members
throughout the genome of D. catenatum, and subse-
quently performed comprehensive assessments on the
phylogenetic relationship, gene structure, domain
organization, gene expression profiling, and response to
environmental stresses. Our results provide insights into
the evolution and function of SDG genes in medicinal
orchid plants.

Results

Identification of SDG proteins in the D. catenatum
genome

To obtain all the members of SDG proteins in D. cate-
natum, we performed BLASTP search using known Ara-
bidopsis and rice SDG proteins as queries against the D.
catenatum genome (INSDC: JSDN00000000.2). First, we
checked the SDG genes of Arabidopsis and rice in the
Superfamily 1.75 database (http://supfam.org/SUPER
FAMILY/). We discovered 49 genes in Arabidopsis thali-
ana, corresponding to those reported in literature
(Additional file 1) [10, 17]. On the other hand, 46 genes
were identified in Oryza sativa (Additional file 1), three
(Os01g65730/OsSET44, 0Os01g74500/0sSET45,
0s06g03676/0OsSET46) more than the 43 reported genes
[21]. Reciprocal BLAST was carried out to confirm that
the hits from D. catenatum and its close relative Phalae-
nopsis equestris belong to the SDG family. Finally, we
obtained 44 SDG genes in D. catenatum (Table 1 and
Fig. 1) and 42 in P. equestris (Additional file 2), and they
were named after their Arabidopsis homologs.
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To characterize and classify the SDG family in D. cate-
natum, we used SDG proteins in the dicot model plant
A. thaliana, the monocot model plant O. sativa, and its
close relative P. equestris as references for phylogenetic
analysis. The results showed that the 181 SDG proteins
from the above four species could be clustered into eight
classes (I~VII and M), mostly corresponding to the clas-
sification criteria in Arabidopsis [10]. By contrast, ARA-
BIDOPSIS TRITHORAX RELATED 3 (ATXR3) branch
was previously classified into Class III [10], but it was
separated from the other branches and near ATXR7-like
proteins in Class IV in this study (Fig. 1). Considering
their similar substrate specificities, we combined ATXR3
branch and the neighboring ATXR7-like proteins and
categorized them under class M, as supported by the
further phylogenetic analysis among Classes III, IV, and
M (Fig. 4). Given the high limited reports on Class VI
and VII, which feature potential functions for non-
histone and histone methylation, we mainly focused on
the roles of Classes I~V and M with well-investigated
histone methylation specificity in this study.

Class I: E(z)-like (H3K27me2/3)

Class I contains two E(z) homologs in each of monocot
plants D. catenatum, P. equestris and rice, and three well-
characterized homologs, namely, CURLY LEAF (CLEF),
SWINGER (SWN), and MEAEA (MEA), that represent
three distinct clades in the dicot plant Arabidopsis (Fig. 2).
The genes in this class contain 15~16 introns, which are
extremely longer in the two orchid species compared with
those of Arabidopsis and rice. This result suggests that
overall intron length positively correlated with the corre-
sponding genome size. A similar phenomenon related to
intron/exon proportion was also observed in the members
of the other classes as will be mentioned later. The three
Arabidopsis E(z) proteins act as the catalytic subunits of
the evolutionarily conserved Polycomb Repressive Com-
plex 2 (PRC2), which is involved in the deposition of
H3K27me3 repressive mark on the target gene locus [44].
CLF (dominant H3K27me3 writer) and SWN act redun-
dantly in vegetative and reproductive development,
whereas MEA functions exclusively in suppression of cen-
tral cell proliferation and endosperm development [45-47].
Rice E(z) homologs SDG711 and SDG718 participate in
mediating accurate photoperiod control of flowering time
[48]. Clades I-1 (CLF-like) and I-2 (SWN-like) each con-
tain one ortholog in the examined species, but Clade I-3
(MEA-like) is confined to Arabidopsis. Plant E(z)-like
proteins generally harbor highly conserved domain
organization at the C-terminal region, which includes a
SANT domain, the cysteine rich CXC domain, and the sig-
nature SET domain, except for DcCLF and PeSWN, which
lack the SANT domain, and DcSWN, which possesses an
additional SANT domain at the N-terminus.
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Table 1 Classification of SDG genes in D. catenatum

No. Name Gene ID Clade exon number Protein (aa) Isoform
1 DcCLF LOC110113338 I 16 918 2
2 DcSWN LOC110098601 | 17 895 0
3 DcASHH1 LOC110107485 I 10 498 0
4 DcASHH?2 LOC110097541 I 18 1992 0
5 DcASHH3a LOC110095009 Il 9 377 0
6 DcASHH3b LOC110105604 I 9 235 0
7 DcASHR3 LOC110103080 I " 487 1
8 DcATX1 LOC110096723 Il 25 1081 0
9 DcATX3a LOC110094707 Il 22 980 0
10 DcATX3b LOC110093543 Il 24 1060 0
" DcATX3c LOC110116505 Il 26 942 4
12 DcATX3d LOC110100284 Il 19 2038 0
13 DcATXR3 LOC110093028 M 21 2360 0
14 DcATXR7 LOC110110427 M 24 1304 6
15 DcATXR5a LOC110100023 v 7 413 3
16 DcATXR5b LOC110102586 v 8 373 3
17 DcATXR6 LOC110107042 I\ 4 268 0
18 DcSUVHTa LOC110091884 \% 3 682 0
19 DcSUVH1b LOC110100064 \% 3 680 1
20 DcSUVH2a LOC110104355 \% 3 664 1
21 DcSUVH2b LOC110111597 \% 2 640 0
22 DcSUVH4 LOC110103468 \% 20 752 4
23 DcSUVH45 LOC110096224 \% 2 765 1
24 DcSUVH5a LOC110109813 \% 2 1048 1
25 DcSUVH5b LOC110101480 \% 2 1099 0
26 DcSUVR14a LOC110104063 \ 13 783 8
27 DcSUVR14b LOC110097487 \% 9 668 0
28 DcSUVR14c LOC110097357 \% 8 785 0
29 DcSUVR3 LOC110096832 \ 2 337 0
30 DcSUVR4 LOC110109382 \ 13 723 8
31 DcSUVRS LOC110092659 \% 14 1658 2
32 DcASHR1 LOC110098638 VI 14 496 0
33 DcASHR2 LOC110112079 \Y 3 385 2
34 DcATXR1 LOC110097453 VI 1 521 0
35 DcATXR2 LOC110107001 Vi 15 494 0
36 DcATXR4 LOC110103199 \% 8 339 0
37 DcSDG42 LOC110104315 VI 14 765 4
38 DcSDG45 LOC110107875 VI 6 490 0
39 DcSDG46 LOC110111739 Vil 6 494 1
40 DcSDG47 LOC11009189% Vil " 556 2
41 DcSDG48 LOC110099042 VI 12 499 0
42 DcSDG49 LOC110092290 Vil 16 476 5
43 DcSDG50 LOC110113229 Vil 8 482 2
44 DcSDG51 LOC110094849 Vil 13 503 0
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Fig. 1 Phylogenetic analysis of SDGs in D. catenatum, P. equestris, Arabidopsis and rice. This tree includes 44 SET domain-containing proteins from
D. catenatum, 42 from P. equestris, 49 from A. thaliana and 46 from O. sativa. The 181 SET domain-containing proteins were divided into eight
classes combined with the further phylogenetic analysis in Fig. 4. SDGs amino acid sequences were aligned using Clustalx, and the phylogenetic
tree was constructed using MEGA7 with the following settings: Tree Inference as Neighbor-Joining (NJ); Include Sites as Pairwise deletion option
for total sequence analyses; Substitution Model: p-distance; and Bootstrap test of 1000 replicates for internal branch reliability. Bootstrap values >
50% are shown. D¢, D. catenatum; Pe, P. equestris; At, A. thaliana; Os, O. sativa
J

Class II: ash-like (H3K36me)

Class II can be further divided into five clades, each of
which consists of a single member per plant species, ex-
cept for two members of Clade II-1 in Arabidopsis and
D. catenatum (Fig. 3). Clades II-1 to II-4 exist in all the
examined species, but Clade II-5 is only found in rice
and contains a single member, SDG707, with unknown

function. Class II proteins generally share three con-
served domains: an Associated with SET (AWS), SET,
and PostSET domains [10, 49].

Clade II-1 (ASHH3-like) members are relatively shorter
than their homologs in the four other clades. Arabidopsis
ASHH3/SDG@G? is required for proper timing in response
to vernalization [50]. SDG7 lacks detectable HKMTase



Chen et al. BMC Plant Biology (2020) 20:40 Page 6 of 19
( CXC  SET
100 DcCLF_110113338 - -- T i RVE
29 A PeCLF_110023511 - -——-—O &
100 # 0sSET24/SDG711_0s06916390 — &
97 @ AtCLF/SDG1_At2g23380 - - e S R
100— M DcSWN_110098601 —H— &6 &
99,%‘1: A PeSWN_110031838 . -— o-&
) @ O0sSET15/SDG718_0s03g19480 - & —6&
@ AtSWN/SDG10_At4g02020 - - - &6 &)
=g @ AtMEA/SDG5_At1902580 - &- O &=
DCCLF HH T B n 500 1000 aa
PeCLF HH HHl tH—H
OsSET24/SDG711 4
AtCLF/SDG1 HEHH
DcSWN i —H fit |
PeSWN g H iH-H tHH
OsSET15/SDG718 {i-——MH—H
AtSWN/SDG10  HEHHHEHHH
| AtMEA/SDG5 HEHH
IllHIIll‘1‘0I|ll1;’>lllH‘II|2‘5‘IIll‘I‘ll‘III'I‘IILHI‘E’;[)H‘ISS kb
Fig. 2 Domain organization and gene structure of the Class | DcSDGs. The NJ tree was generated using MEGA7 with parameter settings as Fig. 1
based on full-length amino acid sequences of Class | SDG proteins in D. catenatum, P. equestris, Arabidopsis and rice. The number along the tree
branch indicates bootstrap value. Different conserved protein domains (SANT, CXC, and SET) are colored as indicated. Gene structures of SDGs in
each species were indicated in distinct colors. The solid boxes represent exons and black lines represent introns

activity [51], but rice ortholog SDG724/LVP possesses
H3K36 methylation activity. The loss of SDG724 leads to
late flowering [52]. Notably, DcASHH3a/3b in D. catena-
tum lack AWS domain, different from PeASHH3 from its
close relative P. equestris and ASHH3 orthologs in Arabi-
dopsis and rice, and their functional divergence during
speciation is interesting to investigate.

Clade II-2 (ASHR3-like) members are characterized by
an additional PHD domain near the N-terminus, except for
rice SDG736. ASHR3/SDG4 participates in regulating
pollen tube growth and stamen development, and its over-
expression leads to growth arrest and male sterility [53, 54].
ASHR3 harbors catalytic activities on H3K36mel and pos-
sible H3K36me2, which is involved in regulating cell div-
ision competence in the root meristem [55].

Clade II-3 (ASHH1-like) members display uniform pro-
tein length and highly conserved AWS-SET-PostSET do-
main combination at the N-terminus. Arabidopsis
ASHH1/SDG26 knockout leads to a late-flowering pheno-
type through decreasing H3K4me3 and H3K36me3 level
at the SOCI locus [56, 57]. Similarly, the knockdown of
rice ortholog SDG708 causes a late-flowering phenotype
and a genome-wide decrease in H3K36me1/2/3 levels dur-
ing early growth stages [58]. Predictably, D. catenatum
DcASHH1 harbors a similar function.

Clade I1-4 (ASHH2-like) proteins are considerably lon-
ger than the others, and characterized by an additional
CW domain near to the N-terminal triple domain com-
bination. Arabidopsis ASHH2/SDG8 acts as the major
H3K36me2/3 writer [57, 59], and its knockout leads to
pleiotropic phenotypes in vegetative and reproductive
stage [60]. Consistently, the knockdown of rice ortholog

SDG725 causes wide-ranging defects, including dwarf-
ism, erect leaves and small seeds [32]. In the aspect of
protein architecture, ASHH2 ortholog in D. catenatum
or P. equestris is more like Arabidopsis SDG8 than rice
SDG725.

Class lll: Trx/ATX-like (H3K4me2/3)

Class III consists of five members, which can be further
divided into three clades in each examined plant species
(Fig. 4). Class III proteins are characterized by tandem
PHD domains in the middle region and SET-PostSET
domain combination at the N-terminus. Moreover, sev-
eral clades contain additional distinct domains, such as
PWWP domain specific to Clade III-1/2, and FYRN-
FYRC domain combination specific to Clade III-1.

Clade III-1 (ATX1-like) contains two members in Ara-
bidopsis, and one in each of the three other species. In
Arabidopsis, ATX1 and ATX2 paralogs exhibit similar
domain architectures [61], but have distinct expression
patterns in most cases and influence the expressions of
largely nonoverlapping gene sets [62]. For the shared
targets, ATX1 and ATX2 account for the deposition of
H3K4me3 and H3K4me2 marks, respectively [62]. Dif-
ferent from Arabidopsis atxl with early-flowering
phenotype [62], rice ortholog mutant ostrx1/sdg723 ex-
hibits late-flowering through decreased H3K4me3 levels
at the central flowering time integrator Ehdl. OsTRX1
can rescue Arabidopsis atxl phenotype [63—65], suggest-
ing that ATX1-like proteins demonstrate conserved bio-
chemical and molecular functions during evolution.
However, ATX1-like proteins produce specific phenotypes
in distinct species due to the differences in developmental
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Fig. 3 Domain organization and gene structure of the Class Il SDGs. The NJ tree was generated using MEGA7 with parameter settings as Fig. 1
based on full-length amino acid sequences of Class Il SDG proteins in D. catenatum, P. equestris, Arabidopsis and rice. The number along the tree
branch indicates bootstrap value. Different conserved protein domains (AWS, PHD, zf-CW, SET and PostSET) are colored as indicated. Gene
structures of SDGs in each species were indicated in distinct colors. The solid boxes represent exons and black lines represent introns

context. Thus, DcATX1 and PeATXI1 in orchid may play
important roles in flowering time control.

Clade III-2 (ATX3-like) includes three members in
each tested species. Arabidopsis ATX3/4/5 are clustered
together and separated from the monocot orthologs.
The orthologs from D. catenatum, and P. equestris are
consistently clustered together, concordant with their
close relationship. In Arabidopsis, ATX3/4/5 exhibit a
common evolutionary origin, and function redundantly
in genome-wide H3K4me2/3 profiles. Furthermore, atx3
atx4 atx5 triple mutant displays dwarfism and reduced
fertility [66]. In rice, ATX3-like proteins SDG721 and
SDG705 function redundantly in modulating H3K4
methylation levels. The loss of both genes results in
semi-dwarfism [67]. Considering the dwarf phenotype of
ATX3-like mutants in Arabidopsis and rice, the homo-
logs in D. catenatum and P. equestris might be involved
in regulating plant architecture.

Clade III-3 shows specificity toward the examined
monocots and contains one copy per species. D. catena-
tum DcATX3d and P. equestris PeATX3d are

characterized by an additional Jas domain at the C-
terminus, in contrast with the rice ortholog OsSET37/
SDG732. Further survey of this clade will provide in-
sights into the evolution of SDG family in monocots.

Class M: ATXR3/7 (H3K4me)

Class M comprises of two clades, namely, Clade M-1
(ATXR7-like) and M-2 (ATXR3-like). Each clade contains
one copy per plant species (Fig. 4). ATXR7-like proteins
usually lack extra domains, except for PeATXR7 with a C-
terminal GYF domain. Arabidopsis ATXR7/SDG25 acts
as the writer of H3K4 monomethylation (H3K4mel), and
its knockout results in early flowering [59, 68]. ATXR3-
like proteins also contain only one copy in each species,
are characterized by the presence of DUF4339 domain in
the middle region, except for OsSET27/SDG701. Arabi-
dopsis ATXR3/SDG2 is the major H3K4me3 writer,
whose depletion leads to pleiotropic development defects
[28, 69, 70]. D. catenatum DcATXR3 and P. equestris
PeATXR3 feature a more similar protein architecture to
Arabidopsis ATXR3/SDG2 than rice SDG701. This
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Fig. 4 Domain organization and gene structure of the DcSDGs in Classes Ill, M and IV. The NJ tree was generated using MEGA7 with parameter
settings as Fig. 1 based on full-length amino acid sequences of Class lll/M/IV SDGs in D. catenatum, P. equestris, Arabidopsis and rice. The number
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finding suggests that ATXR3-like proteins in orchid may
retain their ancestral role, whereas rice ortholog may func-
tionally diverge, as attributed to the loss of specific domain
and partial sequence.

Class IV: Su (var)-like (H3K27me1)

Class IV can be divided into two clades, Clade IV-I
(ATXR5-like) and IV-II (ATXR6-like), which are charac-
teristic of an N-terminal PHD domain in addition to the
defined SET domain, except for PeATXR5 (Fig. 4). In Ara-
bidopsis, ATXR5 and ATXR6 show largely overlapping
functions, and the depletion of both results in global
H3K27mel reduction and heterochromatin decondensa-
tion [71, 72]. ATXR5/6 are involved in maintaining DNA
replication [73] and repressing the expression of transpos-
able element [74]. The overexpression of either ATXR5 or
ATXR6 causes male sterility [75]. ATXR5 and ATXR6
probably perform separate roles because of ATXR5 with a
dual localization in plastids and nucleus but ATXR6 solely
in nucleus [75].

Class V: Suv-like (H3K9me)
Class V contains 15 members in Arabidopsis, 14 in rice
and D. catenatum, and 13 in P. equestris; These
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members can be further divided into two subclasses,
SUVH and SUVR, which include Clades V-1 to V-3 and
V-4 to V-6, respectively (Fig. 5). Class V proteins are usu-
ally characterized by PreSET-SET—PostSET or PreSET-
SET domain combinations. SUVH proteins often contain
another symbolic SET- and RING-ASSOCIATED (SRA)
domain, whereas SUVR proteins in Clades V-4 and V-5
often include another WIYLD domain and tandem ZnF_
C2H2 domains, respectively. SUVH genes usually lack in-
trons, except for the members of SUVH4 branch and two
members (PeSUVH45 and SDG727) of SUVH5 branch,
whereas SUVR genes contain variable number of introns.
In general, Class V members are responsible for methyla-
tion of histone H3 lysine 9 (H3K9me), in which H3K9
dimethylation (H3K9me?2) is the critical mark for gene si-
lencing and DNA methylation, and are involved in hetero-
chromatin formation and reprogramming of gene
expression [76].

SUVH subclass

In Clade V-1, the five members SUVH1/3/7/8/10 in Ara-
bidopsis cluster together and show distinction from the
five homologs in rice and each of the two homologs in
D. catenatum or P. equestris. This result indicates that

100
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duplication of these clade members occurred after diver-
gence between dicots and monocots. However, the two
orthologs in either D. catenatum or P. equestris respectively
pair together, indicating that their gene duplication oc-
curred before the split of Dendrobium and Phalaenopsis.
Arabidopsis SUVH1/SDG32 performs a distinct anti-
silencing function to promote the expression of DNA
methylation-targeted genes. SUVHI knockout causes no ef-
fect on H3K9me?2 levels but reduces H3K4me3 levels [77].
Furthermore, SUVH1 binds to highly methylated genomic
loci targeted by RNA-directed DNA methylation (RADM).
However, rice SUVH1-like protein SDG728 retains its clas-
sical function to mediate H3K9 methylation and partici-
pates in retrotransposon repression [78]. D. catenatum and
P. equestris include two SUVH1-like proteins, far less than
the five members in Arabidopsis and rice. Thus, the func-
tion of SUVH1 homologs and the evolutionary mechanisms
in orchids require further investigation.

Clade V-2 comprises two members for each examined
species, and these members lack PostSET domains, in
contrast with those in clade V-1. In Arabidopsis, SUVH2
and SUVHY as sister paralogs show overlapping functions
in RdDM and heterochromatic gene silencing [79, 80].
SUVH2 overexpression leads to ectopic heterochromatiza-
tion accompanied with significant developmental defects,
such as extreme dwarfism [79, 81]. SUVH2 and SUVH9
may feature inactive histone methyltransferase activity
[82, 83]. However, the simultaneous absences of
SUVH2 and SUVHY lead to a marked decrease in
H3K9me?2 levels in the RADM loci [80, 84]. SUVH2 and
SUVH9 can bind to methylated DNA and facilitate the re-
cruitment of Pol V to RADM loci [82, 84]. Considering the
highly similar domain organization among SUVH2-like
proteins in these examined species, their function should
be evolutionarily conserved.

Clade V-3 proteins could be further divided into two
branches (SUVH4 and SUVHS5). SUVH4 branch possesses
one member in each species, whereas SUVH5 branch con-
tains two members in Arabidopsis and rice, and three mem-
bers in D. catenatum or P. equestris. In Arabidopsis,
SUVH4/KRYPTONITE (KYP), SUVH5, and SUVH6 as
H3K9 methyltransferases, are required to maintain DNA
methylation [85-90]. SUVH4 as the predominant
H3K9mel/2 writer [76]. SUVH5 and SUVHS as sister para-
logs in SUVH5 branch exhibit HKMTase activities with
locus-specific features [76, 86, 87]. In rice, SUVH4-like pro-
tein SDG714 mediates H3K9 methylation, participating in
DNA methylation, transposition of transposable elements,
and genome stability [91]. Notably, PeSUVH4 protein in P.
equestris is evidently short and lack SRA and PostSET do-
mains, compared with SUVH4-like proteins in the three
other species. The divergence of SUVH4 between orchid
genus Dendrobium and phalaenopsis is worthy of
investigation.
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SUVR subclass

In Clade V-4, there are 3 members in Arabidopsis and P.
equestris, 1 in rice, and 4 in D. catenatum, respectively.
In Arabidopsis, SUVR2 mediates transcriptional silen-
cing in both RADM-dependent and -independent man-
ners [92]. SUVR4 participates in the epigenetic defense
mechanism by introducing H3K9me3 marks to repress
potentially harmful transposon activity [93]. SUVR4 spe-
cifically converts H3K9mel into H3K9me3 at transpo-
sons and pseudogenes within the euchromatin [93, 94],
but SUVR1 and SUVR2 show no detected histone meth-
yltransferase activity in vitro [92, 95]. In this study, D.
catenatum DcSUVR4, P. equestris PeSUVR4, and rice
SDG712 were grouped together with Arabidopsis
SUVR4 but not with SUVR1/2, implying that they pos-
sess ubiquitin-binding and HKMTase activities, except
for PeSUVR4, which includes an obviously short se-
quence and lacks WIYLD and PreSET domains.

Clade V-5 contains one member in each tested species,
and characterized by an additional tandem ZnF_C2H2
domain, except for SDG706. In Arabidopsis, SUVR5
lacks the SRA domain but recognizes specific DNA se-
quences through its zinc finger motifs and establishes
the heterochromatic state through H3K9me2 deposition
in a DNA methylation-independent manner [96]. The
knockout of SUVR5 leads to delayed flowering, and no
further enhanced phenotype occurs in the quintuple
suvrl suvr2 suvr3 suvrd suvr5 mutants [96, 97]. This
finding suggests that SUVR5 is a dominant developmen-
tal regulator in SUVR subclass.

Clade V-6 members exist in one copy in each species,
and their encoding proteins are notably shorter than
those of the other clades in this class. Arabidopsis
SUVRS3 contains an additional AWS domain close to the
SET-PostSET domain combination, and DcSUVR3 con-
tains an intact PreSET-SET—-PostSET domain combin-
ation. However, SUVR3 orthologs in rice and P.
equestris only contain a PreSET domain, suggesting that
the genes in Clade V-6 may undergo less selective pres-
sures and become increasingly divergent during evolu-
tion. The functions of the genes in this clade remain
uncharacterized thus far.

Tissue and organ expression profiles of DcSDG genes
To investigate the potential roles of DcSDGs during
growth and development in D. catenatum, we detected
the expression profiles of DcSDGs by reanalyzing the
RNA-seq data from different plant tissues and organs,
including leaf, root, green root tip, white part of root,
stem, flower bud, sepal, labellum (lip), pollinia, and
gynostemium (column) [98].

Based on hierarchical clustering (Fig. 6 and Additional file 3),
the expression patterns of DcSDGs could be divided
into two groups, G1 and G2. G1 genes usually feature
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Fig. 6 Tissue and organ expression profiles of DcSDGs across
different tissues and organs. Hierarchical clustering of expression
profiles of DcSDGs across different tissues and organs. Heat map
generated using the software MultiExperiment Viewer (MeV) shows
relative organ expression profiles of DcSDG genes in D. catenatum.
Color scale at the top represents log 2 expression values, green and
red represent low and high levels of transcript abundances,
respectively. Lf: leaf, Ro: root, Gr: green root tip, Wr: white part of
root, St: stem, Fb: flower bud, Se: sepal, Lb: labellum (lip), Po: pollinia,
and Gs, gynostemium (column)

low expressions in most tissues and organs. However,
several genes are highly expressed in specific tissues
and organs, such as DcATX3d in flower bud, DcASHR3
in root and flower bud, and DcATXR5a, DcSUVHS5a,
and DcATX3a in pollinia. G2 genes display diverse ex-
pression profiles in different tissues and organs. The
majority of G2 group genes are highly expressed in
most of the detected tissues and organs, whereas sev-
eral show intermediate expressions in most tissues and
organs, such as DcASHH3a, DcASHHI, DcSUVHS5D,
and DcSDG47. Furthermore, ~86% of genes (38/44)
present intermediate and high expressions in flower
buds, compared with ~77% (34) in root and gynoste-
mium, ~57% (25) in leaf, ~45% (20) in stem, ~ 43%
(19) in pollinia, ~55% (24) in sepal, and ~ 64% (28) in
labellum. These findings suggest that DcSDG family
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plays essential roles in flower bud formation. Notably,
DcSDG51  in leaf, DcSUVH2b in pollinia, and
DcSUVHIa in root and stem display the most distin-
guished expressions, indicating their prominent func-
tions in specific tissues.

The expression profiles of six duplicated DcSDG gene
pairs were further compared (Additional file 4). In general,
one copy showed higher expression levels than the others
in all tissues, except for DcSUVHS5a/5b pairs, suggesting
that one paralog might performed a dominant function
during plant growth and development. DcASHH3a/3b,
DcATX3b/3c, DcATXRSa/5b and DcSUVRI4b/14c¢ exhib-
ited similar expression patterns, whereas DcSUVHS5a/5b
pairs displayed differential expression profiles in the de-
tected tissues and organs. These results indicate that dis-
tinct duplicated gene pairs might undergo different
evolutionary pressures and diverge at varying periods.

Expression levels of DcSDGs in response to environmental
stresses

D. catenatum is an epiphytic orchid plant that grows on
trunks and cliffs and often experiences diverse environ-
mental stresses, such as drought, cold, and high
temperature. To detect the responses of DcSDG genes to
drought stress, the expression profiles of DcSDGs were
assessed by analyzing the RNA-seq data from the leaves
under different drought treatments [99] (Fig. 7 and
Additional file 5). In brief, the seedlings were irrigated
on the 1st day, and kept unwatered from the 2nd day to
the 7th day, and recovered on the 8th day. Leaves were
sampled at both 06:30 and 18:30 on the 2nd (DR5 and
DRS8), 7th (DR6 and DR10), and 9th (DR7 and DRI15)
days, respectively, and at 18:30 on the 8th day (DR11).
The results showed that one-week of drought stress not-
ably repressed the expressions of DcCLF, DcASHR3,
DcSUVR3, and DcSUVRI4c, but obviously induced the
expression of DcATXRS5b, DcATXR4, and DcSDG49
when sampling at both dawn and dusk. Subsequently,
rewatering restored the expression levels of DcASHR3,
DcSUVR3, DcATXRSb, DcATXR4, and DcSDG49.

To explore the possible roles of SDG proteins in response
to cold stress, we evaluated the expression levels of DcSDGs
through analyzing the raw RNA-seq reads from the leaves
of D. catenatum seedlings treated at 20°C (control) and
0°C for 20 h, respectively [43] (Fig. 8 and Additional file 6).
Data revealed that 32% of DcSDG genes (14) showed tran-
scription change in response to cold stress. For example,
genes with upregulated expression consisted of DcASHH1
(I), DcATX3b (1), DcSUVH4 (V), DcSUVH5a (V),
DcSUVHSb (V), DcSDG45 (VII), and DcSDG51 (VID),
whereas genes with deregulated expressions included
DcATXR5a (IV), DcATXRSb (IV), DcSUVRI4a (V),
DcASHR1 (VI), DcASHR2 (VI), DcATXR2 (VI), and
DcSDG50 (VII). The expression levels of DcSUVHS5a,
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Fig. 7 Expression of DcSDGs in response to drought stress. Heat
map showing expression pattern of DcSDG genes in leaves under
different drought treatments. The seedlings were watered on the 1st
day, dried from the 2nd to the 7th day, and re-watered on the 8th
day. Leaves were collected at different times; DR5/ DR8, DR6/DR10,
and DR7/DR15 indicate sampling at 06:30 and 18:30 on the 2nd, 7th,
and 9th days, respectively, and DR11 indicates sampling at 18:30 on
the 8th day. The Y-axis represents the value of the relative
expression level [log 2 (FPKM + 1)]

DcATXR5a, DcASHR2 and DcSUVRI14a (fold change >2
or < 0.5) are significantly influenced by cold.

To further understand the roles of DcSDG proteins in
response to high temperature (35 °C) stress, the expres-
sion profiles of SDG genes in the leaves of D. catenatum
seedlings were examined by quantitative reverse-tran-
scription—polymerase chain reaction (RT-qPCR) (Fig. 9).
The results show the diverse expression patterns of
DcSDG genes during heat shock treatment. At 3 h after
treatment (HAT), the number of upregulated genes (10)
was slightly higher than that of downregulated genes (7).
At 6 HAT, more DcSDG genes were induced (15 upreg-
ulated genes versus 10 downregulated genes). At 12
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Fig. 8 Expression of DcSDGs in response to cold stress. Heat map
showing expression pattern of DcSDG genes in leaves under cold
stress for 20 h. The Y-axis represents the value of the relative
expression level [log 2 (FPKM + 1)]

HAT, the number of upregulated genes (27) was evi-
dently higher than that of downregulated genes (3). Of
the genes examined upon exposure to heat shock, three
Class II genes (DcASHH3a/3b and DcATX3a), five Class
V genes (DcSUVH2a/2b, DcSUR14b/14c, and DcSUVR3),
two Class VI genes (DcATXRI and DcASHR1), two
Class VII genes (DcSDG45/48), and one Class M gene
DcATXR3 were distinguished from the corresponding
control in at least at one time point (P < 0.05, Fig. 9).

Discussion

Characterization and classification of SDG proteins in D.
catenatum

D. catenatum shows extensive application value in the
food service industry, pharmaceutical, cosmetics, health
products, and ornamental horticulture in China. The re-
cent successful genome sequencing of D. catenatum
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Fig. 9 Expression of DcSDGs in response to high temperature stress through RT-gPCR assay. The actin gene of D. catenatum was used as an
internal reference. The data are representative of three independent experiments. The error bars indicate SD and the asterisk shows the
corresponding gene between the heat shock (35 °C) and the control (20 °C) significantly affected by Student’s t test (*, P < 0.05; **, P < 0.01)

associated with its unique developmental and living fea- SDG proteins in D. catenatum was identified and di-
tures promoted its use as a model orchid plant with con-  vided into eight classes: Class-1 (H3K27me2/3), Class-II
siderable theoretical relevance [100]. In this study, 44 (H3K36), Class-III (H3K4me2/3), Class-M (H3K4me),



Chen et al. BMC Plant Biology (2020) 20:40

Class-IV (H3K27mel), Class-V (H3K9me), Class-VI/S-ET
(undefined), Class-VII/ RBCMT (non-histone Rubisco).

To date, the understanding of Class VI and VII is highly
limited. Class VI includes six clades (Additional file 7),
whose members feature a long S-ET domain interrupted
by a Z-MYND domain and have not been functionally
characterized in plants. In mammalian ASHR1 homologs,
SET And MYND Domain Containing 3 (SMYD3) may
methylate histones H3K4 and H4K5, whereas SMYD2 can
dimethylate H3K36 and repress gene transcription
[101-103]. SMYD proteins also possess non-histone
substrates, such as SMYD?2 for p53 and estrogen receptor
a and SMYD3 for VEGFR1 and MAP 3 K2, in the nucleus
and cytoplasm [104—107]. Class VII consists of nine clades
(Additional file 8), whose members are characterized by
an additional Rubisco substrate-binding (Rubis-subs-bind)
domain and conserved in plants and animals. In flowering
plants, chloroplast-localized Rubisco large subunit N-
methyltransferase (LSMT) performs the conserved and
ancient functions to methylate the Rubisco small subunit
and fructose-1,6-bisphosphate aldolase (FBA). Moreover,
this enzyme evolved an extra novel role to catalyze the
K14 trimethylation of Rubisco large subunit in Fabaceae,
Cucurbitaceae, and Rosaceae [108, 109]. Based on the
strict correlation between the presence of the His-Ala/
Pro-Trp triad motif and the Rubisco methylation status
[108], LSMTs in D. catenatum and the other three exam-
ined species only retained the ancestral function due to
the absence of this triad motif. In animal, Class VII homo-
log SETD3 with additional Rubis-subs-bind domain ex-
hibits a H3K36 methyltransferase activity [110]. Therefore,
the members of Class VI and VII in plants may be in-
volved in the methylation of both histone and non-histone
proteins; such assumption is beyond the previous
expectation.

Evolution and function divergence of SDG proteins

Gene duplication, as a critical driving force, provides an
extra copy of genetic material to tolerate random muta-
tions to survive the natural selection and create new spe-
cies during evolution. Gene duplication, including tandem
duplication and polyploidy (whole genome duplication,
WGD), considerably contributes to the formation of gene
families [24], such as the SDG family in D. catenatum. D.
catenatum has undergone at least four rounds of WGD
events, including two ancient WGDs before ({) and after
(e) the angiosperm split from gymnosperm, a T WGD
shared by most monocots and a recent WGD specific to
the Orchidaceae lineage [98, 111]. Duplicate genes usually
undergo three evolutionary fates, nonfunctionalization
with silencing function, neofunctionalization with novel
function, and subfunctionalization with partial function
[112]. D. catenatum contains six pairs of duplicated
DcSDG genes. In DcSUVH2a/2b pairs, DcSUVH2a was
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unexpressed in all examined tissues, implying that neo-
functionalization might have occurred. DcASHH3a/3b,
DcATX3b/3c, DcATXR5a/5b and DcSUVRI14b/14c pairs
displayed similar expression patterns, indicating that they
might have experienced subfunctionalization. DcSUVH5a/
5b pairs exhibited differential expression profiles in differ-
ent tissues and organs, indicating that novel expression
specificity and function have developed.

Involvement of SDG proteins in plant development
programs and environmental stress responses

SDG proteins associated with the corresponding histone
methylations can output precise developmental instruc-
tions through diverse mechanisms. (1) Different SDG
proteins show similar catalytic specificity, but act on dis-
tinct sets of genes. As the writers of H3K4 methylation,
ATX3/4/5 have different targets from ATXR3/SDG2
[66]. (2) Some SDG members are involved in specific
conserved complexes. Class I E(z) homologs (CLF, SWN
and MEA), together with MSI1, FIE, and Su(z)12 homo-
logs (FIS2, EMF2 and VRN2) constitute different PRC2
complexes, functioning in distinct developmental phases
[113]. (3) Specific SDG proteins can interplay with other
types of epigenetic regulators. SUVH4/5/6 interacts with
the histone deacetylase HDAG6 to silence a subset of
transposons through histone H3K9 methylation and H3
deacetylation [114]. Further in-depth molecular dissec-
tion of SDG members in D. catenatum with specific de-
velopmental and living modes will enrich the action
mechanisms of the SDG gene family.

Histone methylation established by SDG proteins is
widely involved in responses to environmental stresses
and pathogen challenges [27, 33, 35-38]. Studies have
reported that drought stress can cause global changes of
histone H3K4 methylation patterns in Arabidopsis and
rice [37, 38]. Class III member ATXI is implicated in
drought stress response via both ABA-dependent and
-independent pathways in Arabidopsis [35, 36]. Here we
observed that the dynamic expression changes of
DcASHR3 (Class 1II), DcSUVR3 (V), DcATXR5b (V),
DcATXR4 (VI), and DcSDG49 (VII) were closely associ-
ated with drought-rewatering treatment, indicating that
methylations of H3K36 and H3K9 are also involved in
drought response. H3K36me3 and H3K27me3 have been
proven to play antagonistic roles in the cold-induced
epigenetic switch at the Arabidopsis FLOWERING
LOCUS C (FLC) locus [115]. In D. catenatum, we identi-
fied six significant cold-responsive DcSDG genes, includ-
ing DcASHH1 (Class 1), DcATX3b/3d (1I1), DcATXRS5a/
5b (Class M), DcSUVH5a/5b and DcSUVRI4a/3 (V)
(Fig. 8). The results indicate diverse histone methylation
marks with specific DcSDG proteins that perform cer-
tain roles during cold treatment. It will be intriguing to
further investigate their direct targets by high-throughput
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ChIP-seq method combined with excellent commercial
antibodies against various histone methylation marks. Re-
cently, Huang et al. [24] thoroughly identified cotton SDG
genes and noted that the expressions of most of these
genes decreased under high-temperature conditions. In
this study, 61% of DcSDG genes showed response to heat
shock, but the number of upregulated genes was consider-
ably higher than that of downregulated ones. This finding
may be related to the particularly epiphytic lifestyle and
crassulacean acid metabolism pathway in D. catenatum.

Conclusions

In this study, we identified 44 SDG proteins in D. cate-
natum and 42 in its close relative P. equestris, and
replenished three other SDG members (Os01g65730/Os-
SET44, Os01g74500/0OsSET45, and Os06g03676/0s-
SET46) into the previous rice SDG gene family (43
members). Based on the phylogenetic relationship and
substrate specificity, these genes were divided into eight
classes by using well-characterized Arabidopsis SDG
members as references. In addition, we analyzed the ex-
pression profiles of D. catenatum SDG genes in different
tissues and organs and their responses to diverse envir-
onmental stresses. Our findings provide comprehensive
information on the classification and expression profiles
on D. catenatum SDG genes, and will lay the foundation
for the functional characterization of the SDG gene fam-
ily in orchids.

Methods

Identification of SDG gene family in D. catenatum and P.
equestris

All the SDG sequences including genomic DNAs, CDS
and proteins in Oryza sativa and Arabidopsis thaliana
were retrieved from the plant genomics resource Phyto-
zome v12 (http://phytozome.jgi.doe.gov/pz/portal.html).
Of these, the protein sequences were used as queries to
search homologs of D. catenatum and P. equestris
against NCBI database using BLASTp tool. All the hits
were further confirmed by the existence of the signature
SET domain detected using on-line biosofts PROSITE
(http://prosite.expasy.org/), SMART (http:// smart.embl-
heidelberg.de/) and PFam (http://pfam.xfam.org/search).

Analysis of gene structure, domain architecture and
phylogenetic relationship

The gene structure including the intron-exon distribu-
tion pattern was reconstructed by Gene Structure Dis-
play Server GSDS 2.0 (http://gsds.cbi.pku.edu.cn/) [116].
The domain organization was analyzed using SMART
and Pfam databases. Phylogenetic analysis was per-
formed using MEGA7 [117]. The full-length amino acid
sequences of SDG proteins were used for constructing
neighbor-joining (NJ) trees with the following settings:
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pairwise deletion option for gaps/missing data treatment;
p-distance method for Substitution model; and bootstrap
test of 1000 replicates for evaluation of internal branch
reliability.

In silico expression profiling of DcSDG genes

For the tissue and organ expression profiling of DcSDG
genes, The raw RNA-seq data of leaf (SRR4431601), root
(SRX2938667), Green root tip (SRR4431599), white part of
root (SRR4431598), stem (SRR4431600), flower bud
(SRR4431603), sepal (SRR4431597), labellum (SRR4431602),
pollinia (SRR5722145) and gynostemium (SRR4431596) in
an individual of wild D. catenatum were downloaded from
the NCBI Sequence Read Archive (SRA) provided by Zhang
et al [98]. For drought stress and stress removal experiment
in 8-month-old D. catenatum plants [99], irrigation was per-
formed on the 1st day, omitted from the 2nd to the 7th day,
and resumed on the 8th day, watering every 2 days at 15:30.
Consequently, the raw RNA-seq reads were obtained from
the leaves that were harvested at both 06:30 and 18:30 on
the 2nd [DR5 (NCBL SRR7223299) and DRS8
(SRR7223300)], 7th [DR6 (SRR7223298) and DRI0
(SRR7223296)], and 9th [DR7 (SRR7223301) and DRI15
(SRR7223297)] days, respectively, and at 18:30 on the 8th
day [DR11 (SRR7223295)]. For the expression analysis of
DcSDG genes in response to cold stress, the raw RNA-seq
reads of leaves under 20 °C control condition (SRR3210630,
SRR3210635 and SRR3210636) and 0 °C cold treatment for
20 h (SRR3210613, SRR3210621 and SRR3210626) were ob-
tained from NCBI provided by Wu et al [43]. Reads of all
the samples were aligned to the NCBI Dendrobium refer-
ence genome using HISAT package [118] The mapped
reads of each sample were assembled using StringTie [119].
Then, all transcriptomes from samples were merged to re-
construct a comprehensive transcriptome using perl scripts.
After the final transcriptome was generated, StringTie and
edgeR was used to estimate the expression levels of all tran-
scripts. StringTie was used to perform expression level for
mRNAs by calculating FPKM. DcSDG genes were selected
and differentially expressed genes were defined with log2
(fold change) > 1 or < -1 and with statistical significance (p
value < 0.05) by R package. Heatmap was generated using
TIGR MultiExperiment Viewer (MeV4.9) software [120].

Plant material and heat shock treatment

D. catenatum cultivar “Jingpin NO. 1”7 (Breed NO. Zhe
R-SV-DO-015-2014) was from the State Key Laboratory
of Subtropical Silviculture in Zhejiang Province, China.
D. catenatum was grown in greenhouse at 20 °C under a
12h light/12h dark regime. 1-year-old seedlings were
treated at 35°C heat shock for indicated time (3h, 6 h
and 12h) in a temperature-controlled incubator, com-
pared with the mock plants at 20°C. Then the leaves
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were harvested, snap frozen in liquid nitrogen and
stored at — 70 °C for further expression analysis.

Real-time quantitative RT-PCR (RT-qPCR)

Total RNA was extracted from the leaves using TRIzol
reagent (Invitrogen, USA) followed by RNase-free DNase
I treatment. First strand cDNA synthesis was performed
via PrimerScript RT Enzyme Mix I kit (TaKaRa, Japan),
according to the manufacturer’s instructions. RT-qPCR
reaction mixture (10 pl) was prepared according to the
manual of SYBR® Premix Ex Taq™ II (Tli RNaseH Plus)
kit (TaKaRa, Japan). Then the reaction was carried out
on CFX96 Touch™ Real-Time PCR Detection System
(BIO-RAD, USA) in three technical replicates for each
biological triplicate wusing the primers listed in
Additional file 9. The reaction condition was set as the
following temperature profile: 94 °C for 3 m, 40 cycles of
94.°C for 20s, 60 °C for 20s, 72 °C for 20s. The constitu-
tive DcACTIN was used as the reference gene. The ex-
pression value of each gene tested was normalized with
the internal reference gene, and the relative expression
level was calculated with 2722€T method [121].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512870-020-2244-6.

Additional file 1. SDG protein sequences in Arabidopsis and rice
retrieved from Phytozome 12 database.

Additional file 2. Identification and classification of SDG genes in P.
equestris. Sequences and information of P. equestris SDG genes and
proteins came from NCBI database (https://www.ncbi.nlm.nih.gov/).

Additional file 3. Expression data of DcSDG genes from different tissues
and organs in D. catenatum. The FPKM values of DcSDG genes in
different tissues and organs was used for expression analysis in Fig. 6. Lf:
leaf, Ro: root, Gr: green root tip, Wr: white part of root, St: stem, Fb:
flower bud, Se: sepal, Lb: labellum, Po: pollinia, and Gs, gynostemium.

Additional file 4. Expression patterns of duplicated SDG gene pairs. The
FPKM values of the duplicated DcSDG genes in different tissues and
organs was used for comparison. Lf: leaf, Ro: root, Gr: green root tip, Wr:
white part of root, St: stem, Fb: flower bud, Se: sepal, Lb: labellum, Po:
pollinia, and Gs, gynostemium.

Additional file 5. Expression data of DcSDG genes from different
drought treatments. The FPKM values of DcSDG genes in leaves under
different drought treatments were used for expression analysis in Fig. 7.
The seedlings were watered on the 1st day, dried from the 2nd to the
7th day, and re-watered on the 8th day. Leaves were collected at
different times; DR5/ DR8, DR6/DR10, and DR7/DR15 indicate sampling at
06:30 and 18:30 on the 2nd, 7th, and 9th days, respectively, and DR11
indicates sampling at 18:30 on the 8th day.

Additional file 6. Expression data of DcSDG genes in the absence and
presence of cold treatment. The FPKM values of DcSDGs genes in leaves
under cold stress / 20 °C (control) for 20 h were used for expression
analysis in Fig. 8.

Additional file 7. Domain organization and gene structure of the class-
VI DcSDGs. The NJ tree was generated using MEGA7 with parameter
settings as Fig. 1 based on full-length amino acid sequences of Class-VI
SDGs in D. catenatum, P. equestris, Arabidopsis and rice. The number
along the tree branch indicates bootstrap value. Different conserved
protein domains are colored as indicated. Gene structures of SDGs in
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each species were indicated in distinct colors. The solid boxes represent
exons and black lines represent introns.

Additional file 8. Domain organization and gene structure of the class-
VIl DcSDGs. The NJ tree was generated using MEGA7 with parameter
settings as Fig. 1 based on full-length amino acid sequences of Class-VII
SDGs in D. catenatum, P. equestris, Arabidopsis and rice. The number
along the tree branch indicates bootstrap value. Different conserved
protein domains are colored as indicated. Gene structures of SDGs in
each species were indicated in distinct colors. The solid boxes represent
exons and black lines represent introns.

Additional file 9. Primers used for expression analysis of heat shock
treatment in this study.
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