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Abstract 

Background:  The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with 
uniquely formed perforations through the use of a developmentally regulated process called programmed cell death 
(PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-
perforation, window, perforation formation, perforation expansion and mature. The first three emerging “imperforate 
leaves” do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. 
PCD is active in cells called “PCD cells” that do not retain the antioxidant anthocyanin in spaces called areoles framed 
by the leaf veins of window stage leaves. Cells near the veins called “NPCD cells” retain a red pigmentation from antho-
cyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expres-
sion patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought 
to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was 
achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of 
leaf development, and between NPCD and PCD cells isolated by laser capture microdissection.

Results:  Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well 
as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct 
gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes 
involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperfo-
rate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of 
PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid 
biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signal-
ling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes.

Conclusions:  RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and 
revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation 
will be useful for future experiments on lace plant leaf development and PCD in planta.
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Background
Programmed cell death
Programmed cell death (PCD) is an essential develop-
mental process that ensures the removal of cells, for tissue 
remodelling or in response to environmentally induced 
stress [1–4]. Plant developmental PCD is controlled by 
internal and external signals resulting in the organization 
of developing tissues [5–7]. Examples include embryonic 
suspensor deletion [8], aerenchyma formation [9], and 
xylem differentiation [10, 11]. Due to the experimen-
tal challenges associated with physically separating PCD 
destined cells spatially and temporally in plant model 
systems, there is presently little known about the genetic 
mechanisms that control developmental PCD. Plant sys-
tems with adjacent regions of differing cells fates arising 
from perforation formation during leaf morphogenesis 
can provide unique insight into the PCD process [12].

The lace plant model system
The formation of leaf perforations during development 
is unique and has been studied in plant families such as 

Araceae and Aponogetonaceae [12]. Monstera obliqua, 
M. deliciosa, and Aponogeton madagascariensis uti-
lize PCD to dismantle and clear designated cells during 
early shoot development, creating perforations in the 
leaf blade.

The lace plant A. madagascariensis is an aquatic mono-
cot that has recently emerged as a model system for stud-
ying PCD, due to the accessibility and predictability of 
PCD in developing leaves. Lace plant leaves are also thin 
and translucent, making them ideal for live-cell micros-
copy. Finally, the sterile propagation of whole lace plants 
in axenic environments create opportunities for pharma-
cological studies [3, 12].

The lace plant generates leaves with a perforated mor-
phology, wherein specific cells bounded within the vas-
culature are removed via developmentally regulated PCD 
(Fig.  1A). Leaves of the lace plant emerge in a hetero-
blastic series from an underground corm, and while the 
first 3–4 leaves (termed imperforate leaves, Fig. 1B, C) to 
emerge do not form perforations at all during develop-
ment, all successive emerging leaves become perforated 

Fig. 1  The lace plant programmed cell death (PCD) model system. A-B Lace plant grown in axenic Magenta box culture with the pre-perforation 
stage (P), window stage (W), mature stage (M), and imperforate leaves (I). C Imperforate leaves emerge from the corm lacking anthocyanin and 
forming areoles with no perforations. D Successive pre-perforation stage leaves emerge from the corm with anthocyanin pigmentation (indicated 
by asterisks). E PCD can be seen actively occurring in the window stage of development. Between longitudinal and transverse veins, in spaces 
known as areoles, a gradient of cell death can be observed. Non-PCD cells (NPCD; bounded by white dashed lines) cells persist beyond maturity. 
PCD cells (bounded by black dashed lines) have lost their anthocyanins, are translucent and on the verge of death. PCD and perforation formation 
is complete in mature stage leaves (F) and anthocyanin pigmentation is visibly reduced, and homeostasis for NPCD cells is reached. Scale bars: 
A = 1 cm; B = 2 cm; C = 200 μm
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(termed adult leaves). Early adult leaves in the “pre-
perforation stage” (Fig. 1B, D) emerge from the corm in 
a furled form, with an abundance of anthocyanin and 
complete vein pattern [12, 13]. As pre-perforation leaves 
unfurl they transition to the “window stage” (Fig. 1B, E). 
Window stage is reached when cells in the central por-
tion of areoles located between longitudinal and trans-
verse veins undergo PCD, losing their anthocyanin and 
chlorophyll pigmentation (“PCD cells”, Fig.  1E). Cells 
proximal to the veins retain both anthocyanin and chlo-
rophyll pigmentation and do not undergo PCD; and are 
therefore called “non-PCD cells” (NPCD cells, Fig.  1E). 
The perforations increase in size until halting 4–5 cell lay-
ers from the veins. Once perforation formation is nearly 
completed, the mesophyll cells at the NPCD cell edge of 
perforations transdifferentiate into epidermal cells. The 
leaves reach the mature stage once perforation expansion 
halts and NPCD cells achieve homeostasis (Fig. 1B, F).

Lace plant PCD mechanism
The visible gradient of PCD within the areoles of win-
dow stage leaves represents a powerful model system 
for studying cellular changes across this gradient dur-
ing developmental PCD [12]. The cellular changes that 
occur across the gradient of PCD in the lace plant have 
been well characterized, and some of the early events of 
lace plant PCD include the reorganization of the actin 
cytoskeleton, chloroplast ring formation around the 
nucleus, mitochondrial aggregation, and increased num-
ber of transvacuolar strands [12]. The manner in which 
organelles are taken up into the vacuole in membrane-
bound vesicles suggest the involvement of autophagy 
[14]. Further examples of cellular changes include loss of 
mitochondrial membrane potential, DNA fragmentation, 
and activation of caspase-like proteases before vacuolar 
collapse, plasma membrane shrinkage and cell wall deg-
radation [15, 16].

In spite of the well characterized progression of PCD, 
little is known about the molecular mechanisms that 
control lace plant PCD regulation and execution [17, 18], 
in part due to a lack of molecular information for the 
Aponogetonaceae family. The advancement of compara-
tive RNA sequencing (RNA-Seq) analysis between PCD 
and NPCD-like cells in other plant models has helped 
characterize differentially expressed genes (DEGs) that 
resemble PCD regulators. RNA-Seq analysis of separated 
embryonal mass and suspensor cells of Picea abies has 
shown that a spruce homolog of bax inhibitor-1 tran-
script is upregulated in early PCD suspensor cells and 
plays a role in regulating vacuolar cell death in suspensor 
cells [19]. Moreover, RNA-Seq analysis of early and late 
cavern forming leaf aerenchyma cells of Typha angusti-
folia revealed expansins, calmodulin-like proteins and 

pectinases transcripts that were directly related to lysig-
enous aerenchyma induction [20].

To date there is only one transcriptome study, Rantong 
et al. (2016) [18], which investigated lace plant leaf stages 
using complementary DNA-amplified fragment length 
polymorphism (cDNA-AFLP). This study identified 79 
annotated DEGs which are involved in processes such as 
photosynthesis, stress responses, pathogen defence, and 
PCD. Importantly, their results suggested that ubiquitin-
proteosome machinery may be involved in lace plant 
PCD. However, as cDNA-AFLP captures only a fraction 
of the transcriptome, how expression patterns across the 
entire A. madagascariensis genome change during PCD 
remains unknown.

In this study, we used high-throughput RNA-Seq to 
compare global transcriptome expression profiles of dif-
ferent stages of lace plant development as well as PCD 
and NPCD cells. We separated PCD and NPCD cells 
within window stage leaves by laser capture microdissec-
tion, allowing us to identify DEGs that may be involved 
in PCD and survival. We also identified, through differ-
ential expression analyses of RNA-Seq data, genes highly 
expressed in PCD and NPCD cells that are potential PCD 
inductors, executors and/or regulators. To identify key 
regulators of lace plant leaf remodelling, we additionally 
tested for genes that are highly expressed among perfo-
rating and non-perforating leaves.

Our objectives are to identify and compare DEGs 
among different leaf developmental stages and between 
PCD and NPCD cells. We hypothesize that imperfo-
rate and mature leaves have significantly higher levels of 
expression of genes involved in photosynthesis and nega-
tive regulation of PCD while pre-perforation and window 
leaves will have significantly higher levels of expression 
of genes responsible for anthocyanin biosynthesis, cas-
pase-like activity, cell wall organization, and pro-PCD 
regulation.

Results and discussion
RNA‑Seq data overview
To identify potential regulators of lace plant developmental 
PCD and leaf remodelling, we generated a novel lace plant 
transcriptome and identified DEGs in comparisons of pre-
perforation, window, mature and imperforate leaf stages, 
and NPCD and PCD cell types using RNA-Seq. Eighteen 
paired-end RNA-Seq libraries were generated from three 
biological replicates of each imperforate, pre-perfora-
tion, window, mature leaf stages, NPCD cells and PCD 
cells. The Illumina (San Diego, CA, USA) NovaSeq6000 
sequencing platform was used for paired-end sequencing 
at Génome Québec (Montréal, QC, Canada), with a 100 bp 
read length. A total of 1,320,261,351 reads were generated, 
and data for individual biological libraries were deposited 
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to the NCBI SRA database with the following SRA acces-
sion IDs: SRR10524134-SR10524151 and BIOPROJEC-
TID: PRJNA591467. After read filtering, 1,288,318,561 
reads remained and 1,102,201,639 reads aligned concord-
antly (Additional file 1).

We assembled 908,119 transcripts with an N50 
length of 1,041  bp, and 49.9% GC content from eight-
een RNA-Seq libraries. These transcripts translated to 
437,825 protein coding genes (Table 1). Gene Ontology 
(GO) annotated DEGs across leaf stages and cell types 
accounted for 4,339 of the 106,222 (4.08%) A. madagas-
cariensis GO annotated genes across all leaf stages and 
cell samples with a 1% adjusted P-value cut-off (Fig. 2A, 
B). Of the 10,416 DEGs, 2808, 313, 1541, and 1267 genes 

Table 1  Number of differentially expressed and GO annotated 
genes across leaf and cell-type samples

Trinity assembly Data Total

Number of de novo assembled transcripts 908,119

N50 (bp) 1,041

Median transcript length (bp) 374

Average transcript length (bp) 671.74

Percent GC (%) 49.89

Number of protein coding genes 437,825

Number of GO annotated genes 106,222

Number of DEGs 10,416

Number of GO annotated DEGs 4,339

Fig. 2  Overview of differentially expressed genes in lace plant leaves and cell types. Venn diagram showing the number of mutual and exclusive 
differentially expressed genes (DEGs) between lace plant leaf stages (A) and between NPCD and PCD cells (B); fold change > 2.0, P < 0.01. Heatmaps 
of gene expression levels of DEGs plotted as log2(FPKM + 1) for indicated samples and biological replicates for leaf stage comparison (C) and 
comparison of NPCD and PCD cells (D). Low and high gene expression levels are shown in purple and yellow, respectively. Below heatmaps, 
biological replicates 1–3 are indicated by P, pre-perforation; W, window; M, mature; and I, imperforate. Supporting data for gene expression found in 
Additional file 3 and 5
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were upregulated exclusively in pre-perforation, window, 
mature, and imperforate leaves respectively (Fig.  2A). 
Between cell types, 482 and 166 genes were exclusively 
upregulated (at least twofold) in PCD and NPCD cells, 
respectively. Remaining DEGs were expressed mutually 
between different combinations of leaf stages (Fig. 2).

Transcriptomic profiles of the lace plant developmental leaf 
stages
BLAST-based comparisons of assembled transcripts 
yielded 106,222 GO annotated genes that were homolo-
gous to sequences in public databases. Of the annotated 
genes, 30,932 (29.12%) were most similar to Arabidopsis 
thaliana, 6,509 (6.12%) to Oryza sativa and 692 (0.65%) 
to Zea mays.

A. madagascariensis leaf DEGs were divided into four 
main clusters generated through the tree cutting method 
of expression patterns across four leaf developmental 
leaf stages (Fig. 3, Additional file 3). RNA-Seq data were 
divided into the pre-perforation cluster (4544 DEGs), the 
window cluster (718), the mature cluster (1572), and the 
imperforate cluster (1387) (Fold change > 2.0, P < 0.01, 
false discovery rate (FDR) = 1%; Additional file  3). GO 
enrichment analyses identified biological functions 
enriched in the four main clusters based on expres-
sion patterns across the four stages of leaf development 
(FDR = 1%, Additional file 3).

The pre-perforation cluster, representing genes that 
were most highly expressed in the pre-perforation stage 
leaves and exhibited reduced expression in subsequent 
stages, included genes encoding for proteins involved in 
flavonoid biosynthesis, anthocyanin biosynthesis, ethyl-
ene-activated signalling pathway, endopeptidase activity, 
autophagosome formation, and regulation of PCD. The 
window stage leaf cluster represented genes that were 
most highly expressed in the pre-perforation and win-
dow stages and then reduced in subsequent stages. This 
cluster included genes encoding for proteins involved in 
ATP-binding, ATPase activity, ion binding, response to 
auxin, response to oxygen-containing compounds, perox-
idase activity, and hydrolase activity. Both the mature and 
imperforate clusters represented genes that increased 
in expression in later leaf development stages, and both 
contained genes encoding for proteins involved in pho-
tosystem I and II, chlorophyll-binding, light-harvesting 

complex organization, catalytic activity, ion binding, and 
cell wall biosynthesis.

Taken together, clustering data support the hypothesis 
that growth and organizational processes are enriched 
in developing pre-perforation and window stage leaves 
where metabolic processes must occur to fuel develop-
ment. Many energy-related metabolic processes occur in 
the mature and imperforate leaves where development 
is near completion and flavonoid synthesis is reduced 
(Fig.  3, Additional file  3). General patterns of gene 
expression for select biological functions across the leaf 
clusters showed that genes involved in photosynthesis 
and negative regulation of PCD are expressed at higher 
levels in mature and imperforate leaves where PCD is not 
as active and homeostasis is reached. This suggests that 
imperforate and mature leaves are the major site of pho-
tosynthesis, whereas pre-perforation and window leaves 
specialize in growth, responding to hormones, and exe-
cuting PCD. All clusters demonstrated high expression 
of genes involved in cell wall modifying enzymes such 
as pectinesterases. However, pre-perforation and win-
dow leaves possess a greater number of highly expressed 
expansins, pectinesterases and subtilisin-like proteases 
than mature and imperforate leaves. Pre-perforation and 
window stage leaves represent the culmination of many 
developmental processes such as regulation of PCD, 
cell wall organization, lignin, and stomata development. 
Genes encoding proteins involved in hormone synthesis 
and transport were found to be differentially expressed 
between leaf stages. Pre-perforation and window stage 
leaves had high expression levels of genes encoding for 
auxin biosynthesis and transport, abscisic acid (ABA) 
biosynthesis, brassinosteroid (BR) biosynthesis, cyto-
kinin (CK) biosynthesis, gibberellin (GA) biosynthesis, 
ethylene biosynthesis, ethylene receptor activity, eth-
ylene signalling pathway, jasmonate biosynthesis and 
salicylic acid (SA) response. Mature and imperforate 
leaves expressed similar levels of ABA transport genes in 
comparison to pre-perforation and window stage leaves. 
In total, early developing leaves revealed an expression 
pattern of leaf development similar to other monocots 
like Agave deserti and Z. mays [21] where expression of 
most transcription factors (TFs) and hormone biosyn-
thesis tend to be at their highest. Likewise, mature leaves 
express genes related to photosynthesis [22].

(See figure on next page.)
Fig. 3  Transcriptomic analysis of lace plant leaf developmental stages. Top: Four main clusters grouped by highest expression in respective 
pre-perforation (P), window (W), mature (M) and imperforate (I) leaf stage biological replicates (n = 3). For each cluster, individual DEG expression 
values (shown as the transformed log2(FPKM + 1) values) are plotted as grey lines and the mean expression profile is highlighted in blue. The total 
number of DEGs per cluster is shown below each plot (P < 0.01, fold change > 2.0). Bottom: Heatmaps of composite gene expression for indicated 
proteins, with green and red corresponding to high and low gene expression, respectively. Supporting data are found in Additional file 3
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Fig. 3  (See legend on previous page.)
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Insights from comparative transcriptomics of NPCD and PCD 
cells
Laser capture microdissection was used to separate 
NPCD and PCD cells from A. madagascariensis win-
dow stage leaves to reveal potential regulators of PCD by 
RNA-Seq analysis. NPCD and PCD transcriptomes were 
divided into two main clusters based on cluster analysis 
expression patterns (Fig. 4) using the tree cutting method. 
This cluster analysis identified approximately 431 genes 
that were differentially expressed in either NPCD (326 
DEGs) or PCD (105 DEGs) samples with a minimum of 
a twofold change (P < 0.01). In comparison to upregulated 
genes found in leaf stages; this represents a small fraction 

of the transcriptome which may be a result of limited 
biological replicates used in this experiment. We tested 
for GO enrichment (FDR = 1%; Additional file 5) in each 
of the NPCD and PCD clusters. The NPCD cluster con-
tained genes encoding for proteins involved in respira-
tory burst activity, leaf senescence (including negative 
regulation of senescence), protein autoubiquitination, 
and the ethylene-activated signalling pathway. The PCD 
cluster contained genes encoding for proteins involved in 
ethylene biosynthesis, cell wall modifiers, protease inhib-
itors, and ROS generation, and PCD regulation (Fig. 4).

Comparing the relative GO counts between NPCD 
and PCD clusters (Fig.  5) we found that NPCD cells 

Fig. 4  Transcriptomic analysis of NPCD vs PCD cells of the lace plant. Top: Two main clusters grouped by highest expression in NPCD and PCD 
cell biological replicates (n = 3). For each cluster, individual DEG expression values (shown as the transformed log2(FPKM + 1) values) are plotted 
as grey lines and the mean expression profile is highlighted in blue. The total number of DEGs per cluster is shown below each plot (P < 0.01, fold 
change > 2.0). Bottom: Heatmaps of composite gene expression for indicated proteins, with green and red corresponding to high and low gene 
expression, respectively. Supporting data are found in Additional file5
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Fig. 5  Heat map of GO category orthologs differentially expressed in leaf stages, NPCD and PCD cells. Heatmaps show composite select GO term 
counts normalized by the cluster with highest count for specific biological processes. The number of GO category orthologs were compared 
among lace plant leaf stages (left) and between NPCD and PCD cells (right). Colour gradient ranges from white (zero genes upregulated) to dark 
blue (highest number of genes upregulated). Supporting data are found in Additional file 3 and 5
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upregulated more genes encoding for proteins involved 
in flavonoid biosynthesis, cysteine protease activity, met-
alloprotease activity, positive regulation of autophagy, 
PCD regulation, and cell wall organization. Conversely, 
PCD cells upregulated more genes involved in ethylene 
biosynthesis, photosystem II and I, BR biosynthesis, and 
cutin biosynthesis. NPCD and PCD cells expressed simi-
lar numbers of genes in GO categories for homeobox, 
myeloblastosis (MYB), zinc finger TF families and ser-
ine endopeptidase activity, suggesting that these families 
act as regulatory elements across both cell types during 
differentiation.

Additionally, five DEGs were selected for fold-change 
expression validation by quantitative reverse tran-
scriptase polymerase chain reaction (qRT-PCR) across 
leaf stages and cell types (Additional file  4). The tran-
scripts for Bag5, expansin A-29, aquaporin 4–4, antho-
cyanin regulatory protein C1, nuclear transcription factor 
YC-1, and α-tubulin were chosen as validation targets. 
The fold-change expression of the selected genes nor-
malized by α-tubulin followed a similar pattern to that 
seen in the cluster analysis among different stages of leaf 
development and between cell types (Additional file  4) 
and were deemed valid.

Transcription factors
Most of the DEGs that encode for TFs were found in early 
developing leaves (Fig. 5, Additional file 3). TFs identified 
in the pre-perforation leaf cluster included YABBY, MYB, 
bHLH (basic Helix-Loop-Helix), Zn finger, GATA, C2C2 
CO (constans), homeobox, DOF (DNA-binding with one 
finger), TCP (teosinte, branched1, cycloidea and PCF), 
and trihelix families (Fig. 5, Additional file 3). These iden-
tified families presumably underpin the expression of 
a broad array of genes important for early leaf develop-
ment, in particular, the establishment of axial polarity, 
stomata development, and vascular tissue, as seen in O. 
sativa and A. thaliana [23–31]. Mature and imperforate 
leaves expressed a greater number of genes than pre-
perforation and window leaves that encode for MADS-
box and NAC (no apical meristem) family TFs which may 
underpin the promotion of photosynthetic development, 
lignin, wax and secondary cell wall development which is 
enhanced in these later developing leaves.

DEGs encoding for TFs were also detected in NPCD 
and PCD cell DEG expression profiles (Fig. 5, Additional 
file 5). Trihelix and WRKY families were expressed at a 
high level in NPCD cells. These identified TFs were most 
likely responsible for transcribing genes involved in stress 
response and are known to be upregulated in mesophyll 
cells of developing O. sativa leaves [21]. Two constan 
family TFs were highly expressed in PCD cells. Con-
stan TF families may be involved in mediating PCD cell 

collapse or suppressing anti-PCD genes. Both NPCD and 
PCD cells upregulated an equal number of MYB, Zn fin-
ger, and homeobox family TFs. There may be MYB TFs in 
both types of cells but these two groups possess opposite 
responsibilities in terms of promoting and suppressing 
flavonoid biosynthesis. The differences in transcriptional 
regulation of gene expression between perforating and 
non-perforating lace plant leaves may control the key 
programming events that result in differential growth.

Plant hormones
We detected higher expression patterns for auxin, ABA, 
CK, GA, ethylene, and jasmonate hormone biosynthesis 
genes in the pre-perforation cluster (Fig.  5, Additional 
file  3). The window stage cluster contained the high-
est levels of expression for BR biosynthesis and ethylene 
receptor activity. The mature and pre-perforation stage 
clusters contained the highest levels of expression for 
ABA hormone transport (Fig. 5, Additional file 3). These 
results support previous findings of several plant-specific 
hormones being involved in PCD signalling, including 
SA, jasmonic acid, ABA, GA, and ethylene [32–34]. The 
hormone biosynthesis patterns observed in early lace 
plant development are similar to the monocot leaves of 
A. deserti, Agave tequilana and Z. mays [21, 22].

To date, several pharmacological whole plant experi-
ments have revealed how lace plant perforation forma-
tion is dependent on auxin, and ethylene biosynthesis 
[35–37]. Further work is required to disentangle the roles 
of each plant hormone in mediating lace plant leaf devel-
opment from perforation formation, outside of ethylene 
which has been studied extensively.

Expression patterns in the NPCD cell cluster included 
more highly expressed genes related to auxin transport, 
auxin signalling pathway, GA biosynthesis, ethylene acti-
vated signalling pathway, jasmonate biosynthesis and SA 
response in comparison to the PCD cell cluster (Fig.  5, 
Additional file  5). PCD cells upregulated 1 gene encod-
ing for ethylene biosynthesis relative to NPCD cells. Eth-
ylene biosynthesis and ethylene receptors are involved in 
promoting PCD in cells destined to die in the areoles of 
lace plant leaves [35, 37]. Additionally, PCD cells upregu-
late more genes associated with BR biosynthesis in com-
parison to NPCD cells. BRs are believed to mediate the 
timing of ROS production, and in turn, PCD execution in 
tapetal cells of Solanum lycopersicum [38]. BRs may also 
play a similar role in PCD cell triggering, as suggested 
by the higher expression of genes involved with BR syn-
thesis. NPCD cells upregulated ethylene response factor 
(ERF) RAP2-3 in comparison to PCD cells. ERF-RAP2-3 
has been identified as playing an important role in eth-
ylene mediated hypoxia stress in A. thaliana seedlings 
[39] and may play a role in protecting NPCD cells from 
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PCD cells which accumulate superoxide during PCD 
execution. Together, our results support the hypothesis 
that plant hormones are involved in PCD, and targeted 
approaches are needed to disentangle their specific roles 
and functions.

Anthocyanin biosynthesis enzymes
Forty-six upregulated genes were categorized as enzymes 
with flavonoid biosynthesis, isomerase, hydrolase, oxi-
doreductase or lyase activities in the pre-perforation leaf 
cluster while < 10 genes for these enzymes were found in 
each of the window, mature, and imperforate leaf clusters 
(Fig. 5, Additional file 3). Eight of the upregulated genes 
in the pre-perforation cluster encoded for the flavonoid 
biosynthesis pathway. Pre-perforation and window leaves 
upregulated genes that promote the biosynthesis of early 
stage and late-stage flavonoids as well as downstream 
transferase enzymes for promoting the synthesis of 
anthocyanins, flavonols and anthocyanidins. NPCD cells 

also upregulated 5 genes that encoded for flavonoid bio-
synthesis in comparison to PCD cells (Fig. 5, Additional 
file 5). Of the genes that are involved in flavonoid biosyn-
thesis only flavonone 3-dioxygenase 2, which produces 
dihydroflavonol [40], was upregulated in mature leaves 
and imperforate leaves as well as PCD cells (Additional 
files 3 and 5). Upregulated genes that encode for enzymes 
that promote anthocyanin biosynthesis are summarized 
in Fig. 6.

The most notable feature of lace plant leaf develop-
ment is the visible gradient of anthocyanin pigmenta-
tion during PCD in early developing leaves. Previous 
studies have investigated the role of exogenous ROS 
and antioxidants on lace plant leaf development, and 
found that they are key regulators of the establish-
ment of perforation formation in the lace plant model 
system [13]. Pre-perforation and window stage leaves 
have the highest levels of anthocyanin compared to 
imperforate and mature leaves [13, 42]. Our results are 

Fig. 6  DEGs involved in flavonoid biosynthesis. General late-flavonoid biosynthetic pathway (grey boxes) and genes (cyan boxes) expression 
in pre-perforation (P), window (W), mature (M) and imperforate (I) leaf stages (4-box expression comparison strings) or NPCD and PCD cell 
samples (2-box expression comparison strings). Detailed gene expression data provided in Additional file 3 and 5. Expression levels displayed in 
log2(FPKM + 1) across samples. Green indicates high expression values; red indicates low expression values. Pathway modified from Argout et al., 
(2008) [41]
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consistent with these findings, as pre-perforation leaves, 
window leaves, and NCPD cells expressed genes encod-
ing enzymes that promote the biosynthesis of gluco-
side constituted anthocyanins (Fig. 6). The upregulation 
of anthocyanidin-3-O-glucosyltransferases (A3OGT), 
anthocyanidin-5,3-O-glucosyltransferases (A5,3OGT), 
and anthocyanin-5-aromatic acyltransferase (A5AAT) 
suggests that anthocyanidin-3-O-glucosides, anthocy-
anidin-5,3-O-glucosides, and anthocyanidin-3-gluco-
side-6-hydroxycinnamoyl glucosides are being actively 
synthesized in early-stage leaves, leading to the accu-
mulation of anthocyanins. The presence of pink-red col-
oured anthocyanin vacuoles in window stage leaves is 
consistent with the hypothesis that the vacuole has a pH 
of ~ 5.5 pH which favours the formation of flavylium cati-
ons [43].

Recent attention has been drawn to the formation 
of anthocyanin vacuolar inclusions (AVIs) in win-
dow stage leaves, which then dissipate as leaves enter 
maturity (Gunawardena lab, 2020 unpublished data). 
Kallam et  al. (2017) [43] recently reported that the 
composition of anthocyanin substituents or decora-
tions determined the solubility of AVIs in tobacco 
lines. The aromatic acylation of anthocyanidin 
3-O-glucoside by anthocyanidin 3-O-glucoside-6″-O-
coumaroyltransferase (A3T) promotes the formation 
of AVIs, while the rhamnosyl decorations decrease 
the formation of AVIs by competition. The absence of 
upregulated aromatic rhamnosyltransferases or malo-
nyltransferase DEGs (which inhibit AVI formation) 
in early leaves suggests a role for AVIs in mediating 
proper leaf development [43]. NPCD cells upregulated 
genes encoding for anthocyanidin 3-O-glucosyltrans-
ferases, consistent with the promotion of ROS scav-
engers and protection from PCD. The identification 
of anthocyanin compounds across developmental leaf 
stages and NPCD cells is currently under investigation 
using global mass spectrometry.

Potential regulators of programmed cell death
Cell wall modification enzymes and aquaporins
Lace plant perforation formation relies on thin cuticle 
erosion, removal of polysaccharides and degradation 
of cellulose [44] to mediate perforation expansion. The 
deposition of suberin is imperative to prevent infection 
and loss of nutrients in NPCD cells while neighbouring 
PCD cells collapse. We found that the window stage clus-
ter had high expression of the greatest number of suberin 
biosynthesis-related genes (Fig.  5, Additional file  3), 
which is consistent with the hypothesis that suberin dep-
osition is most active during the window stage of devel-
opment [12].

Pre-perforation and window stage clusters contain high 
expression of 67 and 7 genes, respectively, that were cat-
egorized under either cell wall organization or cell wall 
biosynthesis. Mature and imperforate clusters showed 
high expression of 9 and 5 genes respectively. The NPCD 
cluster showed high expression of 4 genes, while the PCD 
cluster showed high expression of 1 gene (Fig.  5, Addi-
tional file 5). All clusters contained higher expression for 
orthologs of hydrolases, pectinesterases, glucosidases, 
and xyloglucan glycosyltransferase activities. Mature and 
imperforate leaves upregulated no genes that encode for 
expansin enzymes.

The facilitation of cell expansion and cell wall loosen-
ing is important for not only the growth of developing 
lace plant leaves but also the execution of PCD cells and 
reorganization of NPCD cells. Pre-perforation and win-
dow stage leaves upregulated several genes that encode 
for xyloglucan endotransglucosyltransferases, expansins 
(expansin-A29 detected by qRT-PCR, Additional file  4), 
and pectinesterases (Fig.  3) which are responsible for 
loosening and reorganizing the cell wall during growth 
[45–47]. Mature and imperforate stage leaves followed a 
similar pattern but did not upregulate genes for expansins 
(Fig. 3). This likely indicates that this activity is no longer 
needed once leaf maturity is reached.

Aquaporins play an important role in cell expansion by 
controlling water uptake [48]. Pre-perforation and win-
dow stage leaves upregulated several genes encoding for 
tonoplast intrinsic protein (TIP), nodule intrinsic pro-
tein (NIP), and plasma membrane intrinsic protein (PIP) 
aquaporins. NPCD cell upregulated a TIP4-4 aquaporin 
gene (Fig.  4). TIP4-4 was detected by qRT-PCR (Addi-
tional file  4). PCD cells upregulated a TIP2-3 gene and 
mature and imperforate leaves upregulated both. The 
expression of aquaporin genes in all samples suggests 
that cell expansion by vacuole enlargement is needed 
throughout leaf development, and as well as in differen-
tiating NPCD and PCD cells to control the progression of 
expansion or cell burst [48].

Heat shock proteins
Heat shock proteins (Hsps) are synthesized in response 
to stress to maintain homeostasis by refolding proteins 
before they become irreversibly denatured [49, 50]. The 
pre-perforation leaf cluster contained 25 genes and the 
window leaf cluster contained 2 genes categorized as 
protein folding. Mature and imperforate leaf clusters 
contained 1 and 2 genes under unfolded protein folding, 
respectively (Fig. 3, Additional file 3). The NPCD cell clus-
ter contained 1 gene and the PCD cell cluster contained 0 
genes categorized under unfolded protein folding (Addi-
tional file 5). ATP-dependent molecular chaperones such 
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as Hsp81-1, Hsp81-3, and Hsp70-15 were upregulated in 
pre-perforation and window stage leaves.

In O. sativa protoplast models, mtHsp70 overex-
pression prevents ROS burst and PCD in protoplasts 
under oxidative stress [51]. In contrast to suppressing 
stress induced PCD, Hsp70 of Capsicum annuum pro-
motes the hypersensitive response in infected Nico-
tiana benthamiana leaves [52] by nuclear localization 
of an effector protein. Hsp70s and their respective Bcl-
2-associated athanogene (Bag) proteins can modulate 
animal PCD and many cellular processes [1], warrant-
ing their investigation in lace plant PCD. Experimental 
treatment with the Hsp70 inhibitor chlorophenylethy-
nylsulfonamide (PES-Cl) caused a significant decline 
in the number of perforations, caspase-like activity and 
anthocyanin levels in window stage leaves [42], sug-
gesting Hsp70 plays a role in mediating lace plant PCD. 
Hsp70 proteins are developmentally regulated and sig-
nificantly higher in pre-perforation and window stage 
leaves, which is consistent with the expression pattern 
of an Hsp70-15 gene (Fig. 3). While our results support 
the hypothesis that Hsp70 activity affects lace plant leaf 
development at a threshold level, where it localizes is 
still unknown.

Genes for lace plant homologs of O. sativa  Hsp81-1 
and Hsp81-3 were transcriptionally upregulated in pre-
perforation stage leaves (Fig. 3, Additional file 3). Hsp81s 
promote salt stress tolerance in O. sativa and over-
expression experiments in A. thaliana show that it pro-
motes heat tolerance [53, 54]. Proteomic models predict 
that AtHsp81 can form a complex with AtHsp70 [55] 
most likely for protein quality control, and our results 
suggest that both lace plant homologs of Hsp70 [42] and 
Hsp81 are being synthesized for maintaining protein 
homeostasis during early leaf development. Additional 
pharmacological whole plant experiments are required to 
improve characterization of Hsps and Bag protein func-
tion in lace plant development.

Bag proteins
The Bag protein family has gained recent attention in 
the field of plant developmental biology for their role in 
mediating PCD, senescence, and autophagy in several 
plant systems [1, 55]. Bag proteins are major nucleotide 
exchange factors for Hsp70 [56] and help accelerate the 
Hsp70 protein fold cycle and modulate PCD pathways 
in animals and plants [57, 58]. The Hsp70 co-chaperone 
Bag7 was more highly expressed in pre-perforation and 
window leaves. Bag3 and mitochondrial (mt) Bag5 were 
upregulated in mature and imperforate leaves (mtBag5 
detected by qRT-PCR, Additional file 4). Expression val-
ues for mtBag5 were significantly higher in NPCD cells in 
comparison to PCD cells (Fig. 4, Additional file 5).

In the lace plant, we found that pre-perforation 
and window stage leaves upregulated genes encod-
ing homologs of A. thaliana for Bag7 (Fig. 3, Additional 
file 3). Bag7 is ER-localized in A. thaliana and is involved 
in the unfolded protein response, and can localize to the 
nucleus to interact with multiple proteins to modulate 
PCD pathways [59, 60].

Mature and imperforate lace plant leaves upregulated 
Bag3 and Bag5 homologs relative to pre-perforation and 
window leaves (Fig.  3), whereas NPCD cells upregu-
lated a Bag5 homolog compared to PCD cells (Fig.  4). 
The role of Bag3 involvement in human cargo medi-
ated autophagy has made it a potential cancer therapy 
target, but its role in plant PCD is unknown [61]. In A. 
thaliana leaf systems, Bag5 has been found to bind heat 
shock cognate 70 (Hsc70) and localize to the mitochon-
dria to promote ROS generation and clearing of chloro-
phyll while leaves are under senesence [58]. The fact that 
Bag5 genes were upregulated in NPCD cells provides an 
opportunity to investigate the possible role of this gene 
in separating NPCD cells from PCD cells or preventing 
mitochondrial burst [62]. Plant Bag5 plays a role in reg-
ulating Ca2+ in the mitochondria and possibly the out-
comes of mitochondrial stress response in NPCD cells. 
Bag family proteins seem to play an important regulator 
role in plant PCD but their precise biochemical roles are 
still unknown in plants [61].

Autophagy‑related proteins
Dauphinee et  al. (2019) found that autophagy predomi-
nately contributes to cell survival and that there is no 
clear evidence for the direct involvement of autophagy 
and the induction of PCD during the perforation forma-
tion of lace plant leaves [14]. Only pre-perforation and 
window stage leaves were found to upregulate genes in 
the GO category of autophagosome assembly such as 
homologs of AuTophaGy-related protein 16 (Atg16) and 
Atg18a (Fig. 3 and 5, Additional file 3). The pre-perfora-
tion cluster contained a SNF1-related protein kinase cat-
alytic subunit alpha KIN10 and a lysosomal amino acid 
transporter 1, both of which are involved in autophagy 
regulation. Mature leaves, imperforate leaves, and NPCD 
cells (in comparison to PCD cells, Fig. 3 and 4) upregu-
lated WRKY33, a TF involved in the positive regulation 
of autophagy [63]. WRKY33 was upregulated in NPCD 
cells relative to PCD cells, suggesting a requirement for 
stress resistance in NPCD cells during perforation devel-
opment. WRKY33 is important for plant resistance to 
necrotrophic pathogens and interacts with the Atg18a in 
the nucleus [64] in response to biotic stress.

We detected higher expression of genes for Atg18a 
and Atg16 in pre-perforation and window stage leaves, 
suggesting changes in the regulation of autophagosome 
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formation and mitophagy occur during plant develop-
mental PCD. There are eight members in the AtATG18 
gene family (AtATG18a–AtATG18h) [63]; each member 
has a different expression pattern, and only AtATG18a 
shows an increased transcript level under starva-
tion conditions and during senescence in A. thaliana. 
AtATG18a expression is also upregulated and is required 
for autophagy during oxidative, salt, and osmotic 
stresses. RNA interference (RNAi) of AtATG18a makes 
plants autophagy-defective and more sensitive to vari-
ous stress conditions [63, 65–67]. Atg16 oligomerizes to 
form an Atg12-Atg5·Atg16 complex that is essential for 
autophagy [68].

The A. thaliana protein kinase SNRK KIN10 has been 
shown to induce several autophagy genes such as Atg8, 
a protein found to be developmentally regulated in lace 
plant leaves [69, 70]. During early leaf development, the 
level of expression of genes involved in photosynthesis 
is low in comparison to mature and imperforate leaves. 
Prolonged stress often causes decreased photosynthe-
sis and increased ROS accumulation, which can trig-
ger PCD pathways [71]. Autophagy is used in early leaf 
development to provide energy while photosynthesis 
and chlorophyll genes are not upregulated until maturity 
and optimal photosynthesis activity is reached. It is likely 
WRKY33 is transcribed to increase autophagosomes for-
mation during early leaf development and to promote 
survival in stressed NPCD cells.

Regulators of programmed cell death
Genes falling under the GO category “PCD regulation” 
were differentially expressed across lace plant leaf stages 
and between NPCD and PCD cells. We found that the 
pre-perforation leaf cluster contained homologs for 
L-type lectin domain kinase IX.I and mechanosensitive 
ion channel protein 10 (MSL10). MSL10 promotes PCD 
in response to pathogen invasion, and mechanical stress 
in A. thaliana [72–74]. Additionally, the pre-perfora-
tion cluster contained genes encoding for a BOI-related 
E3-ubiquitin ligase 2. BOI E3-ubiquitin ligases are capa-
ble of inhibiting PCD by limiting α-picolinic acid gen-
eration and by ubiquitination of apoptotic inhibitors [75, 
76]. The upregulation of MYB33 in pre-perforation and 
window stage leaves (Fig. 3, Additional files 3) is of par-
ticular interest for further lace plant investigations, due 
to its role in the promotion of PCD in anthers and seeds 
of other monocots like Hordeum vulgare and O. sativa 
[77].

The mature and imperforate leaf stage clusters con-
tained genes encoding a BOI related E3 ubiquitin ligase 
2 and a respiratory burst oxidase homolog-F (Rboh-F) 
respectively. BOI related E3 ubiquitin ligase 2 genes 
negatively regulate PCD by suppressing ROS generation 

[75, 76] which is consistent with mature and imperforate 
leaves where perforation formation and superoxide accu-
mulation is less active [13, 42]. Rboh-F is mostly respon-
sible for ROS generation by ABA signaling in A. thaliana 
systems [78] and is implicated in immunity.

We also observed differential expression patterns 
for PCD regulation genes across NPCD and PCD cells 
(Fig.  5, Additional file  5). NPCD upregulated genes 
encoding for aspartyl protease AED3 and ERF-RAP2-3 
which have been previously described as pro-PCD con-
tributors. PCD cells upregulated a gene encoding for 
primary amine oxidase 1 (PAO1) relative to NPCD cells. 
PAOs have been shown to play a role in generating ROS 
in differentiating tissue during organ development and 
during PCD [79, 80]. Pro-PCD genes such as aspartyl 
protease AED3 upregulated in NPCD was an unexpected 
result and may potentially be explained by these genes 
having a function to promote a stress response or senes-
cence in NPCD cells during PCD activation.

Plant proteases and programmed cell death
The pre-perforation, window, mature and imperforate 
clusters were all found to contain upregulated genes 
encoding for enzymes with endopeptidase activity. The 
pre-perforation leaf cluster shows 59 genes encoding 
for enzymes with aspartic, serine, and cysteine endo-
peptidase activity (Fig.  5, Additional file  3). NPCD cells 
upregulated 27 genes encoding for enzymes with aspar-
tic endopeptidase activity (2 for PCD cells), 1 gene with 
serine activity for both cell types, 4 with cysteine activity 
(versus for 0 in PCD cells), and 1 with metalloprotease (0 
for PCD; Fig. 4 and 5, Additional file 5).

Previous research has pinpointed the roles of caspase-
like enzymes in plant development as PCD initiators or 
executors [81–83]. Subtilisin-like proteases have poten-
tial PCD regulation roles with an autocatalysis activ-
ity-containing domain that re-enters the cell once the 
prodomain is removed to execute PCD, and all lace plant 
leaf stage clusters upregulated several subtilisin-like pro-
teases. The similar expression of subtilisin-like proteases 
across leaf stages is consistent with a role in leaf remod-
elling and homeostasis. All leaf stages and NPCD cells 
upregulated a Bowman-birk serine protease inhibitor. 
Serine protease inhibition activity may indicate a role for 
coordinated inhibition of serine endopeptidase activity 
for proper PCD execution.

Multiple cysteine proteases have documented roles in 
developmental plant PCD. For example, cysteine protease 
1 mediates tapetal PCD in A. thaliana [82] and cysteine 
protease R2D1A is found to enhance PCD in innate 
immunity of A. thaliana [83, 84]. Cysteine protease activ-
ity can be tightly controlled by the activity of serpin and 
Kunitz protease inhibitors (reversible inhibition [83]), 
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which are upregulated in mature and imperforate leaves 
in the form of Kunitz protease inhibitor 2 and cysteine 
protease inhibitor A. Protease cascades may trigger lace 
plant leaf PCD. Inhibitors such as the Kunitz and cysteine 
inhibitors in mature leaves could play a role in stopping 
the effector phase of cysteine protease activity and pre-
venting PCD from becoming active again [85]. We found 
that both genes for cysteine protease 1 and RD21A pre-
viously mentioned are transcriptionally upregulated 
in NPCD cells. The reason(s) for the accumulation of 
mRNA for these proteases in cells destined to survive is 
still uncertain, this could suggest they play an important 
role in mediating PCD cell collapse.

Aspartyl proteases also regulate plant developmental 
PCD; specifically, the deletion of reproductive tissues [86, 
87]. In lace plants, pre-perforation, window stage leaves, 
and NPCD cells all had high expression of genes encod-
ing for aspartyl protease AED3, which is involved in PCD 
(Fig. 3 and 4; Additional file 3 and 5). Aspartyl protease 
AED3 may be upregulated for transdifferentiating NPCD 
cells into endodermis during PCD progression.

A metalloproteinase 2-MMP gene was upregulated 
in NPCD cells in comparison to PCD cells (Fig. 4). SI2-
MMPs have been found to inhibit epidermal cell death 
in S. lycopersicum L and, in contrast, 2-MMP promotes 
early senescence in A. thaliana [88, 89]. The upregula-
tion of 2-MMP in NPCD cells may indicate their role in 
differentiating NPCD from PCD cells, or inhibiting PCD 
execution.

The protease substrate phosphoenolpyruvate car-
boxykinase 1 (PEPCK1) can be cleaved by A. thaliana 
metacaspase 9 (MC9) and MC9 in turn promotes the 
clearance of root xylem tissue [90] and possibly gluco-
neogenesis [91]. A gene encoding an A. thaliana PEPCK1 
homolog [85] was upregulated in our imperforate leaf 
cluster (Fig. 3, Additional file 3). The cleavage of PEPCK1 
by MC9 may promote gluconeogenesis in imperforate 
leaves and supports the hypothesis that imperforate 
leaves serve to generate energy for the lace plant before 
undergoing rapid senescence.

Interestingly, our RNA-Seq analysis did not reveal dif-
ferential expression across leaf stages or cell types of 
any lace plant genes encoding for vacuolar processing 
enzymes (VPEs), which are known to play a major role 
in developmental PCD of lace plant leaves [35, 92]. Using 
qRT-PCR methods, Rantong & Gunawardena (2018) 
showed that transcript levels of AmVPE-1 and -2 are 
significantly upregulated in early developing leaves and 
window leaves (normalized to AmActin). Previous work 
has highlighted the fact that VPE activity is important for 
vacuolar collapse in lace PCD cells. The absence of this 
process from results of our study and that of Rantong & 
Gunawardena (2018) suggests that autoprocessing and 

post-translational modification of the VPE protein might 
explain its functional activity, rather than just higher 
accumulation of mRNA [92].

Conclusions
The cellular dynamics and chronological events of lace 
plant leaf PCD are well documented. Here, we investigate 
the molecular basis of this process by characterizing the 
transcriptomic profiles of different stages of leaf devel-
opment and PCD and NPCD cells isolated from window 
stage leaves. We profiled DEGs to summarize genes con-
trolling the mechanism of developmental PCD and leaf 
remodelling (Fig. 7).

Based on comparative transcriptomics our results 
support the hypothesis that NPCD and PCD cell differ-
entiation is mediated by a differential balance of plant 
hormones and TF activities that both promote and limit 
the PCD pathway. GO enrichment analyses of DEGs sug-
gest that autophagy, cell expansion, protease activity, 
ROS generation, and flavonoid biosynthesis work in con-
cert to ensure promotion of perforation expansion during 
lace plant leaf development. The high level of expres-
sion of genes involved in these diverse biological func-
tions differed significantly between early and late lace 
plant leaf developmental stages, indicating their involve-
ment in regulating perforation initiation, execution, and 
leaf growth. The results of our investigation into the lace 
plant transcriptome and expression patterns reveal a 
variety of candidate genes with possible involvement in 
the initiation and progression of lace plant leaf cell death, 
generating new hypotheses and providing novel insights 
into plant developmental PCD. Future experiments on 
candidate DEGs will be required moving forward to 
characterize and confirm protein functionality in lace 
plant leaf perforation formation.

All things considered, the A. madagascariensis tran-
scriptome data generated and analysed herein exem-
plifies the power of de novo Illumina-based RNA-Seq. 
Our transcriptomes serve as both a high-quality gene 
discovery resource and a framework for the detection 
of physiological changes through gene expression profil-
ing. Combined with additional transcriptome annotation 
tools, experimental observations from model plant spe-
cies will undoubtedly facilitate deeper insights into the 
biology of PCD and remodelling of lace plant leaves in 
the future.

Methods
Plant tissue culturing
Lace plant cultures were propagated aseptically as 
described in Gunawardena et al. (2006) [93]. Lace plant 
corms were cultured in Magenta GA-7 boxes, embed-
ded in 100  mL of solid MS media made of 1.5% plant 
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tissue culture agar (w/v, Phytotechnology Laboratories) 
in liquid MS [3% sucrose (w/v), 0.01% Myo-inositol (w/v), 
0.215% MS basal salts (w/v, Phytotechnology Labora-
tories), 0.0025% thiamine-HCl (v/v), pH 5.7] and then 
submerged under 150  ml of liquid MS. Plant cultures 
were grown at 24  °C and exposed under light levels of 
125 μmol m−2 s−1 on 12 h light/dark cycles with daylight 
deluxe fluorescent light bulbs (Philips). A. madagas-
cariensis (Mirbel) H. Bruggen corms were originally pur-
chased from The PlantGuy (AB, Canada).

Cultures grew for 30 days or until each plant produced 
3 perforated mature leaves. One of each imperforate, 

pre-perforation, window stage leaves, and one of the 
most recently developed mature leaf were separated from 
one whole plant culture and washed thoroughly with dis-
tilled water before leaf tissue was excised from the midrib 
and flash frozen for downstream molecular work. Three 
independent experiments were carried out. For each 
experiment, one of each leaf stage was taken from one 
whole plant culture.

PCD and NPCD cell preparations
A Zeiss PALM Laser Capture Microdissection and 
Imaging System (North York, ON, Canada) was used to 

Fig. 7  Summary of differentially expressed genes involved in lace plant leaf remodelling, based on RNA-Seq data. Summary of transcriptionally 
upregulated genes involved in lace plant leaf remodelling and differentiation of NPCD and PCD cells. GO terms bounded in white shaded boxes are 
most highly expressed GO counts in respective sample cluster (Additional files 3 and 5)
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separate PCD and NPCD cells. The cells were collected 
from the areoles of window stage leaves, where each 
type is visibly distinguishable by colour. Cell type pop-
ulation samples were collected from 4 separate areoles 
(approximately 2000 cells per areole) per window stage 
leaf before being flash-frozen. Three independent exper-
iments per cell type were carried out. For each experi-
ment, one window stage leaf was taken from one whole 
plant culture. A sample diagram of the laser capture and 
catapult process of the leaf tissue sample is provided in 
Additional file 2.

RNA extraction and quality control
RNA was extracted from leaves of four developmen-
tal stages, and from the two different cell types (NPCD 
and PCD cells). RNA was extracted from 40  mg of 
flash-frozen, midrib free leaf lamina tissue from one of 
each imperforate, pre-perforation, window or mature 
stage leaves from 3 different whole-plant cultures as per 
instructions for the ReliaPrep RNA Kit (Promega). RNA 
samples were treated with DNAse I (Thermo Fisher). 
Eluted RNA quantity was estimated using a Nanodrop 
spectrophotometer (Thermo Fischer) and a RNA integ-
rity number (RIN) was determined using a Bioanalyzer 
(Agilent Technologies Inc., Santa Clara, CA, USA). Only 
RNA samples with a RIN ≥ 6.5 were approved for cDNA 
conversion.

cDNA library preparation and Illumina sequencing
cDNA library preparation and sequencing were per-
formed by Génome Québec (Montréal, QC, Canada). 
Eighteen paired-end RNA-Seq libraries of length 100 bp 
were generated on an Illumina NovaSeq6000 (CA, USA) 
using strand-specific Trueseq protocols. The raw read 
data obtained were deposited to NCBI and are accessi-
ble under the SRA. SRA accession IDs: SRR10524134-
SR10524151 and BIOPROJECTID: PRJNA591467. Data 
were first inspected for quality by analysing FastQ files 
with FastQC [94]. Reads of low quality and contain-
ing adapter contaminations were trimmed with Trim-
momatic v.0.35 [95] with a k-mer size of 25 and with 
parameters: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 
SLIDINGWINDOW:5:0 MINLEN:50. The quality of 
trimmed reads was assessed using FastQC v0.11.2 
(http://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​
fastqc/).

Transcriptome de novo assembly
High-quality adapter free reads were used to construct 
a de novo assembly with Trinity v2.3.1 [96] with default 
settings. Quality evaluation of assemblies was considered 

with major bioinformatics indicators such as transcript 
mean length, GC%, and an N50 value (Table 1). The Trin-
ity pipeline clusters de novo assembled transcripts into 
genes and isoforms, and we worked only with ‘genes’ 
datasets, with the highest expressed isoform chosen as 
the representative for each gene. This Transcriptome 
Shotgun Assembly project has been deposited at DDBJ/
ENA/GenBank under the accession NO. GJFM00000000. 
The version described in this paper is the first version, 
GJFM01000000.

Transcript quantification and identification of differentially 
expressed genes
The abundance of each gene was calculated by aligning 
reads from each sample to our de novo transcriptome 
with RNA-Seq by Expectation–Maximization (RSEM) 
[97] for each library. The trimmed mean of M-values 
(TMM) method [98] was used to calculate the normaliza-
tion factors (one calculation for NPCD vs PCD cells and 
one calculation for comparisons among the leaf stages). 
Using Trinity [99], expression normalization was per-
formed using TMM, following fragments per kilobase 
of exon model per million reads (FPKM) calculations. 
DEGs among the leaf stage and between the cell type 
libraries were identified using the Empirical Analysis of 
Digital Gene Expression (edgeR) statistical package [100] 
(http://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
edgeR.​html) performed with R (v3.3.2; R Core Team 
2015). Genes that were more than twofold differentially 
expressed with an FDR of 1% were defined as differen-
tially expressed [101].

Cluster analysis
Expression patterns of genes among leaf stage samples 
and between NPCD and PCD cells were separated using 
cluster analysis of DEGs. Hierarchical clustering of nor-
malized gene expression was achieved using centralized 
and log2(FPKM + 1) transformation [99] and tree cutting 
at a depth of 40%, with heatmap visualization performed 
using R and the package Superheat [102].

Annotation and GO enrichment analysis
To identify the genes and functions associated with each 
transcript, assembled transcripts were annotated using 
Trinotate [103] and public genome and functional reposi-
tories. We annotated transcripts based on top match-
ing sequence similarity to orthologs in public databases, 
including GO, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), the euKaryotic Ortholog Groups 
database (KOG), the Swiss Protein Resource (Swiss-Prot), 
and the Panther Database, using the BLASTX method 
with a cut-off E-value of 10−5 [104–106]. To eliminate 
transcripts derived from foreign organisms and lab 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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contaminants, genes of non-plant origin were removed. 
Selected annotation data was included with Additional 
file 3 and 5.

GO-enrichment analysis was carried out using the 
Plant Transcription Factor Database v5.0 [107] program 
based on Fisher’s Exact Test with multiple testing correc-
tion of FDR = 1%. GO analysis was performed by com-
paring the GO terms in the test sample to the GO terms 
in the background reference of the entire lace plant de 
novo transcriptome generated from all samples.

Validation with qRT‑PCR
Five selected DEGs (Bag5, expansin A-29, aquaporin 
4–4, anthocyanin regulatory protein C1, nuclear tran-
scription factor YC-1, and α-tubulin) were used to 
verify the expression results of RNA-Seq by using 
the ΔΔCT method. RNA from lace plant leaf stages 
and isolated cell types were collected and extracted 
as described above. Single-strand cDNA was syn-
thesized using SuperScript®III First-Strand Synthe-
sis System for qRT-PCR (Invitrogen, Burlington, ON, 
Canada) and oligo dT20 following the manufacturer’s 
instructions. qRT-PCR was conducted on a Rotor-
Gene RG-3000 system (Corbett Research, Sydney, 
NSW, Australia) using 0.5 μl cDNA as a template and 
0.4 mmol l−1 primers for all selected genes (Additional 
file 6) under the following conditions: 5 min at 94  °C, 
35 cycles of 30 s at 94  °C, 30 s at 54  °C for all chosen 
genes and 1 min at 72 °C, followed by 72 °C. qPCR was 
conducted using a QuantiFast® SYBER® Green PCR 
Kit (Qiagen, Mississauga, ON, Canada). Melt curve 
analysis was conducted by Rotor-Gene 6 Software and 
experiments with at least 90% efficiency were used for 
analysis (Corbett Research). The experiment was per-
formed in triplicate using three biological replicates 
of imperforate, pre-perforation, window, and mature 
stage leaves as well as NPCD cells and PCD cells. 
cDNA copy numbers for five chosen genes (Additional 
file  4) were determined from a standard curve of Ct 
values (R2 > 0.99) and normalized against the α-tubulin 
isoform [37].

Image analysis and processing
Images of leaf layouts were obtained using a Nikon L110 
digital camera. Photoshop and Illustrator (Adobe Crea-
tive Cloud; Adobe Systems Inc.) were used to prepare 
images and remove backgrounds of detached leaves 
for publication. A Nikon AZ100 microscope acquired 
micrographs of leaf stages. Image adjustments were 
made evenly within and consistently across figures 
and included background removal, as well as fine tun-
ing of brightness, contrast and colour balance using 
Photoshop.

Statistical analysis and data representation
One-way ANOVA followed by a Tukey test was used 
to identify significant differences among leaf stage 
means for qRT-PCR validation experiments, and a Stu-
dent’s t-test was used to identify significant differences 
between means of cell types (Additional file 4). All data 
are illustrated as the mean ± standard error. Analy-
ses were conducted using GraphPad Prism 5 software 
(GraphPad Software Inc.).
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