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Abstract

Background: Surveillance of potential pathogens is a key feature of plant innate immunity. For non-self-recognition
plants rely on the perception of pathogen-derived molecules. Early post-perception events activate signaling
cascades, leading to the synthesis of defense-related proteins and specialized metabolites, thereby providing a
broad-spectrum antimicrobial coverage. This study was concerned with tracking changes in the tomato plant
metabolome following perception of the flagellum-derived elicitors (Flg22 and FlgII-28).

Results: Following an untargeted metabolomics workflow, the metabolic profiles of a Solanum lycopersicum cultivar
were monitored over a time range of 16–32 h post-treatment. Liquid chromatography was used to resolve the
complex mixture of metabolites and mass spectrometry for the detection of differences associated with the elicitor
treatments. Stringent data processing and multivariate statistical tools were applied to the complex dataset to
extract relevant metabolite features associated with the elicitor treatments. Following perception of Flg22 and FlgII-
28, both elicitors triggered an oxidative burst, albeit with different kinetic responses. Signatory biomarkers were
annotated from diverse metabolite classes which included amino acid derivatives, lipid species, steroidal
glycoalkaloids, hydroxybenzoic acids, hydroxycinnamic acids and derivatives, as well as flavonoids.

Conclusions: An untargeted metabolomics approach adequately captured the subtle and nuanced perturbations
associated with elicitor-linked plant defense responses. The shared and unique features characterizing the
metabolite profiles suggest a divergence of signal transduction events following perception of Flg22 vs. FlgII-28,
leading to a differential reorganization of downstream metabolic pathways.
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Background
In general, plants are resistant to most pathogens, being
protected by the innate immune system comprising of
several defensive layers. However, most phytopathogens
have developed specialized mechanisms of compromis-
ing the immune system, leading to infection and host
death. The first layer consists of pre-formed barriers
such as the cuticle, cell wall and constitutively produced
antimicrobial compounds that function to maintain cel-
lular integrity, provide structural support and prevent
pathogen entry [1]. Pathogens that surpass the physical
barriers contend with the second layer i.e., host recogni-
tion system. This sophisticated surveillance system is
used to distinguish ‘self’ from ‘non-self’ interactions and
detect opportunistic phytopathogens within the sur-
rounding environment [2, 3]. This molecular crosstalk
between the host plant and the pathogen determines the
eventual outcome of the plant-pathogen interaction.
The recognition of M/PAMPs (microbe- or pathogen-

associated molecular patterns) is a key event during
plant-pathogen interactions that is required for the in-
duction of the plant defense response through pattern-
recognition receptors (PRRs) [4, 5]. The first plant
MAMP-receptor pair, namely the FLAGELLIN-
SENSING 2 (FLS2) receptor-like kinase (RLK) along
with its ligand, the 22-amino acid flagellin epitope,
Flg22, has become the best-described example of
pathogen-triggered immunity (PTI) in plants [5, 6].
Perception and direct binding of the Flg22 epitope initi-
ates a cascade of signaling events, i.e., the interaction of
FLS2 with the co-receptor protein BAK1 (brassinoster-
oid insensitive 1-associated receptor kinase 1, the Arabi-
dopsis orthologue of SERK3A/3B, Solanum lycopersicum
somatic embryogenesis receptor kinase 3 A/ 3B). These
interactions result in the rapid influx of calcium ions,
the synthesis of ROS and the activation of mitogen-
activated protein kinase (MAPK) cascades [4, 7]. This
triggers a complex defense response which includes
FLS2-directed stomatal closure that interrupts pathogen
progression, plant cell wall reinforcement and the ex-
pression of pathogenesis-related (PR) defense genes that
culminate to restrict pathogen growth [8]. Evolutionary
divergence has resulted in various plant species recog-
nizing different peptide sequences present in bacterial
flagellin [8].
Most land-based plants can perceive the epitope of

Flg22, however, recent advances have demonstrated that
plants from a subset of the Solanaceae family, e.g. to-
mato, potato and pepper can recognize an additional
epitope of flagellin, termed FlgII-28, and that this per-
ception occurs independently of FLS2 [4, 5]. FlgII-28
recognition is attributed to a newly described receptor
called FLAGELLIN-SENSING 3 (FLS3) that mediates
plant immunity, thereby enhancing resistance to the

bacterial pathogen [5]. The FLS3 receptor represents an
alternative mechanism of flagellin perception and, there-
fore, the expression of this solanaceous-specific PRR in
crop plants normally unable to detect FlgII-28 could be
utilized to confer resistance to pathogens that have
evolved methods of evading Flg22 detection [5]. The de-
gree to which the ligand – receptors interactions pro-
mote immune responses, as well as the similarity in
molecular mechanisms involved, remains largely
unknown.
During the initial stages of interaction, the M/PAMP

molecules are perceived by the host’s specialized mem-
brane bound immune receptors resulting in the activa-
tion of several intracellular signaling cascades as well as
downstream defense strategies capable of subverting
pathogen invasion [2, 9, 10]. The activation of these sig-
naling cascades (Fig. S1) results in physiological modifi-
cations to the host, which may define a resistant,
tolerant, or susceptible phenotype. Metabolic processes,
as final recipients of biological information flows and
thus indicators of the biological phenotype, are integral
components of the induced plant defense response and
function in both physiological and biochemical disease
resistance. Untargeted profiling provides an opportunity
to evaluate the applications of metabolomics in studying
elicitor-mediated metabolic fluctuations that occur in S.
lycopersicum. Similarly, it allows a method of character-
izing the magnitude of metabolic reprogramming that
occurs after perception and early signaling events and,
subsequently, whether the signals from different elicitor
treatments produce convergent or divergent downstream
effects [11]. Research conducted on plant diseases and
conserved molecular patterns assists in elucidating the
fundamental aspects of microbial pathogenesis and the
extent to which plants respond to the threat [12]. Conse-
quently, such research has significance and allows the
downstream development of effective and sustainable
methods of disease control.

Results
During the experimental procedures, the tomato cultivar
‘Star 9001’ was treated with the Flg22 and FlgII-28 pep-
tides – MAMP components of the flagella, also regarded
as pathogen-derived elicitors. This cultivar was chosen
due its apparent disease resistance towards a number of
pathogens [13] as well as minimal venation patterns
present on the abaxial side of the leaves, which eased the
process of pressure infiltration. Consequently, the study
was performed to determine: whether an untargeted
metabolomics platform can distinguish between Flg22-
vs. FlgII-28-induced perturbations to the metabolome;
and which metabolite classes and metabolic pathways
function in defense signaling and induced responses fol-
lowing elicitor perception.
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Reactive oxygen species production and oxidative burst
During the DAB staining protocol, the left abaxial side
of the leaves was treated with each respective elicitor,
while the right abaxial half was supplied with the water
control. The brown color product (Fig. 1A, B) reveals
the presence of H2O2 and associated reactive oxygen
species (ROS), signatory of initial plant immune re-
sponses. The time-dependent production of ROS in re-
sponse to Flg22 and FlgII-28 elicitation is corroborated
by the luminescence assay curves (Fig. 1C, D), indicating
differences in the timing and extent of the ROS gener-
ation by the two elicitors. The luminescence data con-
firms that of the DAB staining, highlighting the ability of
the Star 9001 cultivar to perceive the flagellin-derived
elicitors.

Chromatographic and mass spectrometric analyses of
tomato leaf extracts
The analyses of the Flg22 / FlgII-28 elicitor-treated
tomato leaves were conducted as an untargeted meta-
bolomics study to obtain all the statistically significant
biomarkers that contribute to the changes in the me-
tabolome throughout the period of the study. The
UHPLC-MS base peak intensity (BPI) chromatograms
of data generated in negative ESI mode of the leaf

extracts are presented as Figs. S2 and S3. Shown are
the representative MS chromatograms obtained from
extracts prepared after 16 h, 24 and 32 h following
infiltration. The chromatograms highlight metabolic
variations as a result of time-dependent elicitor treat-
ment over a retention time (Rt) window of 25 min.
Qualitative differences are reflected by the peak inten-
sities where the y-axis represents the relative peak in-
tensity of the x-axis metabolites at their respective
Rts (min). Variation in peak intensities and presence
or absence of peaks reflect differential changes to the
metabolomes.

Data analysis and statistical modeling
Multivariate data analysis (MDVA) was performed to
sort through the data matrices and reveal trends in
the metabolome over the time intervals, as well as to
detect similarities/ differences in the metabolite pro-
files of the plants in response to the flagellin peptide
treatments. From a complex dataset, PCA (a descrip-
tive method that provides a global and qualitative vis-
ual representation of similarity or dissimilarity
between and within samples) was used to explore the
data and discover possible group clusters, trends, or
sample outliers. As an unsupervised projection-based
statistical tool, PCA allows for an exploratory analysis

Fig. 1 Induced oxidative burst in tomato leaves after treatment with the Flg22 (purple) and FlgII-28 (blue) peptide elicitors. Top The elicitor
responses visualized using the histochemical stain, 3,3-diaminobenzidine. The left side of the leaves were treated with (A) Flg22 or (B) FlgII-28
while the right side served as a water control. Bottom The elicitor responses visualized using the luminescence assay. C The kinetics of reactive
oxygen species (ROS) production over 60 min, described as ∑ relative luminescence units (RLU). D The total ROS production over 60 min shown
as the integrated area under the curve. A pairwise Student’s t-test was performed to compare the elicitor treatments with the control where the
asterisks indicate levels of statistical significance (**** = P≤ 0.0001)
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by projecting the original multidimensional data
matrix in a lower-dimensional space (Fig. 2A, C), thus
permitting the extraction and summarization of
underlying group trends in a visual manner, finally
displaying the systematic variation present in the data
[14–18]. PCA trends were further examined by hier-
archical cluster analysis (HiCA), a complementary
method of data exploration, as it can reveal trends
within the data that may be hidden within the princi-
pal components of PCA. HiCA is based on Ward’s
linkage method, considering distance clusters be-
tween- and within-samples [14]. The computed HiCA
models (Fig. 2B, D) served to evaluate subgroupings
present within the data set and depicted major dis-
tinct groupings corresponding to various time points.
As such, both PCA and HiCA assisted in evaluating
the overall structure of the data sets, revealing under-
lying patterns, trends and subgrouping (time- and

treatment-dependent groupings). These observations
highlight aspects of the biochemical phenomena
(altered metabolomic states) attributed to tomato re-
sponses to the two flagellin elicitors.
In addition, the data matrices were subjected to super-

vised statistical modeling, i.e. OPLS-DA, as a (multivari-
ate) binary classification and for variable selection
method (as described in the Methods section). OPLS-
DA is an extension of PLS-DA, a regression method, fea-
turing an integrated orthogonal signal correction (OSC)-
filtering method; where the variance of interest (e.g. the
flagellin-treatments) is separated from the variance that
is not related (orthogonal) to the defined Y-block vari-
ables (i.e. treated vs. control / hypothesis). This provides
interpretational and discriminatory benefits, as the vari-
ance important for the defined group classification is fo-
cused into a single predictive component, and variance
that is not related to the tested hypothesis is computed

Fig. 2 Principal component analysis (PCA) and hierarchical cluster analysis (HiCA) models of UHPLC-MS ESI(–) data of extracts from tomato leaves.
The PCA score plots illustrate the group clustering after treatment with (A) Flg22 peptide and (C) the FlgII-28 peptide, and incubated for 16 h
(blue), 24 h (purple) and 32 h (yellow) respectively. A MgSO4 control (grey) was included in each elicitor treatment. The hierarchical cluster
dendrograms are derived from the PCA model data and outline the overall hierarchical structure of (B) Flg22 and (D) FlgII-28 treatment over the
above-mentioned incubation times
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into orthogonal components. This makes it easier to link
the information of interest (i.e. that which focused into a
single component) to the experimental variables (e.g.
metabolite features), as well as assessing the predictive
power of a sub-set of discriminatory makers [15, 16, 18].

OPLS-DA models were constructed to inform on class
separation, and subsequently, to select discriminant ions
(variables) positively correlated to each of the elicitor
treatments at the selected time intervals. A set of repre-
sentative figures summarizing the OPLS-DA model, re-
ceiver operating characteristic (ROC) curve and
permutation plot corresponding to the data sets of the
FlgII-28 elicitor treatment at 24 h post-elicitation and
corresponding MgSO4 control, is presented in Fig. 3A-
D. A seven-fold cross-validation (CV) method was

applied as a tuning procedure in computing the chemo-
metric models. The parameters and metrics necessary
for evaluating model quality, such as R2X(cum), R2Y,
Q2(cum) and CV-ANOVA calculated p-values, were re-
corded for each of the computed supervised models and
are presented in Table S1.
The OPLS-DA score plot (Fig. 3A) showed class separ-

ation with distinct sample clustering between the
MgSO4 control and FlgII-28 experimental condition.
The corresponding OPLS-DA loadings S-plot (Fig. 3B)
selected discriminating features deemed statistically sig-
nificant with positive correlations towards the elicitor
treatment at the defined time interval. The S-plot per-
mits a visual interpretation of the OPLS-DA model by
revealing metabolite features (m/z ions) that contribute
to the class separation in Fig. 3A. Discriminant features

Fig. 3 An orthogonal projection to latent structures discriminant analysis (OPLS-DA) model for data processing of leaf extracts of the MgSO4

control vs. FlgII-28 treatment at the 24 h incubation. A Scores plot showing group separation of control vs. treated (FlgII− 24 - purple vs. MgSO4 −

24 - blue). The calculated model yielded R2X (cum) = 54.5 %, R2Y (cum) = 99.2 % and Q2 (cum) = 96.7 %. The goodness-of-fit parameters for the
OPLS model, R2X and R2Y, represent the fraction of the variance of the x and y variable explained by the model, while Q2Y suggests the
predictive performance of the model. Model validation by 7-fold cross-validated analysis of variance (CV-ANOVA, [19]) was statistically significant
with p-value = 1.636 × 10− 9. B The corresponding OPLS-DA loadings S-plot. Variables at the extremes of the loadings S-plot (|p(corr)| of ≥ 0.5;
|(p1)| ≥ 0.05) represent possible discriminating variables. C A receiver operating characteristic (ROC) curve summarizing the selective ability of the
binary classifier (S-plot), with a classifier having a perfect discrimination (top left corner) to indicate 100 % sensitivity and specificity. D The
response permutation test plot (n = 100) for the OPLS-DA model
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with a |p(corr)| of ≥ 0.5 and a co-variance value of |(p1)|
≥ 0.05 were selected for further analysis using MS
spectral-based metabolite identification. The significance
for the observed group separation was measured by cal-
culating the CV-ANOVA p-values, applying p < 0.05 as a
cut-off [19]. The p-values of each computed supervised
model are tabulated for both Flg peptides (Table S1). A
ROC curve (Fig. 3C) assessed the performance of the
OPLS-DA model in terms of selectivity, showing that
the computed model, as a binary classifier, had perfect
discrimination with regards to sensitivity and specificity
[20]. The predictive capabilities of the OPLS-DA model
were validated with the use of a response permutation
test (with n = 100), shown in Fig. 3D [20, 21]. The per-
mutation test showed that the models have higher calcu-
lated R2 and Q2 values in comparison to the 100 model
permutations, concluding that the obtained OPLS-DA
model was statistically superior to the generated permu-
tated models. The R2 and Q2 values from all the permu-
tated models for all conditions were tabulated for
comparative purposes (Table S1). The equivalent set of
figures for Flg22 is presented as Fig. S4.

Metabolite profiling and relative quantification of
annotated metabolites
From the OPLS-DA S-plot, individual metabolite fea-
tures, within the selection parameters described in
the experimental procedure, were subjected to de-
scriptive statistics, i.e., the calculation of control and
treatment averaged peak intensities, the standard de-
viation, p-values, and coefficient of variation. An ag-
gregate of 34 metabolites were putatively identified
from the tomato leaf tissue (Table 1 and Table S2).
Many of the metabolites described in Table 1 have
been previously reported either within the tomato
plant itself or in related species within the Solana-
ceae family [13, 17, 22–25]. The annotated metabo-
lites are listed according to Rts with corresponding
m/z values. From the analyzed data matrices, nine
metabolite classes were identified which included:
amino acid derivatives, lipid species, steroidal gly-
coalkaloids, hydroxybenzoic acids, hydroxycinnamic
acid (HCA) derivatives, flavonoids and hydroxycin-
namic acid amides (HCAAs).
Venn diagrams were constructed, based on the dis-

criminant ions listed in Table 1, to compare the pres-
ence/ absence of metabolites at time intervals of 16,
24 and 32 h post-elicitation (Fig. 4). These highlight
the overlapping patterns of features unique as well as
shared between the two elicitor treatments over the
time intervals. The Flg22 and FlgII-28 treatments dis-
play a high level of overlapping similarity in the me-
tabolite content positively correlated to the treatments
at the specified time intervals. The generated data

from Table 1; Fig. 4 revealed an average of six metab-
olites positively correlated to both elicitor treatments
which would suggest that similar metabolic pathways
were activated and utilized following perception of
the two peptides. The general trend observed from
the Venn diagrams would suggest that the end-result
of Flg22 vs. FlgII-28 elicitation differs with regards to
the timing of the responses which may be related to
the differences in the respective profiles of the initial
oxidative bursts.

The relative peak intensities of metabolite signatures
overlapping in both elicitor treatments (Fig. 5, at 16, 24
and 32 h) were further analyzed. Several compounds
from the hydroxycinnamic acid amide (HCAA) class
were found to overlap in the elicitor treatments. The
cellular levels of coumaroyl tyramine were found to in-
crease over the time trial intervals in the FlgII-28
elicitor treatment (Fig. 5A). A delayed response for the
afore-mentioned metabolite was observed in the Flg22
treatment. Regarding the FlgII-28 treatment, levels of
feruloyl tyramine were found to increase during the
16 h interval followed by a cellular decrease to homeo-
stasis at the 24 and 32 h intervals (Fig. 5B). Conversely,
the levels of feruloyl tyramine only started to increase
at the 24 h interval increasing to the 32 h interval, dur-
ing the Flg22 treatment (Fig. 5B). The cellular levels of
coumaroyl dopamine increased at the 16 h interval and
remained elevated through the latter intervals for both
elicitor treatments (Fig. 5C). Similarly, levels of feruloyl
dopamine were elevated during the 16 and 32 h time
intervals for both treatments (Fig. 5D). At the 24 h
stage, the cellular levels of feruloyl dopamine decreased
in response to Flg22 treatment while also revealing a
cellular increase in the FlgII-28 treatment. The relative
levels of both feruloyl noradrenaline (Fig. 5E) and ben-
zoyl oxindole acetic acid (Fig. 5F) increased throughout
the time intervals in response to the elicitor treatments.

A novel metabolite conjugate of S. lycopersicum, glu-
tathionyl-S-caffeoylquinic acid, was detected as a feature
positively correlated to both the peptide treatments. The
mass spectral analysis of glutathionyl-S-caffeoylquinic
acid is provided in both ionization modes to illustrate
how the MassFragment plugin of the MassLynx software
facilitated the annotation of the fragment ions and veri-
fied the overall mass fingerprint (Fig. 6; Table 2). The
elemental composition of each fragment was calculated
as a secondary method of validating compound struc-
tural identity. In both Flg22 and FlgII-28 treatments the
glutathione conjugate revealed a cellular increase at the
16 and 24 h time intervals (Fig. 7A). At the 32 h interval
the cellular levels of the conjugate decreased, returning
to a new homeostatic level.
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Table 1 Annotation of discriminatory metabolites from tomato leaf tissue displaying a positive correlation towards the flagellin-
derived elicitor treatments (Flg22 and FlgII-28) after 16 h, 24 and 32 h time intervals. Differential accumulation of metabolites are
shown in Table S2

# Rt (min) m/z Putative identification Chemical formula Error (ppm)

1 1.42 371.059 Caffeoyl glucaric acid C15H15O11 -8.0

2 3.22 285.058 Genistate xylopyranoside C12H13O8 -12.5

3 3.45 397.167 Benzoyl ornithine glycoside C18H25N2O8 13.5

4 4.13 658.154 Glutathionyl-caffeoyl quinic acid C26H32N3O15S -1.7

5 4.70 431.153 Benzyl alcohol dihexoside C19H27O11 -6.6

6 4.95 353.085 Caffeoyl quinic acid C16H17O9 -7.9

7 5.30 353.084 Caffeoyl quinic acid C16H17O9 -10.7

8 5.51 367.158 Dihydroxy dimethoxy prenylchalcone C22H24O5 7.9

9 6.40 401.140 Benzoyl alcohol pentose glycoside C18H25O10 -13.2

10 6.79 385.110 Sinapoyl glycoside C17H21O10 -10.4

11 7.52 387.163 Hydroxyjasmonic acid glycoside C18H28O9 -7.8

12 8.38 476.155 Unknown C26H24N2O7 -8.1

13 8.63 367.100 Feruloyl quinic acid C17H20O9 -9.3

14 9.37 296.061 Benzoyl oxindole acetic acid C17H14NO4 -10.9

15 9.86 245.090 Acetyl tryptophan C13H13N2O3 -12.9

16 10.35 344.112 Feruloyl noradrenaline C18H18NO6 -5.6

17 10.74 298.107 Coumaroyl dopamine C17H17NO4 -4.9

18 10.99 444.165 Coumaroyl tyramine glycoside C17H17NO3 20.6

19 11.20 460.160 Unknown C23H26NO9 -2.8

20 11.21 609.145 Rutin C27H30O16 -1.8

21 11.75 490.170 Feruloyl dopamine glycoside C20H29NO13 27.3

22 12.97 328.117 Feruloyl dopamine C15H20NO8 1.9

23 13.00 349.183 Acetyl feruloyl agmatine C17H25N4O4 -14.6

24 13.73 282.112 Coumaroyl tyramine C17H16NO3 -5.5

25/6 13.81 677.282 Unknown C27H49O19 -7.8

27 14.20 312.121 Feruloyl tyramine C18H18NO4 -10.0

28 14.40 453.231 Phosphatidyl glycerol (14:1(9Z)/0:0) C20H38O9P 11.2

29 14.59 1076.520 Dehydrotomatine + FA* C51H82NO23 -7.7

30 14.83 1078.560 α-Tomatine + FA* C51H83NO23 14.8

31 15.02 423.184 Phosphatidic acid (8:0/8:0) C19H37O8P 15.7

32 15.20 447.220 Unknown C21H35O10 -7.9

33 15.25 423.221 Phosphatidic acid (8:0/8:0) C19H37O8P 13.4

34 15.32 495.255 Palmitoyl-glycero-phosphatidyl serine C22H43NO9P -14.3

35 16.25 495.257 Palmitoyl-glycero-phosphatidyl serine C22H43NO9P -16.6

36 16.30 581.281 Phosphatidyl inositol (17:2(9Z.12Z)/0:0) C26H46O12P 13.3

37 16.72 327.214 Trihydroxyoctadecadienoic acid C18H31O5 -11.2

38 16.82 333.188 Hydroxydecanoic acid rhamnoside C16H29O7 -11.6

39 17.41 329.231 Trihydroxyoctadecenoic acid C18H33O5 -7.1

Metabolites were annotated in ESI(–) mode using UHPLC–MS. The metabolite features were annotated according to level 2 of the Metabolomics Standards
Initiative (MSI)
*Abbreviations: FA = formic acid adduct
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Discussion
Plant immune receptors recognizing pathogen-derived
molecules are part of an intricate sensing and multi-
layered signaling network. Experimental treatments with
live bacterial pathogens would expose the plant to sev-
eral different MAMPs, each with a unique PRR and as-
sociated perception events able to trigger downstream
signal transduction [13]. Previous studies of plant meta-
bolomes have shown that treatment with single elicitors
result in subtle metabolic perturbations, in comparison
to the cocktail of MAMPs associated with live pathogen
treatment. Tomato has become a favored species for
metabolomics research, filling a niche not occupied by
Arabidopsis [27]. Tomato varieties exhibit a natural vari-
ation in their responsiveness to Flg22 and FlgII-28 [28].
Flg22 is recognized by FLS2 and FlgII-28 by FLS3, with
the latter representing a possible orthogonal means for
flagellin perception in the Solanaceae [5]. Where ROS
are generated upon PAMP perception, changes occur in
the redox balance within cells, leading to oxidative stress
and signal transduction events. Variation in signal trans-
duction networks determines perceived inputs and con-
sequent defense outputs and may thus potentially result
in an altered response at the metabolome level. To in-
vestigate differential responses to Flg22 and FlgII-28 to-
mato leaves (Star 9001 cultivar) was treated with the
flagellum-derived peptides and responses tracked over a
time interval ranging from 16 to 32 h post-elicitation.

Flagellin-induced oxidative burst, production of reactive
oxygen species
Plants from the Solanaceae have evolved more special-
ized and sensitive mechanisms of perceiving a second
epitope in bacterial flagellin [8, 28]. The semi-
quantitation of ROS indicated that the FlgII-28 elicitor
triggered a more intense and sustained response in the
tomato leaf disks compared to that of Flg22. This obser-
vation broadly corresponds with that reported for S.
pimpinellifolium [5] and S. lycopersicum, cv. Rio Grande
[29]. It appears that the FlgII-28 extended ROS response
is conserved in all solanaceous species that respond to
FlgII-28 [29].
Elicitor perception induces ROS production by NADP

H oxidases belonging to the respiratory burst oxidase
homolog (RBOH) family [30]. The outcome is dependent
on the concentrations of ROS generated and the extent
of the immune response. At high concentrations ROS
may function as triggers of programmed cell suicide or
have direct anti-microbial activity, while at moderate
concentrations may serve as signaling molecules to acti-
vate downstream immune outputs in signaling loops
[31]. The tight regulation of ROS is essential to main-
taining the redox balance within the system. Several
antioxidant mechanisms are activated to return cellular
redox levels to homeostasis to avoid detrimental effects
on host cells. Accordingly, the timing, the extent and the
location of ROS production is important for its role in

Fig. 4 Venn diagrams displaying the partial overlap of m/z ion features present in tomato leaves, deemed statistically significant and positively
correlated to the flagellin-derived elicitor treatments. The features were selected from the OPLS-DA models generated from the 16 h (blue), 24 h
(purple) and 32 h (orange) individual datasets comparing the Flg22 (Flg) and FlgII-28 (FlgII) treatments with the MgSO4 control. The numerical
values depict the metabolite features (listed in Table 1) that are unique to the Flg22 vs. FlgII-28 treatments over the time intervals, and
conversely, that overlap in the treatments
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stress signaling and plant redox-dependent immune
responses.
Following elicitor perception, signal transduction

events generated from the dynamic interactions be-
tween the FLS2 and FLS3 receptors and their respective
ligands may converge or diverge, potentially creating a
different functional outcome at the metabolome level.
Previous studies of the components involved in FLS2
and FLS3 signaling in tomato have reported some par-
allels with regards to mitogen-activated protein kinase
(MAPK) activation and gene expression as immunity
outputs [5, 32]. Relatedly, a more comprehensive report
that included ROS production and whole-plant re-
sponses to infection by Pseudomonas syringae pv. to-
mato concluded that there may be some differences in
the molecular signaling between these two flagellin-
sensing receptors in tomato [29].
To gain deeper insights into the metabolic footprint

of upstream recognition events of Flg22 and FlgII-28,
an untargeted metabolomics approach was followed

for the generation of biochemical data correlated to
the tomato plant defense responses against the two
bacteria-derived MAMPs. A combined total of 34 me-
tabolites positively correlated to the elicitor treat-
ments were annotated. Here it was observed that the
flagellin-derived elicitors lead to the production of
similar secondary metabolites that, in turn, perform
similar metabolic roles. However, Venn diagrams indi-
cated a differential response with regards to shared
and unique secondary metabolites as identified from
OPLS discriminant analyses. Table 1 lists nine metab-
olite classes that include: amino acids, lipid species,
steroidal glycoalkaloids, hydroxybenzoic acids, flavo-
noids, HCA derivatives and HCA amide conjugates.
While correlation does not imply causality [33], an
overview of the functional roles that these metabolites
might play in the altered metabolomic state was pre-
viously presented [13]. A secondary metabolite class
that was a prominent feature of the altered metabo-
lomes resulting from the flagellin elicitor treatments

Fig. 5 Fluctuating cellular levels of phenolic amide metabolites involved in metabolome changes in tomato leaves elicited by Flg22 vs. FlgII-28.
The figures show (A) coumaroyl tyramine, (B) feruloyl tyramine, (C) coumaroyl dopamine, (D) feruloyl dopamine, (E) feruloyl noradrenaline and
(F) benzoyl oxindole acetic acid in response to Flg22 (Flg) and FlgII-28 (FlgII) elicitor treatments at the 16 h (blue), 24 h (purple) and 32 h
(orange) time intervals. A MgSO4 control (MgSO - grey) was included for each time point. Each data bar is presented as a mean value (�x of n =
3 × 3 = 9 samples) with the error bars indicating the calculated standard deviation (σ). A two-condition paired Student’s t-test was performed to
compare the treatments with the MgSO4 control where the asterisks indicate levels of statistical significance (* = P ≤ 0.01, ** = P ≤ 0.001, ***
= P≤ 0.0001)
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were the HCAAs, and these are discussed below.
Additionally, a novel elicitor-induced glutathionyl
conjugate of caffeoylquinic acid (a chlorogenic acid)
was detected in S. lycopersicum, suggesting a link be-
tween redox signaling events and accumulation of
phenolic antioxidants.

Signatory metabolites – the hydroxycinnamic acid amides
The flagellin elicitor treatments resulted in the produc-
tion of several tyrosine-derived compounds, with the
most notable being tyramine, dopamine, and noradren-
aline (Table 1; Fig. 8). These molecules have similar
chemical structures and are sequential within a catalytic
pathway [34]. The decarboxylation of tyrosine leads to
the production of tyramine which, in turn, is hydroxyl-
ated to form dopamine (3,4-dihydroxyphenylalanine) –
that can further be hydroxylated leading to the forma-
tion of noradrenaline (Fig. 8). Dopamine itself has dem-
onstrated strong antioxidant properties with reducing

activity comparable to that of glutathione, ascorbic acid,
quercetin and luteolin [35]. The increased production of
the nitrogen-containing molecules during the flagellin
peptide treatments could suggest a method of quenching
the defense-induced ROS observed during the percep-
tion assays (Fig. 1). It should be noted that many of the
above-mentioned metabolites were discovered as conju-
gates of HCAs (e.g. coumaric- and ferulic acid) (Table 1),
that alter the physicochemical properties of the mole-
cules and bestow additional cellular roles. These tyrosine
derivatives fall into the aromatic amine (AA) compound
class and do form associations with other metabolites –
leading to the bioconversion in a conjugated state.
The HCAAs are the combination of the AAs conju-

gated to various HCAs, and have been previously re-
ported in tomato and other plant species from the
Solanaceae family [35, 38, 39]. HCAAs are also produced
as phytoalexins of Oryza sativa during pathogen infec-
tion and are responsive to hormones associated with

(A)
ESI(+)

(B)
ESI(-)

Fig. 6 The mass spectral fragmentation pattern of glutathionyl-S-caffeoylquinic acid in (A) positive and (B) negative ionization modes. The
MassFragment™ software facilitated structural elucidation and compound identification, using the spectral patterns in both ionization modes. In
ESI(–), the precursor ion is 658.15 [M-H]−, while the main fragment ions are 515.10 [M-H-C5H10N2O3]

−, 385.05 [M-H-C10H16N3O6]
− and 191.02 [M-H-

C19H22N3O9S]
−. In ESI(+) mode, the precursor ion is 660.17 [M + H]+, while the main fragment ions are 468.13 [M + H-quinic acid+] and 307.17

[M + H-C16H17O9]
+. These fragments correspond to what has been described in [26]

Table 2 The LC-MS2 spectral and UV-Vis analysis indicating compound characteristics of the glutathionyl-S-caffeoylquinic acid
conjugate extracted from S. lycopersicum

Chemical formula HR-ESI-MS found HR-ESI-MS calculated Mass difference ppm error MS2 of 660.17 [M + H]+ UV-Vis max (nm)

C26H34N3O15S
+ 660.1693 [M + H]+ 660.1705 [M + H]+ -0.0012 -1.8 660.17 [M + H]+

585.15 [M-H-C2H4NO2]
+

530.15 [M + H-C5H8NO3]
+

468.13 [M + H-quinic acid]+

307.17 [M + H-C16H17O9]
+

283, 519

MS2 for 658.15 [M-H]-

C26H32N3O15S
− 658.1548 [M-H]− 658.1559 [M-H]− -0.0011 -1.7 658.15 [M-H]−

515.10 [M-H-C5H10N2O3]
−

466.07 [M-H-quinic acid]−

385.05 [M-H-C10H16N3O6]
−

191.02 [M-H-C19H22N3O9S]
−

The fragments (m/z ions) obtained overlap with what has been described in scientific literature [26]
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plant defense [40]. The aromatic compounds can partici-
pate in cell wall reinforcement via peroxide-mediated
crosslinking, by acting as direct antioxidant- and anti-
bacterial agents, and depending on chemical structure,
may be degraded leading to the production of hydrogen
peroxide to complete the cycle (Fig. 8). The detection of
the HCAAs in the flagellin elicitor treatments (Flg22 and
FlgII-28) points to the ability of the MAMPs to induce
metabolic alterations in support of plant defense com-
parable to pathogen treatment. The variance observed in
the metabolite profiles following treatment indicates
that, from a metabolomic standpoint, a divergence of
signal transduction events exists following perception of
Flg22 and FlgII-28 as elicitors, leading to a differential
reorganization of downstream metabolic pathways. The
level of elicitor-induced metabolic reprogramming that
takes place is proportionally linked to the impact of the
initial perceived signal. This would suggest that the
FlgII-28 elicitor induces a more intense and prolonged
metabolic response. The HCAAs can be regarded as the
final accumulated products of AA metabolism, often
serving as a cellular storage form to regulate the overall
metabolic pool of the parental constituents [35].
It should be noted that literature linking specific AAs

to biotic stress is scarce and the knowledge conceptual-
izing the functional roles of these compounds is still not
fully elucidated. The discovery of the described com-
pounds at the various time points reveals that flagellin-
elicitor perception results in the activation of the AA
biosynthetic pathway, as well as the specialized transfer-
ase enzymes required for the conjugation to phenolic
acids. This would suggest a functional role of the
HCAAs not only in downstream plant defense, as ob-
served with pathogen infection, but also in the early pro-
cesses after elicitor perception.

Glutathione, redox signaling, and redox homeostasis
Oxidative stress results from the complex chemical and
physiological imbalance between free radicals and anti-
oxidants within a biological system [41], e.g. during the
de novo synthesis of ROS as a component of stress sig-
naling in plant defense responses [41–43]. Redox
homeostasis and antioxidant signaling serves as a meta-
bolic interface between stress perception and physio-
logical responses [44]. Plants maintain the redox
homeostasis through dedicated pathways that produce
several antioxidant molecules (such as the HCAs and as-
sociated conjugates and derivatives) and enzymes to pro-
tect against radical-mediated damage to cellular
components [41].
The process of cellular toxicity is mitigated by large

numbers of ROS quenching proteins e.g. superoxide dis-
mutase, ascorbate peroxidase and peroxiredoxin as well as
non-enzymatic molecules including ascorbic acid, gluta-
thione, flavonoids and HCAs with associated derivatives
[43, 45]. Glutathione (γ-glutamyl-cysteinyl-glycine - GSH)
has multiple functional roles due to its ability to partici-
pate in thiol-disulphide interactions, being continuously
oxidized to a disulphide form (GSSG) that reverts back to
GSH by the action of NAPDH-dependent glutathione re-
ductase enzymes [46]. Functioning in combination, ascor-
bic acid and glutathione form the foundations of the
Asada-Halliwell cycle, a dedicated pathway of ROS detoxi-
fication that serves the conservation of homeostatic levels
of ascorbic acid and glutathione and results in the effective
detoxification of free radical species [44, 45, 47, 48].
Research supports the ability of GSH to conjugate

with chlorogenic acids in vivo (Figs. 6 and 7), with
the biosynthesis of the complex molecule being attrib-
uted to a functional role in plant defense responses
[26, 49]. Interestingly, this is the first reported case of

Fig. 7 A bar graph indicating the fluctuating cellular levels of the glutathionyl-S-caffeoylquinic acid conjugate, a discriminatory marker in the
changing metabolome of tomato leaves responding to flagellin-derived peptides. A The relative abundance of glutathionyl-S-caffeoylquinic acid
after Flg22 (Flg) and FlgII-28 (FlgII) treatments at the 16 h (blue), 24 h (purple) and 32 h time (orange) time intervals. A MgSO4 control (MgSO -
grey) was included for each time point. Each data bar is presented as a mean value (�x of n = 3 × 3 = 9 samples) with the error bars indicating
the calculated standard deviation (σ). A two-condition paired Student’s t-test was performed to compare the treatments with the MgSO4 control
where the asterisks indicate levels of statistical significance (* = P ≤ 0.01, ** = P ≤ 0.001, *** = P≤ 0.0001). B The chemical structure of the
putatively annotated glutathionyl-S-caffeoylquinic acid conjugate
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the glutathionyl-S-caffeoylquinic acid conjugate in the
metabolome of S. lycopersicum. Studies have shown
that glutathionylation increases compound polarity
and provides an additional ligand modification that is
recognized by transporter proteins for cross mem-
brane movement [26]. Glutathionylation has been sug-
gested to facilitate the transport of phenylpropanoids
into vacuoles and into the apoplastic space [50].
Glutathione conjugation, in general terms, is regarded
as a detoxification reaction, but in some cases may
present as a storage form for later bioactivation of
the initial parent compound, e.g. as potentially for
chlorogenic acids [51]. Glutathione-S-transferase
(GST) catalyzed reactions have also been suggested to
be associated with the synthesis of the above-
mentioned conjugate as an intermediate of down-
stream biosynthetic processes. Both GSH and the
chlorogenic acids have an antioxidant capacity
bestowing them the ability of alleviating oxidative
stress.
Linking the GSH conjugate with a functional role in

plant defense, the primary suggestion would be the

attenuation of oxidative stress occurring in the biological
systems during the elicitor treatments. The production
of GSH in the chloroplasts and peroxisomes at early
stages of plant pathogen interactions has been linked to
increased resistance [52]. Jasmonic acid (JA), but not
hydrogen peroxide, has been shown to lead to the ex-
pression of several GSTs required for GSH synthesis
[53]. Additionally, the GST enzymes have shown to be
auxin-inducible, can interact with indole acetic acids
(Table 1) as non-substrate ligands and participate in
hormone transport [54].

Conclusions
An untargeted metabolomics approach was used to
detect metabolite signatures overlapping in the Flg22
and FlgII-28 elicitor treatments of tomato. The metabo-
lites identified by multivariate statistical modeling were
derived from both primary and secondary metabolism.
The metabolite features positively correlated to the
elicitor-treatments could be categorized into the hydroxy-
benzoic acids, HCAs and associated derivatives, HCA con-
jugates like HCAAs, steroidal glycoalkaloids, flavonoids

Fig. 8 Schematic presentation of tyrosine metabolism leading to the production of hydroxycinnamic acid amides (HCAAs). A Tyramine and the
two catecholamines have been shown to have high antioxidant properties [34]. B Each compound shown in the pathway may be conjugated to
hydroxycinnamic acid (HCA) derivatives (e.g., ferulic acid as shown). The most common conjugates include coumaric- and ferulic acid. Several
sources have described the incorporation of the HCAAs into the cell wall [36, 37]. Compounds that were not detected as discriminant ions due to
the flagellin elicitor treatments are lightly shaded i.e., tyrosine and L-DOPA. Dashed arrows indicate multiple enzymatic reactions leading to the
production of a specific compound. Abbreviations: TH, tyrosine hydroxylase; TDC, tyrosine decarboxylase; DDC, dopa decarboxylase; MPH,
monophenol hydroxylase; DH, dopamine hydroxylase; THT, tyramine N-(hydroxycinnamoyl) transferase
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and lipid metabolite classes. Other miscellaneous signa-
tures, such as amino acid derivatives and phytohormones
(e.g. a jasmonic acid derivative), were also detected.
The observed trend in the metabolite profiles at differ-

ent time points revealed plausible evidence that the fla-
gellin elicitor treatments resulted in the activation of
tyrosine metabolic pathways – leading to the production
of HCAA compounds (including coumaroyl tyramine,
feruloyl tyramine, coumaroyl dopamine and feruloyl
dopamine), benzoyl conjugated indole-containing com-
pounds, as well as lipid species recently linked with early
immune signaling processes. Although the pathogen-
induced production of the HCAAs has been previously
reported, this is believed to be the first metabolomic ap-
proach cataloguing the single elicitor-induced produc-
tion of these compounds in S. lycopersicum. HCAA
compounds, in conjunction with their described antioxi-
dant- and antimicrobial activities, may also participate in
cell wall reinforcement. However, the functional role of
the HCAAs in plant defense, linking molecules derived
from phenylalanine deamination and tyrosine decarb-
oxylation, is still to be fully conceptualised.
Additionally, a glutathionyl-S-caffeoylquinic acid conju-

gate, not previously reported in tomato, was produced in
leaf tissue at the 24 h time point of the elicitor treatments,
suggestive of a role limiting potential oxidative stress/
damage resulting from events occurring during MAMP
perception and early immune responses. Finally, the
untargeted metabolomics approach was successful in cap-
turing the subtle perturbations associated with elicitor-
linked plant defense responses. Tracking the 16–32 h
post-treatment trend in the metabolite profiles revealed
that the two flagellin-derived MAMPs are differentially
perceived as elicitors by tomato plants, with both produ-
cing oxidative burst responses, but dissimilar in intensity
and kinetics, subsequently leading to nuanced differences
in downstream metabolic profiles.

Methods
Plant cultivation
Seeds of the commercially available tomato cultivar,
‘Star9001’ were obtained from Stark Ayres, Pty. Ltd.
(Bredell, South Africa, www.starkeayres.co.za) and culti-
vated in germination mixture (Culterra, Muldersdrift,
South Africa). The plants were grown under greenhouse
conditions: a light/dark cycle of 12 h/12 h, with the light
intensity set at 80 µmol/m2/s and the temperature regu-
lated to between 22 and 24 oC. We confirm that relevant
institutional, national, and international guidelines and
legislation were adhered to in the research.

Flagellin peptides
The peptide elicitors were synthesized at ≥ 90 % purity.
The Flg22 peptide (GL Biochem, Shanghai, China) with

sequence QRLSTGSRINSAKDDAAGLQIA was previ-
ously described [28], as was the FlgII-28 peptide (Gen-
Script, Piscataway, NJ, USA) with sequence ESTNIQRM
RELAVQSRNDSNSATDREA [5, 28]. Stock solutions of
each peptide elicitor were made to 1 mg/mL and used as
diluted samples during the various experiments.

3,3’-Diaminobenzidine (DAB) histochemical staining for
detection of ROS
Leaves of mature tomato plants were treated with the
flagellin-derived elicitors and stained with a 3,3’-diami-
nobenzidine (DAB, Sigma-Aldrich, St. Louis, MO, USA)
solution to visualize the presence of hydrogen peroxide
(H2O2). The protocol was performed with slight modifi-
cations as previously described [55]. Briefly, the abaxial
side of the leaves were treated with 1 µM Flg22 or 1 µM
FlgII-28 by means of pressure infiltration and incubated
for 30 min. Care was taken to avoid excess wounding or
mechanical damage during pressure infiltration. One h
prior to the experiment, the DAB solution (1 mg/mL in
water, pH 3.8) was prepared. The bottle was covered in
aluminum foil due to light sensitivity and placed on a
heating block at 50 oC to solubilize. The leaves were ex-
cised from the plant and placed in the DAB solution
under light at 23 oC for 8 h with constant agitation.
After the incubation period, the leaves were removed
from the DAB solution and immersed in boiling 70 %
ethanol for 10 min. After cooling, the leaves were trans-
ferred into an absolute ethanol solution at room
temperature and left overnight. The visible, brown poly-
merized precipitate in the host tissue was produced as a
product of the reaction between DAB and H2O2.

Luminescence assay for kinetics of ROS production
Leaf disks (0.4 cm2) were punched out from fully ex-
panded leaves using a cork borer. The leaf disks were
floated adaxial side up on 200 µL MilliQ water in a 96-
well microtiter plate (Nunc, Roskilde, Denmark) which
was placed under light at room temperature for 24 h.
After the incubation period the water from each well
was completely removed and replaced with a 100 µL of a
master mix solution composed of 34 µg/mL luminol
(Sigma-Aldrich, St. Louis, MO, USA) and 20 µg/mL
horseradish peroxidase (Sigma-Aldrich, St. Louis,
MOUSA) and each of the respective elicitors (1 µM
Flg22, 1 µM FlgII-28) in water. Special consideration
was taken to limit mechanical damage of the leaf disks
during the disk floating and water removal steps. The lu-
minescence was measured every 2 min for 60 min using
a Synergy HT Biotek microplate reader (Biotek Instru-
ments, Winooski, VT, USA). The data was exported to
an Excel file for further analysis. To account for natural
variability 3 leaf disks per plant were taken, where a total
of 24 leaf disks were used per treatment condition.
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Univariate statistical analysis: The kinetics of reactive oxy-
gen species production over time, described as ∑ relative
luminescence units were analyzed based on the integrated
area under the curve. A pairwise Student’s t-test was per-
formed to compare the elicitor treatments with the control.

Plant elicitation
The Flg22 and FlgII-28 elicitors were diluted to a 500 nM
concentration. The tomato plants were watered generously
5 h prior to elicitor inoculation to open leaf stomata and fa-
cilitate inoculation. The plants were treated with the solu-
tions by pressure infiltration into the leaves using a blunt-
ended syringe. An 8 mM MgSO4 control was included. It
should be noted that the fragility and complex reticulate ven-
ation inherent with tomato leaves complicate the inoculation
process and that care should be taken to avoid/limit wound-
ing or mechanical damage. Following inoculation, the plants
were incubated for 16 h, 24 and 32 h respectively. After each
incubation time the inoculated leaves were harvested from
three different plants, quenched in liquid nitrogen, and
stored at -80 oC until further use. The experimental design
included three biological replicates, generated for each
elicitor treatment at each time point, and analyzed in
triplicate, generating n= 9 required for metabolomics investi-
gations [56].

Metabolite extraction for metabolomics analyses
Frozen leaf tissues were pulverized with a pre-cooled
mortar and pestle. Two grams of pulverized material
were extracted with 80 % methanol in a 1:10 (w/v) ratio.
The samples were sonicated twice in a sonicator bath for
30 min at 20 oC. Cell debris was pelleted with a bench
top swinging-bucket centrifuge set at 5525 xg and 5 oC
for 20 min. The supernatants were evaporated to 1 mL
using a rotary evaporator at 55 oC, carefully transferred
into 2 mL microcentrifuge tubes and dried in a heating
block overnight at 55 oC. The samples were then recon-
stituted in 500 µL of 50 % liquid chromatography-grade
methanol: MilliQ water solvent (1:1, v/v), and filtered
through 0.22 μm nylon syringe filters into chromatog-
raphy vials fitted with 500 µL inserts prior to being
stored at 4 oC until analysis.

Ultra-high performance liquid chromatography coupled
to high definition mass spectrometry (UHPLC–HDMS)
Two µL of each sample extract was analysed in triplicate
on an UHPLC-high definition quadrupole time-of-flight
high-definition MS (UHPLC–qTOF–HD–MS) system
equipped with an electrospray ionization (ESI) source
(SYNAPT G1, Waters Corporation, Manchester, UK).
The analytes were separated on an Acquity HSS T3
reverse-phase column (2.1 × 150 mm x 1.7 μm; Waters
Corporation, Milford, MA, USA) using a binary solvent
system consisting of acetonitrile (Romil Chemistry,

Cambridge, UK): MilliQ water, with both solvents con-
taining 0.1 % formic acid (FA, Sigma-Aldrich, Munich,
Germany) and 2.5 % isopropanol (Sigma-Aldrich, Mun-
ich, Germany). A gradient elution method was used over
a 30 min run with a flow rate set to 0.4 mL/min. The
elution was started at 2 % (v/v) acetonitrile from 0 to
1 min, raised to 70 % acetonitrile from 1 to 22 min,
taken up to 95 % from 22 to 23 min then kept constant
at 95 % acetonitrile from 23 to 26 min. The composition
of the mobile phase was then reverted to 2 % acetonitrile
from 26 to 27 min, for column cleaning and equilibra-
tion from 27 to 30 min. The chromatographically sepa-
rated metabolites were detected with the aid of a
SYNAPT G1 HDMS (Waters Corporation, Manchester,
UK) set to acquire data in both positive and negative
ionization modes. The MS conditions were as follows:
capillary voltage of 2.5 kV, sample cone voltage of 30 V,
microchannel plate detector voltage of 1600 V, desolva-
tion temperature of 450 oC, source temperature of
120 °C, cone gas flow of 50 L/h, desolvation gas flow of
550 L/h, m/z range of 50-1500, scan time of 0.2 s, inter-
scan delay of 0.02 s, mode set as centroid, lockmass flow
rate of 0.1 mL/min, lockmass set as leucine enkephalin
(554.2615 Da) and mass accuracy window of 0.5 Da.
High purity helium was used as desolvation-, cone- and
collision gas. The MS analyses were set to perform
unfragmented as well as four fragmenting experiments
(MSE) simultaneously by collision energy ramping from
10 to 50 eV. Data acquisition at these various collision
energies was performed to facilitate metabolite fragmen-
tation for later assistance in downstream structure eluci-
dation and compound annotation. Blank samples
containing solvent only (50 % methanol), along with
pooled biological quality controls (PBQC) were pre-
pared. The sample run order was completely random-
ized with the addition of blank samples and PBQCs.
The UHPLC-ESI-MS data sets were analysed with

MarkerLynx XS™ software (Waters Corporation,
Manchester, UK). The MarkerLynx XS™ application uses
the patented ‘ApexPeakTrack’ algorithm to perform ac-
curate peak detection and alignment. The raw UHPLC-
ESI-MS data was processed with the following parame-
ters: 0.60–21 min retention time (Rt) range of the chro-
matograms and m/z domain of mass range 50-1500 Da.
The Rts were allowed to differ by ± 0.20 min and the m/
z values by ± 0.05 Da. The mass tolerance was 0.01 Da
and the intensity threshold was 10 counts. Only the data
matrices with noise level less than 50 % (MarkerLynx cut
off) were retained for downstream data analyses.
MarkerLynx XS performs sample normalization, based
on total ion intensities of each defined peak. Prior to cal-
culating intensities, the software performs a modified
‘Savitzky-Golay’ smoothing and integration [57–59].
Following MarkerLynx™ processing, which included
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noise filtering, normalization, peak detection, deisotop-
ing and alignment [60], the generated data matrices were
exported for statistical analyses.

Multivariate data analysis and chemometric modeling
The processed UHPLC-ESI-MS data files, analysed with
MarkerLynx XS™ software (Waters Corporation,
Manchester, UK), were imported into SIMCA (soft inde-
pendent modelling by class analogy) software, version
14.1 with activation of the ‘Omics’ skin (Sartorius Stedim
Data Analytics AB, Umeå, Sweden). To put all variables
on equal footing, and adjusting for measurement errors,
the data was Pareto-scaled prior to chemometric model-
ing. A nonlinear iterative partial least squares algorithm
(in-built within SIMCA software) was used to handle
missing values, with a correction factor of 3.0 and a
default threshold of 50 %.
Two unsupervised methods, principal component ana-

lysis (PCA) and hierarchical cluster analysis (HiCA) were
applied to visualize the high-dimensional data. PCA is
an unsupervised technique (similar to a clustering algo-
rithm) that attempts to derive a set of low-dimensional
features from a much larger set while still preserving as
much variance as possible. Subsequently, HiCA was ap-
plied on low-dimensional data generated from the PC
analyses. HiCA builds a hierarchy of clusters with an
established ordering from top to bottom, with all the
possible links between clusters represented by a dendro-
gram. Agglomerative HiCA models were computed
using Ward’s linkage method (incremental sum of
squares method) that considers between- and within-
cluster distances when forming clusters, and the tree
was sorted based on size [61]. The generated hierarchy
of clusters was represented graphically as a dendrogram
to evaluate whether some natural grouping emerges
from the data – i.e. if the ‘metabolite space’ actually con-
tains several distinct subspaces [13].
In addition, a supervised method, orthogonal projec-

tion to latent structures-discriminant analysis (OPLS-
DA), was employed. Comparing directly multiple groups
in OPLS analyses can be difficult to interpret because
groups with many similar but few distinguishing charac-
teristics may not separate. Hence, as described in the
Results section, the OPLS-DA modelling was applied as
a (multivariate) binary classification method to compare
the control and treated samples. The OPLS-DA sepa-
rates multivariate relationships into predictive (related to
flagellin-treatment) and orthogonal (unrelated to the
treatment) variation. This supervised method was used
also for the identification of ions responsible for the dis-
crimination between the two groups [18]. A seven-fold
analysis of variance testing of cross-validated predictive
residuals (CV-ANOVA) method [19] was applied as a
tuning procedure in computing the supervised models

[57]. The quality of the MVDA models were determined
by diagnostics tools as described in the captions to the
figures and in the Results section.
For variable selection, the OPLS-DA loading S-plots

were evaluated. This loading plot has an S-shape pro-
vided the data are centered/Pareto-scaled, and aids in
identifying variables which differ between groups (dis-
criminating variables), i.e. variables situated at the upper
right or lower left sections in the S-plot. The p1-axis de-
scribes the influence of each X-variable on the group
separation (modeled covariation), and the p(corr)1-axis
represents the reliability of each X-variable for accom-
plishing the group separation (modeled correlation).
Variables that combine high model influence (high co-
variation/magnitude) with high reliability (i.e. smaller
risk for spurious correlation) are statistically relevant as
possible discriminating variables [16, 57]. However, since
the S-plot is susceptible to data matrix changes due to
correlation sensitivity and dependency on data structure,
to avoid variable selection bias the statistical significance
and discriminability of these S-plot-derived potential
markers were further investigated using different tests
and tools such as the variable importance in projection
(VIP) plots, jackknife confidence intervals (used to esti-
mate standard errors in a nonparametric way as an esti-
mate of bias), variable trends and descriptive statistics.
The latter were applied to selected variables, generating
measures such as p-values, fold changes, standard devia-
tions and CV values. VIP scoring is a metric that sum-
marizes the importance of each variable in driving the
observed group separation in a classification modelling;
with the jackknife confidence intervals reflecting the
variable stability. A variable with a VIP score > 1.0
means that the variable contributes more than average
to the model, hence its relevance and statistically worth
selecting [57].

Metabolite annotation
The chemical/structural identities of the metabolites
were elucidated using their empirical formulae obtained
from the high-definition MS as well as the respective
mass spectral patterns obtained during the MSE analysis.
MS spectral-based metabolite identification was per-
formed based on sufficient and accurate mass fragment
information, accurate calculation of the elemental com-
position of each discriminant feature and database
searches with empirical formulae for possible metabolite
annotation. MassFragment, a built in MarkerLynx XS
software tool, was utilised for assigning possible
structures to observed fragment ions of the precursor
metabolite features using novel algorithms. The putative
empirical formula of each statistically significant ex-
tracted ion peak (XIC) in the mass spectra was obtained
and searched in databases for the identification of
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possible compound matches. These databases included
ChemSpider <www.chemspider.com> , Dictionary of Nat-
ural Products <www.dnp.chemnetbase.com/ > , PubChem<
http://pubchem.ncbi.nlm.nih.gov/ > , Metlin < http://metlin.
scripps.edu/ > , the tomato metabolome database (MoTo) <
http://www.ab.wur.nl/moto/ > , Kyoto Encyclopedia of Genes
and Genomics (KEGG) Compound database < https://www.
genome.jp/kegg/compound/ > [13, 17, 23]. Metabolites were
tentatively identified/annotated to level 2 of the Metabolo-
mics Standards Initiative (MSI) [56, 62].
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