Skip to main content
Fig. 1 | BMC Plant Biology

Fig. 1

From: Defining the function of SUMO system in pod development and abiotic stresses in Peanut

Fig. 1

SUMO-related proteins in peanut and other plant species. a Protein sequences from Arabidopsis thaliana, Glycine max, Oryza sativa, Peanut and Zea mays were used to construct the phylogenetic tree by the neighbor-joining method in MEGA 5. They were classified into three groups: canonical SUMO, non-canonical SUMO, and SUMO-variant. b Synteny analyses of SUMOs in peanut and Glycine max. The short light black lines on the circle indicate the approximate chromosome location of peanut or Glycine max SUMOs. Syntenic regions between peanut and Glycine max SUMOs are represented by colored lines. c Alignment of SUMO sequence reveals conserved and divergent residues from peanut, Arabidopsis (AtSUMO1), human (HsSUMO2, NP_008868.3), and yeast (ScSmt3, KZV12750.1). Only conserved region is shown. The black dotted line locates the β-grasp-fold. The black triangle locates the processing site by ULP that exposes the diGly motif essential for conjugation in canonical SUMOs. The asterisk denotes the conserved Lys required for forming SUMO-chains. The blue circle dots denote SUMO interacting motif (SIMs). Gray and black boxes identify similar and conserved amino acids, respectively. Dashes denote gaps. At, Arabidopsis thaliana; Zm, Zea mays; Os, Oryza sativa; Gm, Glycine max; Hs, Homo sapiens; Sc, Saccharomyces cerevisiae

Back to article page